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1 Introduction

The measurement of productivity at the plant level is critical to addressing a wide of range

of economic policy issues. A plant’s productivity is typically defined as the residual from an

underlying production function, and thus the measurement of productivity is closely tied to

the estimation of the production function itself. There is a large literature that has generated

several stylized facts about heterogeneity of productivity at the plant level. Among these

is the general understanding that even narrowly defined industries exhibit “massive” unex-

plained productivity dispersion (Dhrymes (1991), Bartelsman and Doms (2000), Syverson

(2004a,b), Collard-Wexler (2010), Fox and Smeets (2011)), and that productivity is closely

related to other dimensions of plant level heterogeneity, such as importing (Kasahara and Ro-

drigue (2008)), exporting (Bernard and Jensen (1995), Bernard and Jensen (1999), Bernard

et al. (2003)), wages (Baily et al. (1992)), etc.

In this paper, we show that a fundamentally different understanding of productivity
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differences among plants can emerge depending on whether productivity is measured using

a gross output or value added production function. A value added production function

subtracts the value of a plant’s “flexible” inputs (materials, energy, etc) from the plant’s

value of gross output to form a value added measure of output. The key obstacle to using

gross output production in applied work is the lack of a clear source of identification. As

first pointed out by Marschak and Andrews (1944), using the inputs and outputs of profit

maximizing firms to estimate production functions gives rise to an endogeneity problem.

The endogeneity problem is caused by the transmission of a plant’s productivity to the

firm’s optimal choice of inputs. This “transmission bias” is most severe for the flexible inputs

(materials, energy, etc): in a standard competitive environment, there do not exist any

exclusion restrictions that can identify the elasticities of the flexible inputs. Since these

are the same inputs that are subtracted from gross output to form value added, the value

added production function can be identified via instruments when the remaining inputs,

i.e., capital and labor, are “inflexible” in some way, either because of timing restrictions or

adjustment costs (Bond and Söderbom (2005), Ackerberg et al. (2006)). However the value

added solution does not come for free. If the “flexible inputs” do not enter the production

function in Leontief fashion, then value added construction can cause its own source of bias

for measuring productivity (Bruno (1978), Basu and Fernald (1995, 1997)).

A key contribution of the paper is that we present an identification strategy for gross

output production functions that is grounded in standard economic assumptions. To solve

the endogeneity problem caused by flexible inputs, we show that the firm’s first order condi-

tion enables the revenue share of a flexible input to non-parametrically identify the input’s

elasticity of production. We further show the non-parametric estimator of the flexible input

elasticities can be combined with standard restrictions on “inflexible” inputs to identify and

estimate the full production function.

We apply our estimator to plant level data from Chile and Colombia and find that existing

“stylized facts” that have emphasized the large levels of unobserved productivity differences
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among observably different groups of firms (exporters versus non-exporters, importers versus

non-importers, big versus small firms, etc) become orders of magnitude smaller and some-

times economically insignificant when we analyze the data through the lens of gross output.

For example, the standard 90/10 productivity ratio taken among all manufacturing firms in

Chile is roughly 9 (meaning that the 90th percentile firms is 9 times more productive as the

10th percentile firm), whereas under our gross output estimates the ratio falls to 2. The 95/5

ratio is even more stark: value added implies a ratio of 20 whereas gross output only entails

a ratio of 3. Furthermore, exporters appear 20 percent more productive than non-exporters

under value added whereas this productivity difference is only 1 percent with gross output.

Similar findings hold for importing, and wages: value added overestimates in an economically

significant way the productivity premium of firms who import, bigger firms, and higher wage

firms as compared to gross output. Our results suggest that the bias introduced from using

value added is at least as important, if not more so, than the transmission bias itself.

The rest of the paper is organized as follows. In Section 2 we describe our data, and we

provide preliminary evidence of the large differences in productivity heterogeneity suggested

by value-added relative to gross output. In Section 3 we discuss our identification strategy

that allows us to estimate parameters on flexible inputs and work with gross output spec-

ifications, while controlling for the transmission bias. Section 4 contains a description of

our estimation routine. In Section 6 we provide estimates using our approach, and compare

them to both results based on value added and results that do not correct for transmission

bias. Section 7 concludes.

2 Data and Evidence

To motivate the general interest in identification and estimation of the gross output pro-

duction function, we first present descriptive evidence that suggests gross output and value

added have very different empirical implications in terms of the overall picture of productivity
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differences among plants. In order to do so, we make use of two commonly used plant-level

manufacturing datasets. The first comes from a Colombian manufacturing census covering

all manufacturing plants with more than 10 employees, from 1981-1991. This dataset has

been used in several studies, including Roberts and Tybout (1997), Clerides et al. (1998),

and Das, Roberts, and Tybout (2007). The second dataset comes from a census of Chilean

manufacturing plants conducted by Chile’s Instituto Nacional de Estadistica (INE). It cov-

ers all firms from 1979-1996 with more than 10 employees. This dataset has also been used

extensively in previous studies, both in the production function estimation literature (Levin-

sohn and Petrin (2003)), and in the international literature (Pavcnik (2002) and Alvarez and

López (2005)).

To examine the effects in the raw data, we will presently abstract from the endogeneity

problem and recover productivity using simple OLS.1 Specifically, we estimate a flexible

second-order parametric approximation, i.e. translog, to both the value-added

vaj,t = βllj,t + βkkj,t + (1)

+βlll
2
j,t + βkkk

2
j,t

+βlklj,tkj,t + νjt,

and gross output

goj,t = αllj,t + αkkj,t + αmmj,t (2)

+αlll
2
j,t + αkkk

2
j,t + αmmm

2
j,t

+αlklj,tkj,t + αlmlj,tmj,t

+αkmkj,tmj,t + ωjt,

1The remainder of the paper will then be largely concerned with whether these raw effects indeed remain

robust after we properly correct for the endogeneity problem.
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production functions. In both cases, productivity is estimated as the residual from these

regressions: νjt and ωjt.

We estimate separate production functions for five of the largest 3-digit manufacturing

industries in both Chile and Colombia, which are Food Products (311), Textiles (321), Ap-

parel (322), Wood Products (331), and Fabricated Metal Products (381). We also estimate

an aggregate specification grouping all manufacturing together.

In Table 1 we report estimates of the average input elasticities for both the value-added

and gross output models. In the last row of the table we report the sum of the input

elasticities. Since our second-order approximation does not impose homotheticity of the

production function, this is not strictly-speaking an estimate of returns to scale, but it has a

similar interpretation. In every case the value-added model substantially overestimates the

sum of elasticities relative to gross output, with an average difference of 15% in Chile and

7% in Colombia.

Value added also recovers dramatically different patterns of productivity as compared to

gross output. In Tables 2A and 2B, for Colombia and Chile respectively, we report estimates

of several frequently analyzed statistics of the resulting productivity distributions. In the

first three rows of each table we report ratios of percentiles of the productivity distribution,

which measure the overall level of productivity dispersion in each industry. For Colombia, the

interquartile range is between 1.65 and 2.17, and for Chile it is between 2.47 and 3.07 using

the value added measure of productivity. Using the gross output measure it falls to between

1.16 and 1.23 for Colombia and between 1.30 and 1.46 for Chile. The 90/10 ratio ranges from

2.8 to 5.2 for Colombia and from 6.6 to 10.2 for Chile under value added. However, under

gross output, the ratios shrink substantially to 1.4 to 1.6 and 1.7 to 2.1. The change is even

more dramatic for the 95/5 split. The value added estimates indicate a range from 4.2 to

10.9 in Colombia and from 12.2 to 25.3 in Chile, whereas the gross output estimates indicate

a range from 1.7 to 2.0 and from 2.1 to 2.8. There are two important implications of these

results. First, value added hsuggests a much larger amount of heterogeneity in productivity
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across plants within an industry, as the various percentile ratios are much smaller under

gross output. Second, value added also implies much more heterogeneity across industries,

which is captured by the finding that the range of the percentile ratios across industries are

much tighter using the gross output measure of productivity.

In addition to having much larger overall amounts of productivity dispersion, results

based on value added also suggest a much different relationship between productivity and

other dimensions of plant-level heterogeneity. In the last five rows of Tables 2A and 2B we

report percentage differences in productivity between plants that export some percentage of

their output, import intermediate inputs, have positive advertising expenditures, have above

the median (industry) level of capital stocks, and pay above the median (industry) level of

wages. Using the value added estimates, exporting is generally positively correlated with pro-

ductivity. For most industries exporters are found to be more productive than non-exporters,

with exporters appearing to be 15% more productive in Chile and 45% more productive in

Colombia across all industries. Once we account for intermediate input differences using the

gross output specification, these estimates of productivity differences fall, and actually turn

negative (although not statistically different from zero) in about half of the cases. Looking at

all industries together, in Chile the productivity difference falls from a statistically significant

15% to a statistically insignificant -1%, and in Colombia the difference falls from a statisti-

cally significant 45% to a borderline significant 1%. A similar pattern exists when looking

at importers of intermediate inputs. In all but one case, importers appear more productive

than non-importers under value added. In Chile the average productivity difference is 35%

across the five individual industries with a difference of 41% for all industries. For Colombia

the corresponding differences are 6% and 14%. However under gross output, these numbers

fall to 4% and 9% in Chile and 0% and 4% in Colombia.

A similar pattern emerges for differences in productivity based on advertising expendi-

tures. Moving from value added to gross output, the estimated difference in productivity

drops in each case for Chile, and in two cases becomes statistically insignificant. In Colom-
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bia, a positive estimated correlation between advertising and productivity becomes negative

in all but one industry.

The most striking contrast arises when we compare productivity between plants that pay

wages above versus below the median. Using the productivity estimates from a value-added

specification, firms that pay wages above the median wage are found to be substantially

more productive, with the estimated differences ranging from 45%-111% in Chile and from

33%-56% in Colombia. In every case the estimates are statistically significant. Using the

gross output specification, these estimates fall to 2%-23% in Chile and 6%-13% in Colombia,

representing an average fall of approximately 75% in both countries.

While the evidence we have presented above is illustrative of important economic differ-

ences in productivity measurement that arise between value added and gross output, these

results are only suggestive since we have not corrected for the standard endogeneity problem

arising from the correlation of inputs and productivity. In what follows, we first show how

one can identify the gross output production function accounting for the endogeneity of in-

puts by exploiting the firm’s first order condition for the flexible inputs. Our solution offers a

new way to identify the production when some inputs are “flexible” and others are inflexible,

which is the case if one considers intermediate inputs as being flexibly chosen whereas capital

and labor are subject to possible adjustment costs and timing restrictions. If we subtract out

the flexible inputs and all remaining inputs in the production function have some amount

of inflexibility built into their adjustment, then the well known proxy variable methods of

OP/LP/ACF can be used to identify a value added production function. After we present

the methodology, we will return to the data and compare the structural estimates of pro-

ductivity generated by our gross output empirical strategy with the value added estimates

generated under OP/LP/ACF. As will be shown, the main qualitative findings of the present

section remain robust: the value-added bias is considerable and arguably more economically

significant than the “transmission bias” itself.
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3 Nonparametric Identification of Flexible Input Elas-

ticities

Let Y denote a firm’s output and the vector (L,K,M) denote a firm’s inputs, with L denoting

labor, K denoting capital, and M denoting all intermediate inputs. In addition each firm has

a productivity ωjt ∈ R. We observe a cross section of firms j = 1, . . . J over a panel of periods

t = 1, . . . , T .2 In period t, we will assume that firm j takes its productivity level ωjt, capital

stock Kjt, and labor Ljt as state variables that are fixed for period t. That is, capital and

labor are taken to be “inflexible” inputs, which is the standard assumption used to identify

value added production functions (see ACF and B&S). We will describe the evolution of the

state variables in the next section. The focus of this section is the intermediate inputs Mjt

(raw materials, energy, etc), which is a “flexible” input firm j can control in period t.

We assume that productivity differences among firms are driven by heterogeneity of a

Hicks-neutral form. The relationship between a firm j’s input and output in period t is

expressed as

Qjt = F (Ljt, Kjt,Mjt)e
ωjt (3)

Yjt = Qjte
εjt ,

where F is the production function, Qjt is the output anticipated by the firm for a given

vector of inputs (Ljt, Kjt,Mjt), and Yjt is the measured output that is actually observed by

the econometrician. The difference between the firm’s anticipated output and the measured

output is caused by εjt, which can be interpreted as either an unanticipated productivity

shock (in contrast to the anticipated Hicks neutral shock ωjt) or measurement error. We will

refer to εjt simply as measurement error.

2For notational simplicity we assume a balanced panel, but unbalanced panels caused by attrition can be

addressed using standard selection corrections.
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We focus on the classical case of perfect competition.3 Let ρt equal the intermediate

input price and Pt equal the output price, which are competitively set. The firm’s first order

condition with respect to M yields,

PtFM(Ljt, Kjt,Mjt)e
ωjt = ρt. (4)

Multiplying the LHS of (4) by F (Ljt,Kjt,Mjt)
F (Ljt,Kjt,Mjt)

, using the definition of Qjt in (3), and multiplying

both sides of (4) by Mjt

PtQjt
gives

FM(Ljt, Kjt,Mjt)Mjt

F (Ljt, Kjt,Mjt)
=

ρtMjt

PtQjt
.

Observe that the first order condition has been transformed so that ωjt no longer appears

in it. The firm’s productivity ωjt has been subsumed in the profit maximizing (anticipated)

output, Qjt. Defining the firm’s anticipated revenue share of the intermediate input to be

S̃jt =
ptMjt

PtQjt
, we have that

S̃jt =
FM(Ljt, Kjt,Mjt)Mjt

F (Ljt, Kjt,Mjt)
,

What arises is the well known fact that the anticipated revenue share, S̃jt, nonparametrically

identifies the firm’s elasticity of output with respect to the intermediate input. To see this,

let ξjt denote the elasticity and observe that

ξjt =
∂Qjt

∂Mjt
∗ Mjt

Qjt

=
∂F (Kjt, Ljt,Mjt) eωjt

∂Mjt
∗ Mjt

Qjt

= FM (Kjt, Ljt,Mjt) e
ωjt ∗ Mjt

F (Kjt, Ljt,Mjt) eωjt

= FM (Kjt, Ljt,Mjt) ∗
Mjt

F (Kjt, Ljt,Mjt)
.

3As we show in Section 5 our framework can be extended to the case of imperfect competition.
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Hence we have that

S̃jt = ξjt = G(Kjt, Ljt,Mjt),

where G is a non-parametric function of the inputs, that represents a known transformation

of the underlying production function, F (•).

We can now show that, even though the anticipated revenue share is not observed by the

econometrician, the data we do observe non-parametrically identifies both the elasticity ξjt

and measurement error εjt. Whereas the anticipated share S̃jt is not observed in the data,

the realized share Sjt = S̃jt(eεjt)−1 is observed. Hence letting sjt = lnSjt, we have that

sjt = lnG(Kjt, Ljt,Mjt)− εjt (5)

We refer to equation (5) as the share equation. Since measurement error εjt is by con-

struction a stochastic error term that is independent of the inputs (Ljt, Kjt,Mjt), the non-

parametric regression of sjt on (Ljt, Kjt,Mjt) identifies both the log anticipated elasticity

ln ξjt = lnG(Ljt, Kjt,Mjt) and the measurement error εjt = sjt + lnG(Ljt, Kjt,Mjt).

The revenue share of intermediates is equal to the elasticity of output with respect to

intermediates times measurement error. The share equation (5) generalizes the index number

approach, in which productivity is calculated as the difference between log output and a

weighted sum of inputs, with the weights being the cost shares of the inputs.4 It is more

general in several dimensions. First, this approach is robust to measurement error.. Second,

as will become apparent later, it does not rely on the assumption of constant returns to

scale.5 Third, it is robust to alternative assumptions regarding the nature of output market

competition.6 Fourth, we do not need to assume that the other inputs are competitively or

flexibly chosen.

4Under the assumption of perfect competition in the output market, revenue shares equal costs shares.
5The assumption of constant returns to scale is common in practice with the index number approach.

The reason is that measuring the cost share of capital requires a measure of the rental rate of capital, which

is often not observed and can be difficult to estimate. Assuming constant returns to scale implies that the

cost share is equal to one minus the sum of the other input shares.
6See Section 5
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4 Estimation

To see how the non-parametric identification of the flexible input elasticities enables us to

identify a gross output production function, it is useful to recall the source of the iden-

tification problem, which is covered in greater depth by Bond and Söderbom (2005) and

Ackerberg et al. (2006). Observe that under perfect competition in the output and inter-

mediate input market, we have that intermediate inputs are optimally chosen such that

Mjt = Mt(Ljt, Kjt, ωjt) for some time varying function Mt. Thus Mjt is “colinear” with the

other inputs (including productivity) that appear in the production function. To see the

consequence of this “colinearity” problem, take a a flexible second-order parametric approx-

imation to F (i.e. translog),7

yj,t = αllj,t + αkkj,t + αmmj,t (6)

+αlll
2
j,t + αkkk

2
j,t + αmmm

2
j,t

+αlklj,tkj,t + αlmlj,tmj,t

+αkmkj,tmj,t + ωjt + εjt.

Since mjt = mt(kjt, ljt, ωjt), it is clear that mjt is an endogenous regressor since it is deter-

mined by the “anticipated”part of the residual ωjt. However, since there is no source of cross

sectional variation in mjt other than the firm’s remaining productive inputs (ljt, kjt, ωjt),

there does not exist any exclusion restriction to vary the intermediate input from outside

of the production function. This can be seen as an “impossibility” result concerning the

existence of instruments for mjt, which poses a fundamental identification problem for the

coefficients associated with mjt, i.e., θ1 = (αm, αmm, αlm, αkm).8

To see how we solve the identification problem associated with these coefficients, observe

that from our result in Section 3 we have a consistent non-parametric estimate of the output

7There is nothing special about the translog approximation for our purposes. Any other approximation

(CES, higher order polynomials, etc.) would work just as well.
8See Ackerberg et al. (2006).
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elasticity with respect to mjt for each observation in the data, i.e., ξ̂jt. For the second order

(in logs) approximation to the production function, the implied elasticity with respect to the

intermediate input is

ej,t (θ1) = αm + 2αmmmj,t + αlmlj,t + αkmkj,t.

Observe that this implied elasticity only depends on the problematic parameters θ1. Thus we

can consistently estimate θ1 using a minimum distance estimator that minimizes the distance

between the implied elasticities and the non-parametric estimated elasticities,

min
α�m

Σ
�
ξ̂j,t − ej,t (θ1)

�2
. (7)

Solving (7) gives us consistent estimates of the parameters θ1, the parameters that could not

be identified with instrumental variables and that are the original source of the identification

problem commonly solved with the value-added approximation.

The remaining parameters θ2 = (αl, αk, αll, αkk, αlk) of the production function are coeffi-

cients on terms only involving capital and labor. To see how these parameters are identified,

we must now consider how capital and labor are set by the firm. If both capital and labor

are “sticky” in the sense of having adjustment costs (which is the source of what makes

them inflexible), then ljt = l(ljt−1, Ijt−1) and kjt = k(kjt−1, Ijt−1) where Ijt−1 is the firm j’s

information set at the start of period t − 1 (which includes, among other possible things,

productivity ωjt−1). This has the implication that the firm’s capital and labor in period

t are known to the firm in period t − 1, and are thus an element of firm j’s period t − 1

information set, i.e., kjt, ljt ∈ Ijt−1.9 Assuming that productivity evolves according to a

first-order Markovian process, ωjt can be expressed as ωjt = g(ωjt−1) + ηjt. The term ηjt

represents an innovation to the firm’s productivity that, by construction, is orthogonal to

the firm’s information set at period t− 1. Thus we have the conditional moment restriction

9An alternative is to follow ACF and also treat ljt as a static and variable input under an additional

timing restriction that it is chosen at a point between t and t− 1 so that it is not colinear with kjt and ωjt.
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E[ηjt | kjt, ljt] = 0 that can be used to identify θ2.

To consistently estimate θ2, we can follow the following steps that summarize our entire

estimation procedure:

1. In the first step, we nonparametrically recover consistent estimates of elasticities ξ̂jt

and measurement error ε̂jt for all (j, t).

2. In the second step, we use our elasticity estimates ξ̂jt to estimate the parameters θ1

associated with the intermediate inputmjt via the minimum distance objective function

(7).

3. Finally for any value of the parameter vector θ1, we can use our estimates θ̂1 and ε̂jt

from steps (1)-(2) to construct productivity

ωj,t(θ2) = yjt − αllj,t − αkkj,t − α̂mmj,t

−αlll
2
j,t − αkkk

2
j,t − α̂mmm

2
j,t

−αlklj,tkj,t − α̂lmlj,tmj,t

−α̂kmkj,tmj,t − ε̂jt.

Then nonparametrically regressing ωjt(θ2) on ωjt−1(θ2), we can recover innovation

ηjt(θ2) as a function of the parameter to be estimated. Finally we use the orthogonality

conditions ηjt⊥kjt, ηjt⊥ljt, ηjt⊥k2
jt, ηjt⊥l2jt, and ηjt⊥kjtljt implied by the conditional

moment restriction E[ηjt | kjt, ljt] = 0 to estimate θ2.10

10The fact that we can separate our procedure into 3 steps relies on the property that the implied elasticity

depends only on θ1. Other approximations (like the CES) do not have this property and the elasticity depends

not only on parameters related to mjt, but parameters related to other inputs as well. In this case, we can

either estimate the additional parameters as part of step 2 or we could estimate all of the parameters jointly,

i.e., by doing steps 2 and 3 together where we stack the “moment” conditions implied by step 2 and estimate

all parameters as a GMM problem.
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5 Recovering Industry Markups under Imperfect Com-

petition using Revenue Production Functions

In this section we relax the assumption that firms operate in a perfectly competitive environ-

ment, and show how our approach can be extended to accommodate imperfect competition.

Not only can we still control for the endogeneity of inputs and work with gross output

specifications of production in this setting, but we can also use our approach to recover

industry-specific time-varying markups. Relaxing the assumption of perfect competition has

two important implications. First, deflated revenue is no longer a valid proxy for quantity

produced, as under imperfect competition firms will no longer all necessarily charge the same

price. As a result, variation in firm-specific prices needs to be accounted for. Second, a firm’s

first order condition will depend on their ability to markup prices over marginal cost. We

will deal with the latter consideration first.

Let Λjt denote a firm’s marginal cost. The first-order condition with respect to Mjt for

a cost minimizing firm will be

ΛjtFM (Ljt, Kjt,Mjt) e
ωjt = ρjt,

where recall that ρjt is the price of Mjt. Using a similar transformation as in the perfectly

competitive case we obtain

Λjt

Pjt

FM(Ljt, Kjt,Mjt)Mjt

F (Ljt, Kjt,Mjt)
=

ρtMjt

PjtQjt
,

or

S̃jt = ξjt
Pjt

Λjt
=

G (Kjt, Ljt,Mjt)

Ψjt
,

where Ψjt =
Pjt

Λjt
denotes the markup.

The two key differences between the perfectly competitive case and this case are that
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a) we no longer restrict the firm’s price to be constant, and b) the firm’s revenue share no

longer equals the input elasticity directly, but rather it equals the input elasticity divided by

the inverse markup charged by the firm. As before, we can rewrite this expression above in

terms of the observed share as

sjt = −ψjt + lnG (Kjt, Ljt,Mjt)− εjt, (8)

where ψjt = lnΨjt. Notice that equation (8) nests the one obtained for the perfectly com-

petitive case in (5), the only difference being the addition of the log markup ψjt which is

equal to 0 under perfect competition.

We now develop the use of the share equation (8) to estimate production functions among

imperfectly competitive firms under the restriction that all firms have the same markup, i.e.

ψjt = ψt. We further justify why this case is of interest below when we introduce a demand

system. For the moment, we simply note that in this case (8) becomes

sjt = −ψt + lnG (Kjt, Ljt,Mjt)− εjt. (9)

Notice that, once we control for a time-varying intercept, measurement εjt can be recovered

as before.

More importantly, an additional implication of equation (9) is that the growth pattern

in the markups can be recovered without further assumptions. To see why, rewrite the

intermediate input elasticity so that we can break it into two parts: a component that varies

with inputs and a constant µ

ln ξjt = lnG (Kjt, Ljt,Mjt) = Φ (Kjt, Ljt,Mjt) + µ.

15



Then, simply rewrite equation (9)

sjt = (−ψt + µ) + Φ (Ljt, Kjt,Mjt)− εjt

= −γt + Φ (Ljt, Kjt,Mjt)− εjt (10)

Equation (10) immediately shows that, on top of recovering measurement error εjt, we can

recover logmarkups up to a constant, γt = ψt − µ, as well as the input elasticity sans the

constant,

ln ξµjt = Φ(Ljt, Kjt,Mjt) = lnG(Ljt, Kjt,Mjt)− µ.

If the intercept of equation (9) (µ) can be identified (which, as we show below, it can), then

the level of the markups can also be recovered.

The fact that time-varying markups (up to constant) can be recovered immediately from

the share equation is, to the best of our knowledge, a new result. As opposed to the results

in Hall (1988) and Basu and Fernald (1995, 1997) we do not need to impose restrictions

on the demand for all other inputs (i.e., competitive input markets for all inputs), impose

restrictions on the shape of the production function (homogeneity) or compute or estimate

the rental rate of capital/profit for the entrepreneur. Even without the ability to recover the

constant, the fact that we can recover the pattern of markups is an interesting finding in

itself since it allows, for example, to check whether market power has increased over time,

or to analyze the behavior of market power with respect to the business cycle.

In order to recover µ, and hence the level of markups and elasticities, an adapted version

of the first two steps of our estimation algorithm is employed. As before, we begin by

taking a second-order approximation to the production function and notice that the implied

intermediate input elasticity is given by:

ejt = αm + 2αmmmjt + αlmljt + αkmkjt

= αm

�
1 + 2

αmm

αm
mjt +

αlm

αm
ljt +

αkm

αm
kjt

�
,
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which implies that

ln ejt = ln

�
1 + 2

αmm

αm
mjt +

αlm

αm
ljt +

αkm

αm
kjt

�
+ ln (αm)

and hence lnαm is the unidentified constant µ.11 Hence if we define

eµjt (θ
µ
1 ) =

�
1 + 2

αmm

αm
mjt +

αlm

αm
ljt +

αkm

αm
kjt

�

and θµ1 =
�

αmm
αm

, αlm
αm

, αkm
αm

�
, the steps of the estimation procedure are very similar to those of

Section 4.

1. In the first step, we nonparametrically recover consistent estimates of γt, εjt and ξµjt

from 10

2. In the second step, we solve

min
α�m
αm

Σ
�
ξ̂µj,t − eµj,t (θ

µ
1 )
�2

to recover the parameters related to intermediate inputs, θµ1 , up to the constant µ.

While it may seem that separating the markups and the inherent production function param-

eters in θ1 from the constant may require an arbitrary normalization, this is not necesarily

the case. To see how one can recover the constant and the remaining parameters of the

production function we follow Klette and Griliches (1996) and specify a demand system

consistent with our assumption of markups being constant. We let

Pjt

Πt
=

�
Qjt

Qt

�τt−1

eΞjt , (11)

where Πt is the industry price index, Qt is a quantity index that plays the role of a demand

11This result, i.e. separating the constant from the production function approximation, is not unique to

our second-order approximation. As before, it holds true for other approximations.
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shifter as in Klette and Griliches (1996), Ξt is a mean zero demand shock observable to the

firm at t and ψt = − ln τt. 12

The observed output is now given by the firm’s real revenue

Rjt =
Pjt

Πt
Qjre

εjt ,

or in logs

rjt = (pjt − πt) + qjt + εjt. (12)

Replacing 11 into 12 we obtain

rjt = τtqjt − (τt − 1) qt + Ξjt + εjt. (13)

>From our definitions of γt = −ψt + µ and ψt = − ln τt we can write

τt = eγte−µ,

where γt is known from our analysis above and we seek to recover µ. Replacing back into 13

we get

rjt = eγte−µqjt −
�
eγte−µ

�
qt + Ξjt + εjt.

= eγte−µ lnF (Kjt, Ljt,Mjt)−
�
eγte−µ

�
qt + [τtωjt + Ξjt] + εjt

>From this equation one can already see how the constant will be recovered. It is variation

in qt that will identify it.

The rest of the estimation procedure is almost the same as before. The key difference is

12We can allow for time varying firm specific markups. If we letΥjt > 0 be an independent demand shock

that is realized after inputs are chosen, then expected markups will be equalized across firms, i.e., E (Ψjt) = Ψt

and Ξjt will enter into the firm’s period t input decisions. That is, while actual markups Ψjt =
Pjt

Λjt
will be

firm specific due to the Υjt demand shocks, firms will still have ex-ante symmetric markups.
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that now we cannot recover ωjt but rather only13

τtωjt + Ξjt,

i.e., a linear combination of productivity and the demand shock. The reason is obvious:

since we do not observe prices, we have no way of disentangling whether, after controlling

for inputs, a firm has higher revenues because it is purely more productive (ωjt) or because

it can sell at a higher price (Ξjt). Notice, however that this is in fact the only thing that

matters for the firm’s decision, i.e., in the maximization problem the firm only cares about

τtωjt + Ξjt and not about the separate components. Then, since we can write τtωjt + Ξjt as

a function of the parameters that remain to be estimated, θµ2 , by imposing the Markovian

assumption on the sum we can use a similar moment restriction (paired with variation in qt)

to identify the remaining parameters.

6 Application

Given that most datasets do not contain good instruments that can be used to correct for the

transmission bias, recent work on production function estimation has focused on the struc-

tural techniques developed by Olley and Pakes (1996) and Levinsohn and Petrin (2003).14

However, recently Bond and Söderbom (2005) and Ackerberg et al. (2006), henceforth B&S

and ACF, have uncovered a problem underlying these methods. In particular what they show

is that there is a fundamental problem with the identification of the coefficients on flexible

inputs using these techniques. For those inputs that are chosen perfectly flexibly there is

no independent variation in these inputs that identifies their parameters in the production

function. B&S solve this by adding adjustment costs to all inputs. With adjustment costs,

previous input levels affect current input decisions and then are an independent source of

13Or, of course, ωjt +
Ξjt

τt
.

14See Griliches and Mairesse (1998) for a summary of the various methods that have been developed for

dealing with the transmission bias.
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variation that leads to identification. ACF solve this problem by imposing restrictions on

the timing in which inputs are chosen. If inputs are chosen before productivity for the period

is fully realized, then the innovation in productivity between when those inputs are chosen

and when production occurs allows for parameters on these inputs to be identified. A key

implication of these two papers is that these structural methods cannot allow for inputs that

are perfectly flexible.15 If a researcher believes that some inputs are chosen flexibly, such

as intermediate inputs, then these inputs need to be netted out from gross output, and a

value-added specification must be used instead. Note that the use of value added in these

cases is not due to a belief that the assumptions justifying value added actually hold, but

rather results from an inability to estimate a gross output model.

A key contribution of our approach, which is described in Sections 3 and 4, is that it solves

this problem identified by B&S and ACF. It allows the researcher to estimate a production

function and recover estimates of productivity, while being able to simultaneously control

for potential bias introduced by the correlation between unobserved productivity and input

decisions (transmission bias) and the bias introduced by netting out flexibly chosen inputs

and working instead with value-added specifications of production.

We estimate a gross output production function using our new approach for each of five

of the largest industries in both Chile and Colombia: Food Products (311), Textiles (321),

Apparel (322), Wood Products (331), and Fabricated Metal Products (381), as well as one

for all manufacturing industries grouped together. In order to isolate the effect of control-

ling for the transmission bias, we first compare the estimate from our model to those from

the reduced-form gross output model. A well-known result is that failing to control for the

transmission bias leads to overestimates of the coefficients on more flexible inputs. The intu-

ition behind this is that the more flexible the input is, the more it responds to productivity

shocks and the higher the degree of correlation between that input and unobserved produc-

15In Bond and Söderbom (2005) input decisions are constrained by previous input choices. In Ackerberg

et al. (2006), inputs cannot adjust to the entire productivity shock, since they are chosen before productivity

is fully realized. In both cases there are no perfectly flexible inputs.
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tivity. In Table 3 we report the average input elasticity estimates for the two models. The

estimates show that in the reduced-form model substantially overestimates the elasticity of

intermediate inputs in every case. Often the difference is as much as 40%, which illustrates

the importance of controlling for the endogeneity generated by the correlation between input

decisions and productivity.

In order to isolate the effect that subtracting out intermediate inputs and using value

added specifications has on the results, we also compare our results using a gross output

specification to results obtained by using the method developed by ACF for a value-added

specification. Both methods control for the transmission bias, and our method controls for

any potential bias generated from value added. In Table 4 we report estimates of the average

input elasticities for both models. Although the differences between value added and gross

output are smaller than with the reduced-form estimation, value-added still overestimates

the sum of elasticities in all but one case, by an average of 6% in Chile and 3% in Colombia.

In Tables 5A and 5B we summarize our estimation results related to productivity. As can

be seen from the tables, after correcting for the transmission bias, the results described in

Section 2 persist. Value added continues to substantially overstate the level of productiv-

ity dispersion within and across industries. It also generates misleading estimates of the

relationship between productivity and other dimensions of plant-level heterogeneity. One

other important conclusion that results from these estimates is that the bias induced from

value-added has a much larger effect on the productivity estimates than the transmission

bias. This suggests that being able to avoid the value-added bias by working with gross

output specifications is more important from a policy perspective than controlling for the

transmission bias.
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7 Conclusion
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Appendix A: Value-Added Bias

Value added is defined as the difference between gross output and expenditures on interme-

diates:

V Ajt = Qjt − ρMjt,
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where the price of output has been normalized to 1, and where ρ is the price of intermediate

inputs and smjt is the share of intermediate expenditures for plant j in period t. Using the

definition of smjt , we have that

V Ajt = Qjt

�
1− smjt

�
.

Consider a generic production function F (K,L,M). Value added can then be expressed as

follows:

V Ajt = Qjt

�
1− smjt

�
= F (Kjt, Ljt,Mjt) e

ωjt
�
1− smjt

�
.

Taking logs of both sides yields the following relationship:

vajt = ln (F (Kjt, Ljt,Mjt)) + ωjt + ln
�
1− smjt

�
. (14)

If attempt to estimate a value added model, by regressing log value added on labor and

capital only, it can be seen that there are two omitted variables. The first is intermediate

inputs, and the second is one minus the share of intermediates in total output. Let us first

focus on intermediate inputs. The only way in which estimates of F () and productivity

ωjt do not suffer from bias due to the omitted variable M , is if one of two conditions are

satisfied. The first is that M is not correlated with any of other other inputs. In this case,

only estimates of the function F () will be unbiased. Productivity estimates remain biased,

as they will be a function of omitted intermediate inputs. This assumption is likely rejected

in most datasets, and is certainly rejected in both the Chilean and Colombian datasets, in all

industries. The second condition is that M has no explanatory power for output, conditional

on K and L. One known example of this is when the production function, F , is Leontief in

intermediates, i.e., M is used in fixed proportions relative to K and L.

In order to illustrate this, consider a first-order approximation to F . Value added in logs

is then given by,
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vajt = αljt + βkjt + γmjt + ωjt. (15)

We can see from equation (15) that a regression of log value added on log labor and log capital

leads to a classic omitted variable bias in the estimates of the labor and capital elasticities

(α and β), as well as productivity, ω. The estimates of the elasticities will suffer from a bias

that is proportional to the correlation between log labor and capital and log intermediates:




α̂

β̂



 =




α

β



+




δα

δβ



 ,

where the bias terms, δα and δβ, are equal to γ (the output elasticity of intermediate inputs)

multiplied by the coefficients of a regression of log intermediates on log labor and log capital.

This implies that the resulting estimate of productivity is also biased. The estimated value

of productivity is:

�ωjt = ωjt + γ (mjt −�mjt) ,

where �mjt denotes the predicted value from a regression of log intermediates on log labor

and log capital. The difference between mjt and �mjt is a measure of relative intermediate

input intensity. Positive values indicate that a firm uses more intermediate inputs compared

to other firms with the same level of capital and labor.

It is now clear where the bias originates. Value added does not take into account variation

in intermediate input intensity. As a result, differences in this intensity will be measured as

differences in productivity instead. This comes from the restrictive assumption that value

added places on intermediate inputs; in particular, that differences in intermediate input

use does not explain any variation in output, conditional on capital and labor use. It is
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important to note that in cases in which this assumption is satisfied, productivity estimates

based on value added and gross output will be equivalent. If capital and labor perfectly

predict intermediate inputs, mjt −�mjt = 0, and there is no bias.

A second source of bias comes from the second unobserved term in equation (14), ln
�
1− smjt

�
.

When all inputs are perfectly flexible in the short run, the share of intermediate inputs in to-

tal output will be constant across firms. As we showed earlier in the share equation, the share

of intermediate inputs, smjt , is equal to the elasticity of output with respect to intermediate

inputs. This elasticity is a function of the level of other inputs, K and L and the production

function, F (). When all inputs are perfectly flexible, elasticities are just a function of F (),

which is common across firms. Therefore share of intermediate inputs will be the same across

firms. As a result, ln
�
1− smjt

�
will be a constant in the error term of equation (14). As a

result, estimates of F () remain unbiased and all productivity estimates will be scaled by a

constant:ln (1− sm) .16 This is the well-known result that productivity estimates based on

value-added need to be scaled up by the share of value-added in gross output.17

This is no longer the case when some inputs are not perfectly flexible. Consider the case of

hiring and firing costs for labor. If a firm has more labor than it would otherwise demand due

to the presence of firing costs, then it will compensate by demanding less that the otherwise

optimal level of intermediate inputs. This will drive down the share, smjt . Similarly firms

with less than the optimal amount of labor with have higher shares, smjt . Without further

assumptions it is not possible to sign the direction of this bias.

16If input and output prices move over time, then the constant scaling productivity will be time varying.

Including time dummies in the regression will control for this.
17Note that one minus the share of intermediate inputs is the share of value-added in gross output.
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