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Abstract

This paper characterizes the testable implications of stability for aggregate matchings.

We consider data on matchings where individuals are aggregated, based on their observable

characteristics, into types, and we know how many agents of each type match. We derive

stability conditions for an aggregate matching, and, based on these, provide a simple

necessary and sufficient condition for an observed aggregate matching to be rationalizable

(i.e. such that preferences can be found so that the observed aggregate matching is stable).

Subsequently, we use moment inequalities derived from the stability conditions to estimate

bounds on agents’ preferences using the cross-sectional marriage distributions across the

US states. We find that the rationalizing preferences of men and women are “antipodal”,

in that when men prefer younger women, then women prefer younger men, and vice versa.

This is consistent with the requirements of stability in non-transferable utility matching

markets.
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1 Introduction

The literature on stable matching has grown rapidly, but as a positive empirical theory, stable

matchings are still not well understood. There are many advancements and refinements in

the theoretical literature, and many normative applications of the theory to actual matching

markets. Positive empirical studies of matching, however, have lagged behind, due to some

difficulties in deriving observable implications of the theory. The first is a pure dimensionality

constraint; many real-world matching markets (such as marriage or housing markets) are huge,

featuring hundreds of thousands or millions of individuals on each side of the markets. Most of

the theoretical matching models, which are formulated at the individual-level, quickly become

intractable at these large dimensions. Second, there is an indeterminacy in the direction of

revealed preference: if Alice matches with Bob and not with Bruce, we cannot know if Alice

prefers Bob over Bruce, or if Bruce is unavailable to Alice because he prefers his partner to

matching with Alice.

To sidestep these difficulties, we focus in this paper on aggregate data from matching

markets, in which individuals on each side of the market are summed up into cells on the

basis of their observed characteristics, such as age, education attainment, or employment

sector. What restrictions on these aggregate matchings are implied by the individual-level

matching models? This is the motivating question of our paper.

We find that the theory has very strong implications for aggregate matchings. Our results

are the first deriving the complete observable implications of stability for aggregate matchings

in non-transferable utility (NTU) matching markets. NTU may be a more realistic assumption

for some matching markets, such as the marriage market. Relative to the transferable utility

(TU) model, the NTU setting accommodates an agent’s characteristics (such as a spouse’s

wit or culinary skills, or attractiveness) which may not be perfectly remunerated within a

marriage market. There may also be intrinsic constraints to transfers, such as non-quasilinear

preferences, discreteness in the unit of account, or budget constraints. Moreover, the NTU

model also allows for the possibility that agents may not be able to commit to levels of

income-sharing in a potential marriage.1

Nevertheless, for comparison, we also characterize the observable implications of aggregate

matchings under the TU assumption and, while both models imply strong empirical restric-

tions, the theory is strictly more restrictive when transfers are possible (i.e. the TU model is

nested in the NTU model).

Subsequently, we develop an econometric approach for estimating preferences from ob-

served aggregate matchings, in the NTU setting. Much of the existing empirical literature

on matching markets assumes that agents can make monetary transfers. Once transfers be-

1The TU model assumes that agents can make unconstrained monetary transfers (no budget constraints
are binding), and that the marginal utility of money is the same to all agents (quasilinear utility). See Legros
and Newman (2004) for additional discussion of non-transferabilities in matching markets.
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tween individuals are ruled out, however, multiple stable matchings become a generic feature,

which raises important difficulties for the econometric estimation of preferences from observed

matching data. Following the recent literature on econometric estimation of models with mul-

tiple equilibria, we use moment inequalities derived from the stability conditions to estimate

bounds on agents’ preferences, and apply our estimation approach to the cross-sectional mar-

riage distributions across the US states. To our knowledge, this is the first paper to consider

partial identification and moment inequality-based estimation of preferences in NTU match-

ing models. We find that the rationalizing preferences of men and women are “antipodal”, in

that when men prefer younger women, then women prefer younger men, and vice versa. This

is consistent with the requirements of stability in NTU matching markets.

1.1 General motivation. Discrete choice theory is based on the idea that revealed pref-

erences are unambiguous: if an agent chooses A when B is available then the utility of A is

higher than the utility of B. In contrast, in two-sided choice problems, revealed preferences are

ambiguous. An agent may choose A over B even when she regards B as the better choice; the

reason is that B has a say in the matter, and B may prefer some other choice over matching

with the agent. Thus, in a two-sided model, preferences and allocations determine “budgets”

endogenously: an agent can only choose among options that are willing to match with the

agent, given who their partners are.

For empirical work, the two-sided nature of choices presents a unique challenge. One can-

not take choices as given and infer preferences. There is a fundamental simultaneity that must

be dealt with, where preferences determine the sets of willing partners (“budgets”), and these

sets in turn determine the direction of revealed preferences. Most of the literature deals with

the problem by assuming transferable utility, so that matchings maximize total surplus. We

tackle the problem directly, in an non-transferable utility model. Our econometric technique

is based on deriving a moment inequality from the stability constraints, this technique is quite

different from the methods based on discrete choice.

1.2 Related literature. There is an important applied literature on matching (Roth, 1984;

Abdulkadiroglu, Pathak, Roth, and Sönmez, 2005; Roth, Sönmez, and Ünver, 2004, are im-

portant examples) that focuses on the normative design of economic institutions. Our paper

deals with the positive content of matching theory. Our paper is close in focus to several

other recent papers exploring the empirics of matching markets. These papers can roughly

be divided into those in which NTU is assumed, and those in which TU is assumed.

A matching model under TU is equivalent to the Shapley and Shubik (1971) assignment

game. A stable matching is one which maximizes the sum of the joint surplus of all matched

couples. This is the setup considered in Choo and Siow (2006) and Galichon and Salanie

(2009), who consider identification and estimation of TU matching models. Specifically, Choo

and Siow derive and estimate an aggregate matching model using marriage cross-sections from
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the US Census. Assuming independent logit preferences shocks at the individual level, and

a continuum of men and women, they derive a “marriage matching function”. Subsequently,

they fit matching function to two aggregate (national-level) matchings for the US: one for

1970, and another for 1980.2

Fox (2007) considers individual-level TU matching models, and develops a maximum-score

estimator for these models based on a “pairwise stability” requirement, which implies that, if

an observed matching is stable, then no two pairs of agents should profitably be able to swap

their partners. When the matching markets are big, such a comparison of all the pairwise

stability conditions becomes infeasible. Fox shows that only a subset of the inequalities need to

be used in the estimation, so long as a “rank-order” property holds. Subsequently, Bajari and

Fox (2008) apply this estimator to analyze the efficiency of allocations in wireless spectrum

auctions run by the US Federal Communications Commission during the 1990’s.

In the NTU setting, Dagsvik (2000) and Dagsvik and Johansen (1999) consider the ques-

tion of inferring preferences from aggregate matching data. Like Choo and Siow, they assume

independent logit-distributed preference shocks at the individual level. Assuming large num-

ber of agents (their results are asymptotic in the number of men and women of each type),

Dagsvik and Johansen derives expressions for the number of matchings among agents of each

type, based on equilibrium supply-demand conditions implied by the Gale-Shapley algorithm.

There are also papers studying the empirical implications of the NTU model on individual-

level matchings. Echenique (2008) studies the sets of matchings that can be rationalized as

being stable, focusing is on repeated observations of stable individual matchings. Hitsch,

Hortaçsu and Ariely (2006, 2010) employ a dataset from an online dating service to estimate

preferences separately from the process of matching. Then they use the estimated preferences

to simulate the men- and women-optimal matchings, and compare these optimal matchings to

the actual matches observed from the dataset.3 Finally, also in the NTU model, Del Boca and

Flinn (2006) estimate men and women’s preferences from competing intrahousehold decision-

making models, and then test between these models on the basis of the discrepancy between

the observed matchings, and simulated matchings using the estimated preferences and the

Gale-Shapley algorithm.

In this paper, we focus on stable aggregate matchings, in the NTU framework. In deriving

empirical implications, we assume only that the observed matchings are in the set of stable

matchings, given the estimated preferences, without imposing any other equilibrium condi-

tions. This echoes the “incomplete model” analyses of Haile and Tamer (2003) and Ciliberto

and Tamer (2009) for, respectively, timber auctions and airline markets. This use of moment

2This literature is also related to a long-standing literature on hedonic markets; see Chiappori, McCann,
and Nesheim (2009) and Heckman, Matzkin, and Nesheim (2003) for recent contributions.

3Matching via intermediary dating and match-making services has also spawned a small but growing empiri-
cal and experimental literature; for example, Lee (2009) estimates marital preferences using data from a Korean
online match-making service, while Fisman, Iyengar, Kamenica, and Simonson (2008) and Lee, Niederle, Kim,
and Kim (2010) conduct a field experiments with dating/match-making services.
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inequalities derived from stability restrictions is new in the empirical matching literature.

2 The Model

2.1 Preliminary definitions. An (undirected) graph is a pair G = (V,E), where V is a

set and E is a subset of V × V . A path in G is a sequence p = 〈x0, . . . xN 〉 such that for

n ∈ {0, . . . N − 1}, (xn, xn+1) ∈ E. We write x ∈ p to denote that x is a vertex in p. A path

〈x0, . . . xN 〉 connects the vertices x0 and xN . A path 〈x0, . . . xN 〉 is minimal if there is no

proper subsequence of 〈x0, . . . xN 〉 that is also a path connecting the vertices x0 and xN .

A cycle in G is a path c = 〈x0, . . . xN 〉 with x0 = xN . A cycle is minimal if for any two

vertices xn and xn′ in c, the paths in c from xn to xn′ , and from xn′ to xn, are minimal. Say

that x and y are adjacent in c if there is n such that xn = x and xn+1 = y or xn = y and

xn+1 = x.

If c and c′ are two cycles, and there is a path from a vertex of c to a vertex of c′, then we

say that c and c′ are connected .

An aggregate matching market is described by a triple 〈M,W,>〉, where:

1. M and W are disjoint, finite sets. We call the elements of M types of men and the

elements of W types of women .

2. >= ((>m)m∈M , (>w)w∈W ) is a profile of strict preferences: for each m and w, >m is a

linear order over W ∪ {m} and >w is a linear order over M ∪ {w}.

We call agents on one side men, and on the other side women, as is traditional in the

matching literature. Many applications are, of course, to environments different from the

marriage matching market.

Note that assumption 2 above effectively rules out preference heterogeneity among agents

of the same type. While this is restrictive relative to other aggregate matching models in the

literature, such as Choo and Siow (2006), Galichon and Salanie (2009), both of these papers

consider the TU model. We show below that, in the NTU model (which is the focus of this

paper), stability conditions for a model with agent-specific preference heterogeneity has no

empirical implications at the aggregate level. For this reason, we assume that all agents of

the same type have identical preferences.

We proceed by deriving the implications of stability when preferences are only driven by

observables. We derive rather stark restrictions on the data. Unobserved heterogeneity would

soften the conclusions of applying our test, but the essence of our restrictions would still

be present. In our empirical application we do allow individual-level heterogeneity via the

propensity of agents to meet partners with whom they can form “blocking pairs” (as defined

below).4 See Section 4.3 for a complete discussion.

4This may be interpreted as heterogeneity arising from individual-level search frictions. We thank Bernard
Salanie for this interpretation.
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Consider an aggregate matching market 〈M,W,>〉, with M = {m1, . . . ,mK} and W =

{w1, . . . , wL}. An aggregate matching is a K × L matrix X = (Xij) with non-negative

integer entries. The interpretation of X is that Xij is the number of type-i men and type-j

women matched to each other. An aggregate matching X is canonical if Xij ∈ {0, 1}. A

canonical matching X is a simple matching if for each i there is at most one j with Xij = 1,

and for each j there is at most one i with Xij = 1. The standard theory of stable matchings

studies simple matchings (Roth and Sotomayor, 1990).

An aggregate matching X is individually rational if Xij > 0 implies that wj >mi
mi

and mi >wj
wj. That is, for a man of type mi matched to a woman of type j, individual

rationality implies that both the man and the woman preferred being matched to each other,

versus remaining single (ie. being matched to themselves). A pair of types (mi, wj) is a

blocking pair for X if there are wl ∈ W with Xil > 0, and mk ∈ M with Xkj > 0, such that

wj >mi
wl and mi >wj

mk. An aggregate matching X is stable if it is individually rational

and there are no blocking pairs for X.

For any aggregate matching X, we can construct a canonical aggregate matching Xc by

setting Xc
ij = 0 when Xij = 0 and Xc

ij = 1 when Xij > 0. The following is obvious:

Proposition 2.1. An aggregate matching X is stable if and only if Xc is stable.

Based on this observation, our theoretical results focus on canonical aggregate stable

matching.

2.2 Stability conditions. Given a matching market 〈M,W,>〉, we can construct a graph

(V,E) by letting V be the set of pairs (i, j), i = 1, . . . , N and j = 1, . . . ,K. Define E by

((i, j), (k, l)) ∈ E if either wl >mi
wj and mi >wl

mk or wj >mk
wl and mk >wj

mi. Then X is

stable if and only if

((i, j), (k, l)) ∈ E ⇒ XijXkl = 0. (1)

In what follows, we will also make use of the contrapositive to the above statement. Given a

canonical matching X, we define an antiedge as a pair of couples (i, j), (k, l) with i 6= k ∈

M ; j 6= l ∈ W such that Xij = Xkl = 1. Then, (1) is equivalent to:

(ij), (kl) is anti-edge ⇒

{

1(wl >mi
wj) · 1(mi >wl

mk) = 0

1(wj >mk
wl) · 1(mk >wj

mi) = 0
(2)

In our econometric approach below (Section 4), the contrapositive statement (2) of the sta-

bility conditions forms the basis for the moment inequalities.

In this section, we use the graph (V,E) to understand stable matchings for given prefer-

ences. In the proof of Theorem 3.3 of Section 3, we use it to infer preferences such that a

given matching is stable. For an example, consider the matching market with three types of
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men and women, and preferences described as follows:

>m1
>m2

>m3
>w1

>w2
>w3

w1 w2 w3 m2 m3 m1

w2 w3 w1 m3 m1 m2

w3 w1 w2 m1 m2 m3

(3)

meaning that m2 ranks w2 first, followed by w3, and so on. The resulting graph can be

represented as follows.

w1 w2 w3

m1

m2

m3

1

..
..

..
..

..
..

..
1 1

1

NNNNNNNNNNNNNN 1

�������
1

1 1 1

where each vertex is indicated with a number 1, and denotes a potential match between a

type of man and a type of woman. The edges are represented as lines connecting couples.

For example, the edge connecting (mT , w1) to (m3, w2) shows that, as per the preferences in

Eq. (3), m3 >w1
m1 and w1 >m3

w2, so that (m3, w1) form a blocking pair. The stability

requirement translates into sets of vertexes that must be 0. For example, applying (1) we find

that the following two matrices are stable matchings:

0

..
..

..
..

..
..

..
1 0

1

NNNNNNNNNNNNNN 1

�������
1

0 1 0







1

..
..

..
..

..
..

..
1 1

1

NNNNNNNNNNNNNN 0

�������
1

1 0 0







2.3 The structure of aggregate stable matchings. Let X and X ′ be aggregate match-

ings. Say that X dominates X ′ if, for any i and j, Xij = 0 implies that X ′
ij = 0. The

following result is immediate from the definition of a stable aggregate matching.

Proposition 2.2. Let X be a stable aggregate matching. If X ′ is an aggregate matching, and

X dominates X ′, then X ′ is stable.

Thus, given an aggregate matching market 〈M,W,>〉, there is a family of maximal stable

matchings X : this family describes all the stable matchings, as a matching is stable if and

only if it is dominated by a member of X .
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We describe an algorithm that, given a matching market 〈M,W,>〉, outputs the set X ,

and thus finds all the aggregate stable matchings. Consider the graph (V,E) associated to

〈M,W,>〉. Enumerate the vertices, V = {1, 2, . . . N}. Start with the matching X0 that is

identically zero. For v ∈ V , given the matching Xv−1, define Xv to be identical to Xv−1

except possibly at entry v. Let entry v be 1 if that does not violate condition (1); let entry v

be 0 otherwise. Let X = XN .

The algorithm constructs an aggregate stable matching, as each Xv is an aggregate stable

matching. To see that it is maximal, let X̂ 6= X be an aggregate matching that dominates X.

Let v be a vertex in V such that the entry corresponding to v in X is 0 and the entry in X̂ is

1. By definition of Xv , there must be some entry v′ such that (v, v′) ∈ E and entry v′ in Xv

is 1. The entry v′ must be 1 in X̂ , as X̂ dominates X and X dominates Xv. Then X̂ is not

stable because it violates condition (1). By considering all possible orderings of the vertices

V , we obtain the set of maximal matchings X .

We end this section with a partial result on the structure of X . One may wonder when X

coincides with the simple stable matching for market 〈M,W,>〉. We show that, typically, X

contains non-simple matchings.

Proposition 2.3. Let X be an individual stable matching. K = |M | (L = |W |) is the number

of types of men (women).

1. If K = L = 3 then X is not a maximal stable matching.

2. If K > 3, L > 3 and X is a maximal stable matching, then one of the following two

possibilities must hold:

(a) For all (i, j), the submatching X−(i,j) is a maximal stable matching in the −(i, j)

submarket.

(b) There is (h, l) with Xhl = 1, and a maximal stable matching x̃, for which x̃h,j =

x̃i,l = 0 for all i and j.

Note that (2) together with (1) is meant to suggest a recursive idea. When K = L = 4, (2a)

cannot be true so we must have a matched pair in X that is nevertheless “totally single” in

another maximal stable matching.

2.4 Remarks.

2.4.1 Aggregate matchings are not simple. We show that the testable implications of aggregate

stable matchings differs from those of simple stable matchings. In particular, it is tempting to

view an aggregate matching as a combination, or the coexistence, of a collection of underlying

stable single matchings. This view would be incorrect, as there are additional restrictions

imposed when one aggregates.
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Example 2.4. Consider the preferences in Eq. (3) above. The following simple matchings are

stable:

X1 =






1 0 0

0 1 0

0 0 1




 X2 =






0 0 1

1 0 0

0 1 0






Consider the sum of X1 and X2:

X̂ = X1 + X2 =






1 0 1

1 1 0

0 1 1




 .

One might want to conclude that X̂ is stable because it corresponds to the simultaneous

matching of agents through X1 and X2. Note, however, that X̂ is not a stable aggregate

matching. The pair (m1, w2) is a blocking pair: we have that w2 >m1
w3 and m1 >w2

m2 while

X̂13 > 0 and X̂22 > 0. One cannot view aggregate stable matchings by their decomposition

into simple stable matchings.5

This example also shows that an aggregate matching cannot be interpreted as a “frac-

tional” solution to the stability constraints in the linear programming formulation of stable

matchings (Vande Vate, 1989; Teo and Sethuraman, 1998). Here 1
2X̂ is a fractional stable

matching; but does not correspond to an aggregate stable matching. A similar phenomenon

arises with lotteries over matchings and ex-ante stability, see Kesten and Ünver (2009).

Put differently, the testable implications of stability for aggregate matchings cannot be

reduced to stability for a collection of simple matchings. There are “cross restrictions” that

need to be dealt with; in the example these take the form of instances of m1 and w2 who

block in a way that is not present in any of the stable simple matchings.

In Section 4.3 we show further how simple disaggregate matchings do not generate empir-

ical implications with traction at the aggregate level.

2.4.2 Single Agents. We have assumed that there are no single agents; we only make this

assumption to simplify our notation. We can imagine that, for example, there is ni >
∑

j Xi,j

men of type i, and that ni −
∑

j Xi,j of them are single. Our model and results are easily

adaptable to this case. We would then work with a matrix that has an additional row and

column, say i∗ and j∗. Then Xi,j∗ would represent the men of type i who are single; simple

adaptations of the results in Section 3 go through.

5The conclusion is reinforced by the results of Section 2.3, where we show that the structure of aggregate
stable matchings differs from the lattice structure of simple stable matchings.
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3 Rationalizing Aggregate Matchings.

We suppose that we observe an aggregate matching, and ask when there are preferences that

can rationalize it as a stable matching. The property is related to how many entries in the

matching matrix are non-zero. Specifically, we consider the graph formed by connecting any

two non-zero elements of the matrix, as long as they lie on the same row or column. It turns

out that rationalizable of an aggregate matching depends on the number and connectedness

of minimal cycles on this graph. We consider the NTU and TU cases in turn.

3.1 Without transfers. Let M = {m1, . . . ,mK} and W = {w1, . . . , wL} be sets of types

of men and women. We write i and j for typical types of men and women, and il and jk for

specific types of men and women.

We suppose that we are given an aggregate matching X, and we want to understand

when there are preferences for the different types of men and women, such that X is a stable

aggregate matching. Say that a canonical matching X is rationalizable if there exists a

preference profile >= ((>m)m∈M , (>w)w∈W ) such that X is a stable aggregate matching in

〈M,W,>〉.

We present first a simple result, showing that a rationalizable matrix must be relatively

sparse: it cannot have too many non-zero elements. Proposition 3.1 is subsumed in Theo-

rem 3.3, but it has a simple and intuitive proof so we choose to present it here.

Proposition 3.1. If X has a 3 × 2 or a 2 × 3 submatrix that is identically 1, then X is not

a stable aggregate matching for any preference profile.

Proof. We may assume that X is the submatrix in question. Suppose X is stable. By

individual rationality, for all men any woman is preferable to being single. Similarly for the

women. We must find a pair (i, j) such that wj is not last in mi’s preference, and mi is not

last in wj’s preferences. Finding this pair suffices because then there is k and l with Xik = 1

and Xlj = 1 and wj >mi
wk, mi >wj

ml. Say that m1 ranks w1 last. If either w2 or w3 rank

m1 as not-last, then we are done. If both w2 and w3 rank m1 last then consider m2: m2 must

rank one of w2 and w3 as not-last. Since they rank m1 last then we are done.

Remark 3.2. If K = L = 2 then the matching X that is identically 1 is stable for the

preferences

>m1
>m2

>w1
>w2

w1 w2 m2 m1

w2 w1 m1 m2

Fix a matching X. We use the graph defined by the 1-entries in X, where there is an edge

between two entries in the same row, and an edge between two entries in the same column.

11



Formally, consider the graph (V,L) for which the set of vertices is V := {(i, j)|i ∈ M, j ∈

W such that Xij = 1}, and there is an edge ((i, j), (k, l)) ∈ L if i = k or j = l.

The main result of the paper is Theorem 3.3, a characterization of the rationalizable ag-

gregate matchings. The proof of the sufficiency direction is constructive; it works by using

an algorithm to construct a rationalizing preference profile. The construction is not univer-

sal, in the sense that some rationalizing preference profiles cannot be constructed using the

algorithm (see Example A.2).

To simplify the statement and proof of the theorem, we assume that there are no single

men or women. Similar arguments apply to the case when some agents may be single.6

Theorem 3.3. An aggregate matching X is rationalizable if and only if the associated graph

(V,L) does not contain two connected distinct minimal cycles.

The following example illustrates the condition in the theorem.

Example 3.4 (minimal cycle). Let X be






1 1 1

0 1 1

1 1 0




 .

The graph (V,L) can be represented as

1 1 1

0 1 1

1 1 0

The following is an example of two minimal cycles that are connected.

1 1 1

0 1 1

1 1 0

1 1 1

0 1 1

1 1 0

3.2 With transfers. While the focus of this paper is primarily on the NTU model, for

completeness we also consider the empirical implications of stability in the TU version of

6Add a column js and a row is to X. Let Xi,js
be the number of type i men who are single and Xis,j the

number of type j women who are single. A result similar to Theorem 3.3 holds for this augmented matrix.
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our aggregate matching model. We show that, vis-a-vis Theorem 3.3, if agents can make

transfers, then stability has strictly more empirical bite than when transfers are not present:

any aggregate matching that is rationalizable with transfers is also rationalizable without

transfers.7

The model of matching with transfers was first introduced by Shapley and Shubik (1971),

and applied to the problem of marriage by Becker (1973). A pair of men and women (m,w)

generate a surplus αm,w ∈ R if they match. The stable matchings are the ones that maximize

the total sum of match surplus.

For an aggregate matching X, we suppose that a type i man who matches with a type j

woman can generate a surplus αi,j ∈ R. So the surplus generated by the matchings of types

i and j in X is Xi,jαi,j. The information on surpluses is given by a matrix

α = (αi,j)|M |×|W |.

Now, in familiar “revealed preference” fashion we ask when, given X, there is a matrix α such

that X is stable for the surpluses in α.

Formally, let X be an aggregate matching. Say that X is TU-rationalizable by a matrix

of surplus α if X is the unique solution to the following problem.

maxX̃

∑

i,j αi,jX̃i,j

s.t.







∀j
∑

i X̃i,j =
∑

i Xi,j

∀i
∑

j X̃i,j =
∑

j Xi,j

(4)

Remark 3.5. We restrict X̃ in (4) to have the same number of agents of each type as X. The

restriction is obviously needed, as one could otherwise generate high surplus by re-classifying

agents into high-surplus types. Essentially, we consider situations where the number of agents

of each type is given, and we focus on how they match.

Note also that we require X to be the unique maximizer in (4). This contrasts with

Section 3, where we did not require X to be the unique stable matching. This difference is

inevitable, though. If we instead required X to be only one of the maximizers of (4), then

any matching could be rationalized with a constant surplus (αi,j = c for all i, j). In a sense,

without transfers multiplicity is unavoidable (only very strong conditions ensure a unique

stable matching), while uniqueness in the TU model holds for almost all real matrices α.

Theorem 3.6. An aggregate matching X is TU-rationalizable if and only if the associated

graph (V,L) contains no minimal cycles.8

7This contrasts sharply with the results on rationalizing a collection of simple matchings. Chambers and
Echenique (2009) show that there are sets of matchings that are rationalizable with transfers but not without
transfers, and vice versa.

8A graph contains a cycle if and only if it contains a minimal cycle. We stress minimality in the results
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Corollary 3.7. If an aggregate matching X is TU-rationalizable, then it is rationalizable.

4 Empirical implementation

Starting in this section, we consider how to estimate agents’ preferences from observed aggre-

gate matchings. Throughout, we assume the following parameterized preferences:

uij = Zijβ + εij , (5)

where uij denotes the utility received by a type i individual if he/she matches with a type j

individual. Zij is a vector of observed covariates; β is the vector of parameters we want to

estimate; and εij denotes unobserved components of utility. In the empirical work, we assume

that εi,j is ii.d. distributed according to a N(0, 1) distribution, across all pairs of types (i, j),

and also independent of the observables Zi,j. Given the utility specification, then, we define

dijk ≡ 1(uij ≥ uik).

4.1 Estimating equations. The antiedge condition (2) implies that

Pr((ij), (kl) antiedge) ≤ (1 − Pr(dilj = dlik = 1))(1 − Pr(djki = dkjl = 1))

= Pr(diljdlik = 0, djkidkjl = 0).
(6)

Given parameter values β, and our assumptions regarding the distribution of the ε’s, these

probabilities can be calculated. Hence, the moment inequality corresponding to Eq. (6) is:

E [1((ij), (kl) antiedge) − Pr(diljdlik = 0, djkidkjl = 0;β))]
︸ ︷︷ ︸

gijkl(Xt;β)

≤ 0. (7)

The identified set is defined as

B0 = {β : Egijkl(Xt;β) ≤ 0, ∀i, j, k, l} .

These moment inequalities are quite distinct from the estimating equations considered

in the existing empirical matching literature. For instance, Choo and Siow (2006), Dagsvik

(2000), and Fox (2007) use equations similar to those in the multinomial choice literature,

that each observed pair (i, j) represents, for both i and j, an “optimal choice” from some

“choice set”. The restrictions in (2) cannot be expressed in such a way.

Assume that we observe multiple aggregate matchings. Let T be the number of such

observations, and Xt denote the t-th aggregate matching that we observe. Then the sample

because they play a crucial role in our proofs.
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analog of the expectation in (7) is

1

T

∑

t

1((ij), (kl) is antiedge in Xt) − Pr(diljdlik = 0, djkidkjl = 0;β)

=
1

T

∑

t

gijkl(Xt;β).

(8)

If the number of types of men and woman were equal (M = W ), then there would be
W 2∗(W−1)2

2 such inequalities, corresponding to each couple of pairs. Note that the expectation

E above is over both the utility shocks ε’s, as well as over the “equilibrium selection” process

(which we are agnostic about).

There is by now a large methodological literature on estimating confidence sets for param-

eters in partially identified moment inequality models that cover the identified set B0 with

some prescribed probability. (An incomplete list includes Chernozhukov, Hong, and Tamer

(2007), Andrews, Berry, and Jia (2004), Romano and Shaikh (2010), Pakes, Porter, Ho, and

Ishii (2007), Beresteanu and Molinari (2008).) While there are a variety of objective functions

one could use, we use here the simple sum of squares objective:

Bn = argminβQn(β) =
∑

i,j,k,l

[

1

T

T∑

t=1

gijkl(Xt;β)

]2

+

where [x]+ denotes x ∗ 1(x > 0). Our moment inequality approach to marriage markets is

different in focus from, and hence complementary to, search-theoretic analysis of marriage

(such as Wong (2003) and Brien, Lillard, and Stern (2006)).

4.2 Relaxing the stability constraints. Stability (rationalizability) places very strong

demands on the data that can be observed. The condition in Theorem 3.3 will very often be

violated by aggregate matchings with many non-zero elements. We propose a relaxation of

the stability constraint that is particularly useful in applied empirical work.

Namely, we assume that potential blocking pairs may not necessarily form. So if pref-

erences are such that the pair (m,w) would block X, the block only actually occurs with

probability less than 1. The reason for not blocking could be simply the failure of m and w

to meet or communicate (as in the literature on search and matching).

Specifically, we allow for the possibility that an observed edge between pairs (i, j) and

(k, l) may imply nothing about the preferences of the affected types i, j, k, l, simply because

the couples (i, j) and (k, l) fail to meet. In particular, define

δijkl = P (types (i, j), (k, l) communicate).
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We then modify the stability inequalities (2) as:

(

(ij), (kl) is anti-edge

(ij), (kl) meet

)

⇒

{

diljdlik = 0

djkidkjl = 0
(9)

This leads to the modified moment inequality:

Pr((ij), (kl) antiedge) ≤
Pr(diljdlik = 0, djkidkjl = 0;β)

δijkl
(10)

Note that as δijkl → 1, we expect that the identified set B0 shrinks to the empty set.

The reason is that most aggregate matchings violate the condition in Theorem 3.3; thus they

cannot be rationalized without a positive probability that potential blocking pairs do not

form. On the other hand, as δijkl → 0, the identified set converges to the whole parameter

space: the right-hand side of the moment inequality becomes larger than 1.

Here, we are assuming that the events ((ij), (kl) is an edge) and ((ij), (kl) meet) are

independent events. The first event depends on preferences and process that produces a

stable matching in the first place. So we are making the assumption that the probability of

communication is independent of preferences and the matching.9 On the other hand, in our

empirical work, we allow δijkl to depend on the relative number of matched (i, j) and (k, l)

couples in each observation. Specifically, letting γ denote a scaling parameter, we set

δt
ijkl = min{ 2 · γ ·

|XT M
i ,T W

j
|

|Xt|
·
|XT M

k
,T W

l
|

|Xt|
, 1 }

where |XT M
i ,T W

j
| denotes the number of type i men (type j women) married to a type j

woman (type i man) in observation t, and |Xt| denote the number of observed men (women)

in observation t.

To interpret this, consider a given pair of couples (i, j), (k, l). If this couple constitutes an

antiedge, and the stability conditions fails, then two potential blocking pairs can be formed:

(i, l) and (k, j). The specification for δt
ijkl represents one story for when a blocking pair which

is present in the agents’ preferences, actually blocks. With |XT M
i ,T W

j
| (resp. |XT M

k
,T W

l
|) being

the number of (i, j) (resp. (k, j)) couples, and |Xt|
2 being the total number of potential couples

in the entire market, then δt
ijkl is set proportional to the frequency of potential blocking pairs

(j, l), (k, j) in the market; it is scaled by γ (and capped from above by 1). We scale by γ to

allow the probability that a blocking pair forms to be smaller or larger than this frequency,

with a larger γ implying that blocking pairs form more frequently, so that there is less slackness

in the stability restrictions.

More broadly, the δ’s weight the anti-edges in the sample moment inequalities. Intuitively,

an antiedge ((i, j), (l, k)) should receive a higher weight when it involves many potential

9We could relax this assumption by making δ dependent on the same covariates that enter into the agents
preferences.
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blocking pairs than when it only involves a few. Our specification achieves this idea, as it

makes the probability of forming a blocking pair dependent on the number of agents involved.

4.3 Individual-level heterogeneity: remarks. In our theoretical results, we have as-

sumed that agents’ preferences depend only on observables. This allowed us to obtain rather

stark implications of stability for aggregate matchings. The implications are too stark, in the

sense that most of the observed matchings in the data would not be rationalizable. If we add

unobserved heterogeneity, then the theoretical implications become weaker and “probabilis-

tic;” but the main thrust of these implications are preserved.

So, in a matching model that captures how preferences depend on observables, but has

additional noise, our conditions for rationalizability hold in a probabilistic sense. The econo-

metric approach proposed in Section 4 involves just such a probabilistic version of the model.

Here we compare our approach to other papers in the literature.

One possible starting point is to assume that individuals of the same type have the same

preferences up to individual-specific i.i.d. shocks, which is the assumption in most of the

empirical literature; see, for instance, Choo and Siow (2006) and Galichon and Salanie (2009)

for the TU model. The i.i.d. shocks are a very limited form of unobserved heterogeneity: it

allows two (say) type i men to differ in the utility they would obtain from a matching with

a (say) type j woman. However, each of these men still remains indifferent between all type

j women.10 Thus two agents of the same type are still perceived as identical by the opposite

side of the market.

The shocks ensure that each agent-type has a non-zero probability of being matched with

any agent-type on the opposite side of the market; this reconciles the theory with the observed

data. In this respect, the role of the preference shocks in these papers plays the same role

as the “communication probability” δijkl in our empirical analysis. The “communication

probability” captures unobserved heterogeneity in the ability of agents to match, perhaps as

a result of noisy search frictions. It serves the same purpose as i.i.d. preference shocks. The

shocks, on the other hand, lead to trivial inequalities at the aggregate level. We state this

result here, and prove it in the Appendix.

Claim 4.1. In the NTU model, preference shocks at the individual-level lead to trivially-

satisfied stability restrictions at the aggregate level.

Because of this result, then, i.i.d. individual-level preference shocks seem inappropriate in

the aggregate NTU setting of our empirical work. Furthermore, the communication proba-

bility δijkl plays a similar role in our empirical work as do preference shocks in others’ work:

namely, to better reconcile the theory to the data by enlarging the the sets of marriages which

one could observe in a stable matching.

10Galichon and Salanie (2009) also discuss this point (cf. pg. 10).
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5 Estimation results

5.1 Data and empirical implementation. In the empirical implementation, we use data

on new marriages, as recorded by the US Bureau of Vital Statistics. We consider new mar-

riages in the year 1988, and treat data from each state as a separate, independent matching.

We aggregate the matchings into age categories, and create canonical matchings. For this

application, we only include the age variable in our definition of agent types, because it is the

only variable which we observe for all the matchings.11 Table 1 has examples of aggregate

matchings, and the corresponding canonical matchings, for several states. In these match-

ing matrices, rows denote age categories for the husbands, and the columns denote the age

categories for the wives.

Table 1: Aggregate Matchings and the corresponding Canonical Matchings.

Age: Aggregate Matchings Canonical Matchings
|↓, ~→ 12-20 21-25 26-30 31-35 36-40 41-50 51-94 12-20 21-25 26-30 31-35 36-40 41-50 51-94

12-20 231 47 8 0 0 1 0 1 1 1 0 0 1 0

21-25 329 798 156 32 11 7 0 1 1 1 1 1 1 0

26-30 71 477 443 136 27 8 0 1 1 1 1 1 1 0

MI 31-35 11 148 249 196 83 21 0 1 1 1 1 1 1 0

36-40 2 41 105 144 114 51 1 1 1 1 1 1 1 1

41-50 0 15 42 118 121 162 25 0 1 1 1 1 1 1

51-94 0 2 11 11 35 137 158 0 1 1 1 1 1 1

12-20 8 1 0 0 0 0 0 1 1 0 0 0 0 0

21-25 17 31 4 0 0 0 0 1 1 1 0 0 0 0

26-30 2 21 22 7 1 0 0 1 1 1 1 1 0 0

NV 31-35 0 4 10 5 3 0 0 0 1 1 1 1 0 0

36-40 0 3 8 2 2 2 0 0 1 1 1 1 1 0

41-50 0 1 1 2 6 3 3 0 1 1 1 1 1 1

51-94 0 0 0 0 0 5 3 0 0 0 0 0 1 1

12-20 307 83 12 6 0 0 0 1 1 1 1 0 0 0

21-25 453 1165 214 64 10 6 1 1 1 1 1 1 1 1

26-30 113 698 703 190 51 17 0 1 1 1 1 1 1 0

PA 31-35 17 184 393 277 78 26 2 1 1 1 1 1 1 1

36-40 9 73 152 191 148 84 5 1 1 1 1 1 1 1

41-50 3 27 83 146 187 273 28 1 1 1 1 1 1 1

51-94 1 7 12 38 48 182 268 1 1 1 1 1 1 1

These aggregate canonical matchings have many 1’s. Indeed it is apparent from simply eye-

balling the table that the rationalizability condition in Theorem 3.3 is violated: the matchings

for all three of these states contain more than two connected cycles, implying that they are

not rationalizable. For example, consider the following submatrix for Michigan:

|↓, ~→ 12-20 21-25 26-30

12-20 1 1 1

21-25 1 1 1

26-30 1 1 1

11Because stability is defined at the level of the matching, we did not want to exclude any marriage from
the data due to missing variables.
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which has two connected cycles. As a consequence of the non-rationalizability of these match-

ings, we use the approach in Section 4.2 to relax the requirements of stability.

Finally, one feature of the table is relevant for the discussion below. Note that the match-

ings in Table 1 contain more non-zero entries below the diagonal, which means that in a

preponderance of marriages, the husband is older than the wife.

In our empirical exercise, the specification of utility (Eq. (5)) is very simple, and it only

involves the ages of the two partners to a match. Suppose that man m of age Agem is

matched to woman w of age Agew. The following utility functions capture preferences over

age differences, and partner’s age.

Utilitym = β1|Agem − Agew|− + β2|Agem − Agew|+ + εm

Utilityw = β3|Agem − Agew|− + β4|Agem − Agew|+ + εw,

where εm and εw are assumed to follow a standard normal distributions. In this specification,

we assume that utility is a piecewise-linear function of age, with the “kink” occurring when

the age-gap between husband and wife is zero. To interpret the preference parameters, note

that β1 (β3) is the coefficient in the husband’s (wife’s) utility, attached to the age gap when

the wife is older than the husband. Thus, a finding that β1(β3) > 0 means that, when the

wife older, men (women) prefer a larger age gap: that is, men prefer older women, and women

prefer younger men. Similarly, a finding that β2(β4) > 0, implies that then when the husband

is older than the wife, men (women) prefer a larger age gap: here, because the husband is

older, a larger age gap means that men prefer younger women, and women prefer older men.

The sample moment inequality (Eq. (8)), with the modification in Eq. (9), becomes:

1

T

∑

t

gijkl(Xt;β) =
( 1

T

∑

t

1((ij), (kl) is antiedge in Xt) ∗ δt
ijkl

)

− {1 − Pr(dilj = 1;β1,2) Pr(dlik = 1;β3,4)} · {1 − Pr(djki = 1;β3,4)Pr(dkjl = 1;β1,2)}

for all combinations of pairs, (i, j) and (k, l).

5.2 Identified sets. Table 2 summarizes the identified set for several levels of γ, and

presents the highest and lowest values that each parameter attains in the identified set. The

unrestricted interval in which we searched for each parameter was [−2, 2]. So we see that,

for a value of γ = 30, the identified set contains the full parameter space, implying that the

data impose no restrictions on parameters. At the other extreme, when γ ≥ 36, the identified

set becomes empty, implying that the observed matchings can no longer be rationalized. The

latter is consistent with our discussion above, where we noted that when the communica-

tion probability δ becomes very large (which is the case when γ is large), then the observed

matchings will violate the rationalizability conditions in Theorem 3.3.

19



Table 2: Unconditional Bounds of β.

β1 β2 β3 β4

γ min max min max min max min max
30 -2.00 2.00 -2.00 2.00 -2.00 2.00 -2.00 2.00
33 -2.00 0.25 -2.00 1.75 -2.00 0.25 -2.00 1.50
35 -2.00 -0.75 -2.00 1.00 -2.00 -0.75 -2.00 0.75

For γ = 35, we see that β1 and β3 take negative values, while the values of β2 and β4 tend

to take negative values but also contain small positive values. This suggests that husbands’

utilities are decreasing in the wife’s age when the wife is older, but when the wife is younger,

his utility is less responsive to the wife’s age. A similar picture emerges for wives’ utilities,

which are increasing in the husband’s age when the husband is younger, but when the husband

is older, the wife’s utility is less responsive to her husband’s age. All in all, our findings here

support the conclusion that husbands’ and wives’ utilities are more responsive to the partner’s

age when the wife is older than the husband.

A richer picture emerges when we consider the joint values of parameters in the identified

set. Figure 1 illustrates the contour sets (at different values of γ) for the husband’s preference

parameters (β1, β2), holding the wife’s preference parameters (β3, β4) fixed. To simplify the

interpretation of these findings in light of the stability restrictions, we recall two features

of our aggregate matchings (as seen in Table 1): first, there are more anti-edges below the

diagonal, where agem > agew. Second, there are more “downward-sloping” anti-edges than

“upward-sloping” ones. That is, there are more anti-edges (i, j), (k, l) with k > i, l > j than

with i > k, l > j, as illustrated here.

Downward-sloping anti-edge:

(i, j)

GGGGGGGG
(i, l)

(k, j) (k, l)

Upward-sloping anti-edge:

(k, j) (k, l)

(i, j)

wwwwwwww
(i, l)

Because of these features, we initially focus on the parameters (β2, β4), which describe

preferences when the husband is older than the wife.

The graphs in the bottom row of Figure 1 correspond to β4 = −2, corresponding to the

case that the wife prefers a younger husband: with a downward-sloping anti-edge, this implies

that it is likely that djik = 1 and dlki = 0. In turn, using the stability restrictions (2), this

implies that dilj = 0 (that husbands prefer younger wives), but places no restrictions on the

sign of dkjl. For this reason, we find that in these graphs, β2 tends to take positive values at

the highest contour levels so that, when husbands are older than their wives, they prefer the

age gap to be as large as possible.
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Figure 1: Identified sets of (β1, β2) given (β3, β4) and γ.
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By a similar reasoning, β2 takes negative values when β4 = 1. When wives prefer older

husbands (which is the case when β4 = 1), then with a downward-sloping anti-edge, this

implies that djik = 0 and dlki = 1. Consequently, stability considerations would restrict the

husband’s preferences so that dkjl = 0 (and husbands prefer older wives), leading to β2 < 0.

On the other hand, because there are more downward-sloping anti-edges, when the wife

is older than the husband, restriction (2) implies that one of two cases – either the husband

prefers a younger wife, or the wife prefers an older husband – must be true. In Figure 1,

as β3 increases from −2 to 1 (from the left to the right column), the wife’s utilities becomes

more favorable towards a younger husband. As a result, more restrictions are imposed to the

husbands’ utilities, which yields a tighter negative range for β1 in the identified sets.

Overall, we see that β1 < 0 and β3 < 0, implying that as long as the wife is older than

the husband, both prefer a smaller age gap. On the other hand, β2 and β4 are negatively

correlated: as β4 increases, β2 decreases. This suggests that, when the husband is older than

the wife, one side prefers a smaller gap but the other side is less responsive on the age gap.

5.3 Confidence sets. Figure 2 summarizes the 95% confidence sets with γ = 32 (shaded

lightly) and 35 (shaded darkly). In computing these confidence sets, we use the subsampling

algorithm proposed by Chernozhukov, Hong, and Tamer (2007). Comparing the confidence

sets in Figure 2 to their counterpart identified sets in Figure 1, the confidence sets are ap-

parently larger than the identified sets. This is not surprising, given the modest number of

matchings (fifty-one: one for each state) which we used in the empirical exercise.

Nevertheless, the main findings from Figure 1 are still apparent; β1 < 0 across a range

of values for (β3, β4), and β2 < 0 (resp. > 0) when β4 > 0 (resp. < 0). These somewhat

“antipodal” preferences between a husband and wife are a distinctive consequence of the

stability conditions of an NTU matching model.

6 Conclusions

We have characterized the full observable implications of stability for aggregate matchings:

with transfers and without them. The implications are easy to check, and strongly restrict

the data. We have developed an econometric procedure for estimating preference parameters

from aggregate data; our procedure is based on moment inequalities derived from the stability

restrictions.

We focused on aggregate matching data because it seems that often data come in an aggre-

gate form, and because many applied researchers have already looked at aggregate matchings.

More broadly, though, the idea of stability is akin to the absence of arbitrage, and as such it

is a very weak notion of equilibrium for a market; thus, our emphasis on stability represents

an attempt to derive results for matching markets which are robust to the exact matching

process, which we remain agnostic about.
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Figure 2: 95% confidence sets of (β1, β2) given (β3, β4) and γ = 32 (shaded lightly) and 35
(shaded darkly).
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An alternative approach would have been to specify a detailed structural model of how

agents match, and estimate this model by traditional means. This would have some clear

advantages. One could empirically back out some of the details involved in how a matching

is produced, and understand the source of frictions that may prevent a market from reaching

a fully stable matching. On the other hand, it would also require very strong assumptions

about how agents act, and on the technology involved in matching, and one worries that the

estimation results may be unrobust if these assumptions were wrong. Our focus on stability

avoids these problems, and the results here show that it is enough to yield nontrivial empirical

implications which can be used for estimating preference parameters.

Moreover, our focus here has been on two-sided matching markets, but similar notions

of stability also apply to other market configurations, such as one-sided matching markets

(corresponding to the “roommates” problem). Our empirical approach may also be useful in

those settings.
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A Examples

Example A.1. The following example shows that two maximal stable matchings may have a

different number of non-zero entries.

>m1
>m2

>m3
>w1

>w2
>w3

w3 w2 w3 m2 m3 m3

w2 w1 w1 m1 m2 m1

w1 w3 w2 m3 m1 m2

1

NNNNNNNNNNNNNN 1

>>
>>

>>
> 1

1

�������
1 1

1

pppppppppppppp

������������������
1

�������

��������������
1

Then both X and X ′ are maximal stable matchings:

X =






0 0 1

1 1 1

0 0 1




 X ′ =






1 1 0

0 1 0

1 1 1






The following example is rationalizable using many different preference profiles. The

algorithm used in the proof of Theorem 3.3 can only construct some of them.

Example A.2. Consider the following aggregate matching.

X =









1 1 1 0

1 0 0 1

0 0 0 1

1 0 1 0









We illustrate the algorithm used in the proof of Theorem 3.3.

There is a minimal cycle, {(i1, j1), (i4, j1), (i4, j3), (i1, j3)}.

Ī1 = {i1, i4}, J̄1 = {j1, j3}

Ī2 = {i2}, J̄2 = {j2}

Ī3 = ∅, J̄3 = {j4}
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Ī4 = {i3}, J̄4 = ∅

All orientations labeled (1) are determined by the minimal cycle. The orientations denoted

(2), (3), and (4) are determined as we apply the algorithm.

j1 j3 j2 j4

i1

i2

i3

i4

1

(2)

��

(2)
++

(1)
��

1
(2)

//
(1)

oo 1 0

1

(2)
��

(1) // 1

(1)

OO

0 0

1

(3)
,,0 0 1

(4)
��

0 0 0 1

B Proofs

B.1 Proof of Theorem 3.3.. We first record a simple fact about minimal cycles:

Lemma B.1. If c = 〈x0, . . . , xN 〉 is a minimal cycle, then no vertex appears twice in c.

B.1.1 Proof of necessity. We break up the proof into a collection of simple lemmas.

An orientation of (V,L) is a mapping d : L → {0, 1}. We shall often write d((i, j), (i, k))

as di,j,k and d((i, j), (l, j)) as dj,i,l. A preference profile (>mi
, >wj

) defines an orientation d

by setting dj,i,l = 1 iff mi >wj
ml and di,j,k = 1 iff wj >mi

wk.

Let d be an orientation defined from a preference profile. Then X is stable if and only if,

for all (i1, j1) and (i2, j2), if Xi1j1 = Xi2j2 = 1 then

di1j2j1dj2i1i2 = 0 and di2j1j2dj1i2i1 = 0. (11)

We say that the pair ((i1, j1), (i2, j2)) is an antiedge if i1 6= i2, j1 6= j2 and Xi1j1 = Xi2j2 = 1.

Fix an orientation d of (V,L). A path {(i, j)n : n = 0, . . . , N} is a flow for d if ei-

ther d((i, j)n, (i, j)n+1) = 1 for all n ∈ {0, . . . N − 1}, or d((i, j)n, (i, j)n+1) = 0 for all

n ∈ {0, . . . N − 1}. If the second statement is true, we call the path a forward flow .

Our first observation is an obvious consequence of the property of being minimal:

Lemma B.2. Let {(i, j)n : n = 0, . . . , N} be a minimal path with N ≥ 2, then for any

n ∈ {0, . . . N − 2},

(in = in+1 ⇒ jn+1 = jn+2) and (jn = jn+1 ⇒ in+1 = in+2)
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That is, any two subsequent edges in a path must be at a right angle:

1 1 1

1

1 1 1

1

The path on the left is not minimal; the path on the right is.

Fix an orientation d derived from the preferences rationalizing X.

Lemma B.3. Let p = 〈(i, j)n : n = 0, . . . , N〉 be a minimal path. If d((i, j)1 , (i, j)0) = 1 or

d((i, j)N , (i, j)N−1) = 0, then p is a flow for d.

Proof. By Lemma B.2, for any n ∈ {1, . . . N − 1} the pair of vertices (i, j)n−1 and (i, j)n+1

form an antiedge: we have X(i,j)n−1
= X(i,j)n+1

= 1, in−1 6= in+1 and jn−1 6= jn+1. Further,

(i, j)n has one element in common with (i, j)n−1 and the other in common with (i, j)n+1. Thus

by Equation 11, d((i, j)n, (i, j)n−1) = 1 implies that d((i, j)n, (i, j)n+1) = 0, i.e. d((i, j)n+1, (i, j)n) =

1.

The argument in the previous paragraph shows that the existence of some n′ with d((i, j)n′ , (i, j)n′−1) =

1 implies d((i, j)n, (i, j)n−1) = 1 for all n ≥ n′. So if d((i, j)1, (i, j)0) = 1 then d((i, j)n+1, (i, j)n) =

1 for all n ∈ {1, . . . N − 1}; and if d((i, j)N , (i, j)N−1) = 0, then d((i, j)n+1, (i, j)n) = 0 for all

n ∈ {0, . . . N − 1}. Either way, p is a flow.

As an immediate consequence of Lemma B.3, we obtain the following

Lemma B.4. Let p = 〈(i, j)n〉 be a minimal cycle, then p is a flow for d.

Let p = 〈(i, j)n〉 be a path and (i, j) /∈ p. A path p̄ = 〈(̄i, j̄)n : n = 0, . . . , N̄ 〉 connects p

and (i, j) if (̄i, j̄)0 ∈ p and (̄i, j̄)N = (i, j).

Lemma B.5. Let c = 〈(i, j)n〉 be a minimal cycle, and p = 〈(̄i, j̄)n : n = 0, . . . , N̄〉 be a

minimal path connecting c to some (̄i, j̄). Then 〈(̄i, j̄)n : n = 1, . . . , N̄〉 is a forward flow.

Proof. Let c = 〈(i, j)n : n = 0, . . . , N〉 be the cycle in the hypothesis of the lemma. We

write (i, j)n for (i, j)n mod (N), so we can index the cycle by any positive integer index. By

Lemma B.4, c is a flow for d: we can in fact suppose that it is a forward flow, otherwise, if

d((i, j)1, (i, j)0) = 0, then we can re-index by setting (i, j)k = (i, j)N−k .

To prove Lemma B.5 we need to deal with two different cases. Let (i, j)n∗ = (̄i, j̄)0. By

definition of a cycle, then, (̄i, j̄)0 shares either i or j with (i, j)n∗−1. Suppose, without loss of

generality, that they share i, so ī0 = in∗−1. The two cases in question are represented below,

where the center vertex is (̄i, j̄)0. Case 1 on the left has (̄i, j̄)1 also sharing i with (̄i, j̄)0, while
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Case 2 has (̄i, j̄)0 sharing j with (̄i, j̄)1.

1

1 // 1

OO

1

1

1

1 // 1

OO

1

1

Case 1: Suppose that ī1 = ī0 = in∗−1. Consider the minimal path

p′ = 〈(i, j)n∗−1, (̄i, j̄)1, . . . , (̄i, j̄)N̄ 〉.

Since in∗−2 6= ī1, the path

p̂ = 〈(i, j)n∗−2, (i, j)n∗−1, (i, j)1〉

is a minimal path from (i, j)n∗−2 to (i, j)1. We have that d((i, j)n∗−1, (i, j)n∗−2) = 1, as c is a

forward flow. It follows by Lemma B.3 that d((̄i, j̄)1, (i, j)n∗−1) = 1 and thus p̂ is also a forward

flow. Then, by Lemma B.3 again, p′ is a forward flow; in particular, d((̄i, j̄)n+1, (̄i, j̄)n) = 1

for n ∈
{
1, . . . N̄ − 1

}
.

Case 2: Suppose that ī1 6= ī0 = in∗−1. Then the path

〈(i, j)n∗−1, (̄i, j̄)0, (̄i, j̄)1〉

is a minimal path connecting (i, j)n∗−1 and (̄i, j̄)1.

We have that d((i, j)n∗−1, (i, j)n∗−2) = 1, as c is a forward flow. By an application of

Lemma B.3, analogous to the one in Case 1, we obtain that p is a forward flow.

Regardless of whether we are in Case 1 or 2 we establish that 〈(̄i, j̄)n : n = 1, . . . , N̄ 〉 is a

forward flow.

Lemma B.6. There are no two connected distinct minimal cycles.

Proof. Suppose, by way of contradiction, that there are two minimal cycles c1 and c2, and a

path p = 〈(i, j)n : n = 0, . . . , N〉 connecting (i, j)0 ∈ c1 with (i, j)N ∈ c2. We can suppose

without loss of generality that p is minimal. We can also suppose that N ≥ 3 because if

N < 3 we can add (i′, j′) ∈ c1 to p with ((i′, j′), (i, j)0) ∈ L, and (i′′, j′′) ∈ c2 to p with

((i′′, j′′), (i, j)N ) ∈ L; the corresponding path will also be a minimal path connecting c1 and

c2.

By Lemma B.5 applied to c1 and p,

〈(i, j)n : n = 1, . . . N〉
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is a forward flow. On the other hand, Lemma B.5 applied to c2 and p implies that

〈(i, j)N−k : k = 1, . . . N〉

is a forward flow. The first statement implies that d((i, j)2, (i, j)1) = 1 and the second that

d((i, j)1, (i, j)2) = 1, a contradiction.

B.1.2 Proof of sufficiency. To prove sufficiency, we explicitly construct an orientation d that

satisfies Equation 11. We then show that there is a rationalizing preference profile.

We first deal with the case where all vertices in X are connected and there is at most one

minimal cycle. By decomposing an arbitrary X into connected components, we shall later

generalize the argument. If there is no cycle in X, choose a singleton vertex and treat it as

the “cycle” in the sequel.

Let C be the submatrix having the indices in the minimal cycle. If c = 〈(i, j)n〉 is the

minimal cycle, let I1 = ∪n {in} and J1 = ∪n {jn}. Then C is the matrix (xi′,j′)(i′,j′)∈I1×J1
.

Thus C contains the minimal cycle.

We re-arrange the indices of X to obtain a matrix of the form:

(J1) (J2) (J3)

(I1) C X1 O · · ·

(I2) Y1 O X2 · · ·

(I3) O Y2 O · · ·
...

...
...

(12)

We define the submatrices Xn and Yn by induction. For n ≥ 1, let

In+1 = {i /∈ ∪n
1Ik|∃j ∈ ∪n

1Jk s.t. (i, j) ∈ V }

Jn+1 = {j /∈ ∪n
1Jk|∃i ∈ ∪n

1Ik s.t. (i, j) ∈ V }

Now, let Xn be the matrix (xi′,j′)(i′,j′)∈In×Jn+1
and Yn be the matrix (xi′,j′)(i′,j′)∈In+1×Jn

.

Finally, re-label the indices such that if i ∈ In and i′ ∈ In′ and n < n′ then i < i′. The

numbering of indexes in In is otherwise arbitrary. Re-label j’s in a similar fashion.

For every i ∈ In there is a k < n and j ∈ Jk such that (i, j) ∈ V , and similarly, for every

j ∈ Jn there is a k < n and i ∈ Ik such that (i, j) ∈ V . Thus, for i ∈ In there is a sequence

(i, jk0
), (ik1

, jk0
), . . . (ikN

, jkN′ ),

with N = N ′ + 1 or N ′ = N − 1, which defines a path connecting (i, jk0
) to the cycle c.

Similarly, if j ∈ Jn there is a path connecting (ik0
, j) to c.

The observation in the previous paragraph has two consequences:
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Claim B.7. If i ∈ In and j ∈ Jn (n > 1), then (i, j) /∈ V .

Claim B.7 is true because otherwise there would be two different paths connecting (i, j) to

c, one having (i, jk0
) and the other (ik0

, j) as second element. Then we would have a distinct

second cycle.

Claim B.8. Let i ∈ In (n > 1), and let there be two distinct j and j′ (j′ > j) such that

(i, j), (i, j′) ∈ V . Then (i′, j′) ∈ V implies that i′ ∈ In′ with n′ > n.

Claim B.8 is true because otherwise we would again have two different paths connecting

(i, j′) to c; one path with (i, j) and one with (i′, j′) as its second element.

Define the orientation d as follows.

1. If (i, j) ∈ c and (i, j′) ∈ c then define di,j,j′ to be 1 if (i, j) comes immediately after

(i, j′) in c. That is, di,j,j′ = 1 if there is n such that

(i, j′) = (i, j)n mod (N) and (i, j) = (i, j)n+1 mod (N).

2. If (i, j) ∈ c and (i′, j) ∈ c then define dj,i,i′ to be 1 if (i, j) comes immediately after (i′, j)

in c.

3. If (i, j) /∈ c and (i, j′) ∈ c then define di,j,j′ to be 1.

4. If (i, j) /∈ c and (i′, j) ∈ c then define dj,i,i′ to be 1.

5. If (i, j) /∈ c and (i, j′) /∈ c then define di,j,j′ to be 1 iff j > j′.

6. If (i, j) /∈ c and (i′, j) /∈ c then define dj,i,i′ to be 1 iff i > i′.

7. If (i, j) ∈ V and (i′, j) /∈ V , then define dj,i,i′ to be 1.

Let di,j′,j = 0 when 1-7 imply that di,j,j′ = 1; similarly dj,i′,i = 0 when 1-7 imply that

dj,i,i′ = 1.

Lemma B.9. If (i, j) is a vertex in c, then there is at most one j′ such that j′ 6= j and

(i, j′) ∈ c; in addition, (i, j) and (i, j′) are adjacent in c. Similarly, there is at most one i′ 6= i

such that (i′, j) ∈ c; in addition, (i, j) and (i′, j) are adjacent in c

Proof. We let the index of c range over all the integers by denoting (i, j)n mod (N) by (i, j)n.

Let (i, j) be a vertex in c, and n > 0 be such that (i, j) = (i, j)n. Suppose there is j′ such

that j′ 6= j and (i, j′) ∈ c. If it does not exist, we are done. Since now N ≥ 2, (i, j) is in

the minimal path connecting (i, j)n−1 and (i, j)n+1. By Lemma B.2, then, either in−1 = i or

in+1 = i, and exactly one of these is true. In the first case, we can set j′ = jn−1 and in the

second we can set j′ = jn+1. Suppose, without loss of generality, that j′ = jn+1.
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We show that there is not a j′′ 6= j, j′ with (i, j′′) ∈ c. Suppose that there is such a j′′. Let

(i, j′′) = (i, j)m. By Lemma B.2, we have either m < n − 1 or m > n + 1. When m > n + 1,

the path 〈(i, j)n−1, . . . , (i, j)m〉 is not minimal because 〈(i, j)n−1, (i, j)n, (i, j)m〉 is a proper

subset connecting (i, j)n−1 and (i, j)m. When m < n − 1, the path 〈(i, j)m, (i, j)n, (i, j)n+1〉

is not a minimal because (i, j)m and (i, j)n+1 are directly connected. Thus c is not a minimal

cycle, a contradiction.

Lemma B.10. Let (i, j) be a vertex in c. If (i, j′) ∈ V is not a vertex in c, then, for all

i′ 6= i, (i′, j′) /∈ c. Similarly, if (i′, j) ∈ V is not a vertex in c, then, for all j′ 6= j, (i′, j′) /∈ c.

Proof. Suppose, by way of contradiction, that (i, j) ∈ c, (i′, j′) ∈ c, with i 6= i′, j 6= j′, and

(i, j′) /∈ c. Since (i, j), (i′ , j′) ∈ c, there is a minimal path 〈(i, j)k : k = 0, . . . ,K〉 connecting

(i′, j′) to (i, j). Then, since (i, j′) /∈ c, the minimal cycle

〈(i, j)0, . . . , (i, j)K , (i, j′), (i′, j′)〉

is distinct from c and connected to c.

Lemma B.11. 1. If di,j,j′ = 1 and di,j′,j′′ = 1 then di,j,j′′ = 1.

2. If dj,i,i′ = 1 and dj,i′,i′′ = 1 then dj,i,i′′ = 1.

Proof. We prove only the first statement. The second statement can be proved by similar

fashion to the following first three cases.

First, we can rule out that di,j,j′ = 1 because (i, j) ∈ c, (i, j′) ∈ c, and (i, j) comes

immediately after (i, j′) in c (case 1). To see this, note that di,j′,j′′ = 1 would imply that

either (i, j′′) ∈ c, which is not possible by Lemma B.9.

Second, suppose that di,j,j′ = 1 because (i, j) /∈ c and (i, j′) ∈ c. Then di,j′,j′′ = 1 implies

that (i, j′′) ∈ c. Thus di,j,j′′ = 1 by case 3.

Third, suppose that di,j,j′ = 1 because (i, j) /∈ c and (i, j′) /∈ c and j > j′. If di,j′,j′′ = 1

because (i, j′′) /∈ c and j′ > j′′ then di,j,j′′ = 1 by case 5 by the transitivity of >. On the other

hand, if di,j′,j′′ = 1 because (i, j′′) ∈ c then di,j,j′′ = 1 (case 3) as well. Finally, if di,j,j′ = 1

because of Case 7 then we obtain di,j,j′′ = 1 by Case 7 as well.

Lemma B.12. The orientation d satisfies (11).

Proof. Let ((i, j), (i′ , j′)) be an antiedge: so (i, j), (i′ , j′) ∈ V , j 6= j′ and i 6= i′. Suppose that

di,j′,j = 1. We shall prove that dj′,i,i′ = 0.

Suppose first that di,j′,j = 1 because of case 1. Then (i, j′) ∈ c. So, if (i′, j′) /∈ c we obtain

that dj′,i,i′ = 0 by case 3. On the other hand, if (i′, j′) ∈ c then the edges ((i, j), (i, j′)) and

((i, j′), (i′, j′)) are in c. In fact, these edges must be consecutive, or (i, j′) will appear twice

in c. Then, di,j′,j = 1 because of case 1 implies that (i, j′) comes immediately after (i, j) in c;

the edge ((i, j′), (i′, j′)) comes after ((i, j), (i, j′)) in c, so we obtain that dj′,i,i′ = 0 by case 1.
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Suppose second that di,j′,j = 1 because of case 3. So (i, j) ∈ c and (i, j′) /∈ c. Then i ∈ I1

because i is an index for a vertex in the minimal cycle c. Now, by Lemma B.10, there is no ĩ

with (̃i, j′) ∈ c. Since (i′, j′) ∈ V we must have i′ ∈ In for n > 1. By the labeling we adopted,

then, i < i′. Hence, dj′,i′,i = 1 by case 6.

Thirdly, suppose that di,j′,j = 1 because of case 5. If i ∈ I1, there exists j′′ such that

(i, j′′) ∈ c and di,j′,j′′ = 1 because of case 3, and dj′,i′,i = 1 by the previous result. If i ∈ In

(n > 1), then we have shown in Claim B.8 that (i′, j′) ∈ V implies that i′ ∈ Ik with k > n.

Hence dj′,i′,i = 1 because of Case 5.

Finally, note that we cannot have di,j′,j = 1 because of Case 7 because (i, j) ∈ V .

Given the orientation d we have constructed, define two collections of partial orders,

(>i : i ∈ I) and (>j : j ∈ J) where we say that j >i j′ when di,j,j′ = 1 and that i >j i′ when

dj,i,i′ = 1. By Lemma B.11, these are well-defined strict partial orders.

Now define the preferences of man i to be some complete strict extension of >i to J , and

similarly for the women. By Lemma B.12, these preferences rationalize the matching X.

The previous construction assumed that X had one minimal cycle. If X has more than

one minimal cycle, these must not be connected in the graph. Therefor, if we partition the

graph into connected components, there will be at most one minimal cycle in each.

In particular, we can partition the set of vertices V of X to be V = V1 ∪ · · · ∪ VN and

Vm ∩ Vn = ∅. All vertices in each Vn are connected, but no pair of vertices in different sets

are connected. The partition corresponds to the connected components of the graph.

Now re-label the indices of types such that the aggregate canonical matching X is a

diagonal block matrix:

X =









X1 O · · · O

O X2 · · · O
...

... · · ·
...

O O · · · XN









All vertices in Vn correspond to Xn.

The previous construction, applied to each Xn separately, yields a rationalizing preference

profile of each Xn. Now, extend the preferences of each man i: say that i indexes rows in

Xn, then define a partial order ≻i on J to agree with >i on the indexes of columns of Xn,

and such that any index of a column of Xn is ranked above any other index; then define i’s

preferences to be any complete extension of ≻i. Women’s preferences are defined analogously.

The resulting profile of preferences rationalizes X because if (v, v′) is an antiedge with

v, v′ ∈ Vn, for some n, then (11) is satisfied by the previous construction of preferences, and

if v and v′ are in different components of the partition of V , then (11) is satisfied because

any agent ranks an index in their component over an index in a separate component.
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B.2 Proof of Proposition 2.3.

Proof. We shall first prove Statement 1. Suppose, by way of contradiction, that X is a

maximal stable matching for a preference profile ((>m)m∈M , (>w)w∈W ). Without loss of

generality, suppose that X13 = X22 = X31 = 1.

We have X32 = 0 and X is maximal. Then there is Xij = 1 s.t. ((3, 2), (i, j)) ∈ E. We

must have 3 6= i and 2 6= j so we must have (i, j) = (1, 3). Now, there are two possibilities:

(m1 >w2
m3) ∧ (w2 >m1

w3) (13)

(m3 >w3
m1) ∧ (w3 >m3

w2) (14)

Suppose first that (13) holds. Since X is maximal and X12 = 0, (1, 2) must be part of an

edge. By a similar reasoning to above, we must have that ((1, 2), (3, 1)) ∈ E. By (13) we have

that m1 >w2
m3 so ((1, 2), (3, 1)) ∈ E implies that m1 >w1

m3 and w1 >m1
w2. Then, by (13),

we have

w1 >m1
w2 >m1

w3.

Then m1 >w1
m3 implies that ((1, 3), (3, 1)) ∈ E which is impossible as X13 = X31 = 1.

Suppose, second, that (13) does not hold and that (14) holds. Since X is maximal and

X33 = 0, (3, 3) must be part of an edge. By a similar reasoning to above, we must have

that ((3, 3), (2, 2)) ∈ E. By (14) we have that w3 >m3
w2 so ((3, 3), (2, 2)) ∈ E implies that

m2 >w3
m3 and w3 >m2

w2. Then, by (14), we have

m2 >w3
m3 >w3

m1.

Then w3 >m2
w2 implies that ((1, 3), (2, 2)) ∈ E which is impossible as X13 = X22 = 1.

We prove Statement 2 next. Let X be an individual matching. Suppose there is (h, l) s.t.

Xhl = 1 and the submatrix X−(hl) is not maximally stable. Clearly, since X is stable, so is

X−(hl). Since X−(hl) is not maximally stable, there is a stable (K − 1) × (L − 1) aggregate

matching X ′ that dominates X−(hl), in fact there is a stable matrix X ′ which dominates

X−(hl) and exactly one (i∗, j∗) has X ′
i∗j∗ = 1 and x

−(hl)
i∗j∗ = 0.

Consider the K × L matrix x̂ that coincides with X everywhere except that X̂i∗j∗ = 1.

Since X is maximally stable it must be that ((i∗, j∗), (h, l)) ∈ E, as the stability of X ′ ensures

that there is no other pair (i, j) with ((i∗, j∗), (i, j)) ∈ E and X̂ij = 1.

Note that, for all j 6= l, Xhj = 0 implies that there is some (s, t) with s 6= h, Xst = 1

and ((s, t), (hj)) ∈ E. Additionally, since X is an individual matching, Xst = 1 implies that

also t 6= l. In a similar fashion, for all i 6= h there is (s, t) with s 6= h, t 6= l, Xst = 1 and

((s, t), (h, j)) ∈ E.

Now consider the matching X̃ that coincides with X everywhere except that X̃hl = 0 and
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X̃i∗j∗ = 1. Note that ∀(i, j)(X̃il = X̃hj = 0). We claim that X̃ is a stable matching: the

submatrix X̃−(hl) coincides with X ′, so there are no edges among pairs (i, j) with i 6= h and

j 6= l. As for (i, j) with i = h or j = l, we have X̃ij = 0 so they cannot be part of an edge.

Finally, consider a maximal stable matching
ˆ̂
X that dominates X̃ . Note that we prove

that for any j 6= l, there is some (s, t) with s 6= h and t 6= l such that ((s, t), (h, j)) ∈ E and
ˆ̂
Xst = xst = 1. Thus the stability of

ˆ̂
X requires that

ˆ̂
Xhj = 0. Similarly we get that

ˆ̂
Xil = 0

for any i 6= h. We also have that
ˆ̂
Xi∗j∗ = 1 because

ˆ̂
X dominates X̃. Then ((i∗, j∗), (h, l)) ∈ E

and the stability of
ˆ̂
X implies

ˆ̂
Xhl = 0. Thus we prove that

ˆ̂
X satisfies the property in the

statement.

B.3 Proof of Theorem 3.6. We prove necessity first. Let X be an aggregate matching

that is rationalizable by the matrix α. Suppose, by way of contradiction, that the graph (V,L)

associated to X has a minimal cycle c = 〈y0, . . . , yN 〉.

We say that an edge ((i, j), (i′ , j′)) ∈ L is vertical if j = j′ and that it is horizontal if

i = i′. Since the cycle c is minimal, a horizontal edge in c must be followed by a vertical edge;

and a vertical edge in c must be followed by a horizontal edge (Lemma B.2). Thus c has an

even number of vertices. Since y0 = yN , this implies that N is an even number.

Consider the aggregate matching X ′, which coincides with X on all entries except the

ones in c. For the entries that are vertices in c, let

X ′
y2n−1

= Xy2n−1
+ 1, n = 1, . . . , N

2

X ′
y2n

= Xy2n
− 1, n = 0, . . . , N

2 − 1

Fix a row i of X ′. For each column j, if yn = (i, j) for some n, then (modulo N) either

yn−1 or yn+1 share the same j. Without loss of generality, say that yn+1 shares the same

j. By definition of X ′, then Xyn + Xyn+1
= X ′

yn
+ X ′

yn+1
. Thus

∑

j X ′
i,j =

∑

j Xi,j. A

similar argument implies that, for each j,
∑

i X
′
i,j =

∑

i Xi,j. Hence X ′ is a feasible aggregate

matching in program (4).

Since α rationalizes X, we have that
∑

i,j αi,jXi,j >
∑

i,j αi,jX
′
i,j. Thus,

∑

i,j

αi,j(X
′
i,j − Xi,j) =

∑

n=1,... , N
2

αy2n−1
−

∑

n=0,... , N
2
−1

αy2n
< 0 (15)

But then we can consider the aggregate matching X ′′ defined as

X ′′
y2n−1

= Xy2n−1
− 1, n = 1, . . . , N

2

X ′′
y2n

= Xy2n
+ 1, n = 0, . . . , N

2 − 1,

on the vertices of c, and which coincides with X on all entries that are not vertexes of c.

By the same argument we made for X ′, X ′′ is feasible in program (4).
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Now, Equation (15) implies that

∑

i,j

αi,j(X
′′
i,j − Xi,j) = −

∑

n=1,... , N
2

αy2n−1
+

∑

n=0,... , N
2
−1

αy2n
> 0;

a contradiction of X being rationalized by α.

Second, we prove sufficiency. Suppose that X is an aggregate matching such that the

associated graph contains no cycles. Let α be the canonical matching derived from X. We

shall prove that α rationalizes X.

Clearly,
∑

i,j αi,jXi,j =
∑

i,j Xi,j. Suppose that X ′ is an aggregate matching such that

X ′ is feasible in program (4) for X, and that
∑

i,j αi,jX
′
i,j ≥

∑

i,j Xi,j. We shall prove that

X ′ = X.

Give α as surplus matrix,
∑

i,j Xi,j is the maximal surplus that can be achieved in Pro-

gram (4). To see this, note that all pairs who are matched generate the same value: 1 if

they are a pair that is matched under Xi,j and 0 otherwise. The number of different men is
∑

i,j Xi,j (=
∑

i

∑

j Xi,j). The number of different women is also
∑

i,j Xi,j (=
∑

j

∑

i Xi,j).

Thus there are at most
∑

i,j Xi,j pairs that can be formed. The maximum value in (4) obtains

when all of them generate a surplus of 1. Thus we have
∑

i,j αi,jX
′
i,j =

∑

i,j Xi,j .

As a consequence, X ′
i,j = 0 when Xi,j = 0. Otherwise we would have a pair (i, j) that

are generating a surplus of 0 under α, and we cannot have
∑

i,j αi,jX
′
i,j =

∑

i,j Xi,j. Thus

X ′
i,j = 0 for all (i, j) /∈ V .

We shall assume that (V,L) has exactly one connected component. When that assumption

fails, we can apply the argument in the sequel to each component separately.

Choose a vertex v0 in V . Since (V,L) contains no cycle, for each v ∈ V there is a unique

path connecting v0 to v in (V,L). Let η(v) be the length of the path connecting v0 to v.

We shall prove the result by induction on η(v). Specifically, we show that for each v with

maximal η, either the row or the column of v must be identical in both X and X ′. We can

then consider the submatrix that omitting that row or column, and repeat our argument.

Specifically, define a partial order ≻ on V , such that v1 ≻ v2 if and only if v1 is on the

unique path from v0 to v2. Then (V,≻) defines a set of maximal chains denoted as {V1, . . . VL}.

Each maximal chain has a unique vertex with highest value of η(v). The following argument

can be made for each of these chains.

Let (i, j) be a vertex with a maximal value of η(v). Since η(v) is maximal, one of the

following two cases hold.

1. there is no i′ with ((i, j), (i′ , j)) ∈ L

2. there is no j′ with ((i, j), (i, j′)) ∈ L

That is, there are either no horizontal edges, or no vertical edges, incident to (i, j).
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Suppose that Case 1 holds, so Xh,j = 0 for all h 6= i. Then, X ′
h,j = 0 for all h 6= i, and

∑

h Xh,j =
∑

h X ′
h,j, imply that Xi,j = X ′

i,j . Thus, column j in both matrices X ′ and X

coincide.

Consider the submatrices X\j and X ′
\j , obtained after eliminating column j. Then α\j is

the canonical matching of X\j ; an entry of X ′
\j is 0 when the corresponding entry of X\j is

0, and

∑

(i,h):h 6=j

αi,hX ′
i,h =

∑

(i,h):h 6=j

αi,hXi,h.

Finally, the resulting graph (V\j , L\j) contains no cycle.

Similarly, when Case 2 holds, row i of both matrices must coincide. We can then consider

the submatrices obtained after eliminating row i.

By applying the above argument to this sequence of submatrices, we will show that X ′
i,j =

Xi,j for all (i, j) ∈ V . We have already shown that X ′
i,j = Xi,j = 0 for all (i, j) /∈ V . Hence

X = X ′.

B.4 Details on Claim 4.1. We consider a market where every woman (man) is acceptable

to all men (women). The individual-level stability inequalities, for all pairs (i, j), are:

∑

k:k>ij

xi,k +
∑

k:k>ji

xk,j + xi,j ≥ 1.

Here, k >i j means that i prefers k over j, and k >j i means that j prefers k over i.12 Letting

dikj = 1k>ij, this can be written as:

∑

k

xi,kdikj +
∑

k

xk,jdjki + xi,j ≥ 1. (16)

Here (i, j, k) all denote individual agents, not types. These inequalities cannot be taken

directly to the data, because we do not observe the individual-level matching, but rather an

aggregate-level matching.

One starting point is to treat both the x’s and the d’s as random variables, where the

randomness derives from both the individual-level preference shocks, as well as from the

procedure whereby the observed matching is selected among the set of stable matchings. We

partition the men and women into types tM1 , . . . tML tW1 , . . . tWL . Since individual-level preference

12These individual-level inequalities express the same notion of stability as the aggregate stability conditions
(1), but can be written in this more succinct way here due to the summing-up requirements at the individual-
level (i.e., that

P

j
xi,j = 1 for all i). These summing-up conditions do not hold for canonical aggregate

matchings.
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shocks are i.i.d. we obtain that

P (dijk = 1) = P (di′j′k′ = 1) : ∀(i, i′) ∈ tMi , (j, j′) ∈ tMj , (k, k′) ∈ tMk . (17)

That is, the distribution of dijk is identical for all individuals of the same type. Hence, below

we will use the notation P (dijk = 1) and P (tWj >tMi
tWk ) interchangeably.

Given these assumptions, we can derive an aggregate version of Eq. (16). First, we take

expectations:

∑

k

E [xi,kdikj] +
∑

k

E [xk,jdjki] + E [xi,j] ≥ 1

⇔
∑

k

x̄i,k,j · P (dikj = 1) +
∑

k

x̄k,j,i · P (djki = 1) + E [xi,j] ≥ 1

with x̄i,k,j ≡ E [xi,kdikj |dikj = 1]. Next, we aggregate up to the type-level:

∑

l

{

P
{

tWl >tMi
tWj

}

X̄tMi ,tW
l

,tWj

}

+
∑

l

{

P
{

tMl >tWj
tMi

}

X̄tM
l

,tWj ,tMi

}

≥
∣
∣tWj

∣
∣
∣
∣tMi
∣
∣ (1 − E[Xi,j ])

(18)

Here X̄tMi ,tW
l

,tWj
≡
∑

k∈tW
l

∑

i∈tMi

∑

j∈tWj
X̄i,k,j and X̄tM

l
,tWj ,tMi

≡
∑

j∈tMi

∑

j∈tWj

∑

i∈tMi
X̄k,j,i.

In the above inequality, only the
∣
∣
∣tWj

∣
∣
∣ and

∣
∣tMi
∣
∣ are observed, but nothing else. This is of little

use empirically.

On the other hand, because dijk ≥ 0, for all (i, j, k), we also have

E(Xikdikj) =E(Xikdikj|dikj = 1)P (dikj = 1) ≤ E(Xik)

⇒
∑

k∈tW
l

E(Xikdikj|dikj = 1)P (dikj = 1) ≤
∑

k∈tW
l

E(Xik)

⇔P (tWl >i j)
∑

k∈tW
l

X̄ikj ≤
∑

k∈tW
l

E(Xik)

⇒
∑

i∈tMi

P (tWl >i j)
∑

k∈tW
l

X̄ikj ≤
∑

i∈tMi

∑

k∈tW
l

E(Xik)

⇔P (tWl >tMi
j)
∑

i∈tMi

∑

k∈tW
l

X̄ikj ≤ XtMi ,tW
l

⇒P (tWl >tMi
tWj )

∑

j∈tWj

∑

i∈tMi

∑

k∈tW
l

X̃ikj ≤
∣
∣tWj
∣
∣XtMi ,tW

l

⇔P (tWl >tMi
tWj )X̄tMi ,tW

l
,tMj

≤
∣
∣tWj

∣
∣XtMi ,tW

l

(19)
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Combining inequalities (18) and (19), we get

∑

l

∣
∣tWj

∣
∣XtMi ,tW

l
+
∑

l

∣
∣tMi
∣
∣XtM

l
,tWj

≥
∣
∣tWj
∣
∣
∣
∣tMi
∣
∣ (1 − E[Xi,j ])

By the equalities
∑

l XtMi ,tW
l

=
∣
∣tMi
∣
∣ and

∑

l XtM
l

,tWj
=
∣
∣
∣tWj

∣
∣
∣, the above reduces to

2
∣
∣tMi
∣
∣
∣
∣tWj

∣
∣ ≥

∣
∣tMi
∣
∣
∣
∣tWj

∣
∣ (1 − E[Xij) ⇒ 2 ≥ (1 − E[Xij)

which is trivially satisfied.

C Detailed Data Description

We use Marriage and Divorce Data of the National Vital Statistics System of the National

Center for Health Statistics (NCHS).13 The data are based on marriage and divorce certifi-

cates, and include all records for States with small numbers of events and a sample of records

for States with larger numbers of events. Since the sample size significantly decreased after

1989, and NCHS stopped producing data after 1995, we use data from 1988.

In order to produce cross-sectional marriage distributions across the states in US, we

restrict our attention to marriage samples (i) of states of the United States or District of

Columbia, (ii) in which both groom and bride reside in a same state. In 784,211, total number

of observations, 10,204 from Puerto Rico, Virgin Islands, Guam, Canada, Cuba, Mexico, or

Remainder of the world are eliminated, and also samples with states not stated are eliminated.

In addition, 47,289 observations are deleted since groom and bride are reported to reside in

distinct states. In all, total sample size is 726,718.

In categorizing men and women by there types, we only used ages; although Marriage

microdata also includes variables such as education or previous marital status, there are

significant number missing observations, so we do not use other variables. Marriage age varies

from 12 to 94 for groom and from 12 to 92 for bride. Both men and women are categorized

as 7 different age groups, and the thresholds are 12-20, 21-25, 26-30, 31-35, 36-40, 41-50, and

51-94.
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Hitsch, G., A. Hortaçsu, and D. Ariely (2010): “ Matching and Sorting in Online Dating
Markets,” American Economic Review, forthcoming.

39
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