ESCUELA DE VERANO

Evaluación de impacto en modelos complejos

Evaluación de impacto en modelos complejos 1

 

 Urzua Profesor Sergio Urzua, University of Maryland. 

Horario: 4 al 13 de junio de 8:00 a.m. a 11:30 a.m. (incluye sábado 8 de junio)

 

logo pdfPrograma

El objetivo de este curso es dar a los estudiantes la fundamentación teórica y las herramientas econométricas necesarias para realizar evaluación de impacto en entornos complejos. El enfoque estará basado en modelos empíricos de economía laboral. Los temas incluirán: endogeneidad, sesgo de selección, variables instrumentales, estimaciones estructurales versus estimaciones en forma reducida. Particular atención se brindará a la teoría de identificación y a modelos con heterogeneidad no observada. El curso hará énfasis en la conexión entre los aportes teóricos y prácticos existentes en la literatura.

 

 

 

 

 

 

 

Impact evaluation statistics and economics interno.2.fw

 

 

We will begin at the beginning of spatial analysis, around mid-18th century. The introduction will be at a general level of epidemiology. Then we will slowly move to spatial statistics, spatial econometrics and finally to, spatial urban economics. We will touch on the contrast between time-series and spatial dependence, and the need for moving from linear to non-linear models; from fixed to space varying coefficient models. More specifically, in the context of urban econometrics, we will study the price of housing; we will argue that not only the spatial dependence of house prices, but also the dependence in the variability (risk) of prices need to be considered, leading to non-linear spatial autoregressive conditional heteroskedastic (SARCH) model. The major highlight of the course will be how to test various spatial models, particularly, in the context of possible misspecification.

The theories covered in the course will be illustrated in the computer lab by substantial applications using data from several countries, including Colombia. The aim of the computer lab is to introduce to students the problems related with handling spatial data and the properties of the basic econometric models. With hands-on experience, students will have a broad overview of the most recent developments and refinements of the basic models used in spatial econometrics. At the end of the course, students will have acquired the necessary skills to build, estimate and test these models in the R environment.

Prerequisites: A first course in econometrics.

Outline

Topic 1. History of Spatial Analysis

1.1. Spatial Analysis in Time of Cholera: Work of Dr. John Snow (1854)

1.2. Design of Experiments and Sample Survey: Work of Fisher and Mahalanobis (1920-1950)

1.3. First Formal Paper on Spatial Analysis: PAP Moran (1948)

 

Topic 2. Theory of Spatial Analysis

2.1. Why (Spatial) Dependence Matter?

2.2. Contrast between Time-Series and Spatial Dependence

2.3. Different Spatial Models

2.4. Estimation of Spatial Models

 

Topic 3. Testing Spatial Models

3.1 General Principles of Testing

3.2 Testing with Misspecified Models

3.1. Specification Tests for Spatial Models

3.2. Spatial Panel Models

 

Topic 4. Applications of Spatial Analysis

4.1. Applications of Spatial Analysis to Crime (Columbus, OH, USA)

4.2. Applications of Spatial Analysis House Prices (Boston, MA, USA)

4.3. Applications of Spatial Analysis to Regional Growth Convergence (of 61 countries)

4.4 Special Spatial Applications Using Colombian Data

 

Si desea tomar este curso sin recibir nota haga click aquí.