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Abstract

We study the problem of allocating objects among people. We consider
cases where each object is initially owned by someone, no object is initially
owned by anyone, and combinations of the two. The problems we look at
are those where each person has a need for exactly one object and initially
owns at most one object (also known as “house allocation with existing
tenants”). We split with most of the existing literature on this topic by
dropping the assumption that people can always strictly rank the objects.
We show that, without this assumption, problems in which either some or all
of the objects are not initially owned are equivalent to problems where each
object is initially owned by someone. Thus, it suffices to study problems of
the latter type.

We ask if there are efficient rules that provide incentives for each person
not only to participate (rather than stay home with what he owns), but also
to state his preferences honestly. Our main contribution is to show that the
answer is positive.

The intuitive “top trading cycles” algorithm provides such a rule for
environments where people are never indifferent (Ma 1994). Our solution
is a generalization of this algorithm that allows for indifference without
compromising on efficiency and incentives.
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1 Introduction

Consider a setting where each person in a group has a need for a single object
(such as a seminar slot, an on-campus apartment, or an organ for transplant) and
may or may not be endowed with such an object. Further, suppose that there are
no divisible goods, such as money. Even when every person is endowed with an
object, the initial distribution is not necessarily efficient.

When people are never indifferent between objects, there are strategy-proof,
Pareto-efficient, and individually rational rules (Abdulkadiroğlu and Sönmez 1999).
In fact, a group of such rules is characterized by these three axioms with the help
of consistency and neutrality axioms (Sönmez and Ünver 2008).

At one extreme of this class of problems are those where nobody is endowed
with an object and there is only a social endowment (Hylland and Zeckhauser
1979). Again, when people are never indifferent, the class of rules satisfying group
strategy-proofness and Pareto-efficiency have been characterized (Pycia and Ünver
2009).

At the other extreme are problems where everybody is endowed with an object
but there is no social endowment (Shapley and Scarf 1974). For these problems,
when people are never indifferent between objects, there are rules with desirable
efficiency and incentive properties. The core contains a unique allocation which
is also the unique competitive allocation (Roth and Postlewaite 1977). The rule
that maps each problem with its unique core allocation is not only strategy-proof
(Roth 1982) but also group strategy-proof (Bird 1984). Further, it is the only
strategy-proof, Pareto-efficient, and individually rational rule (Ma 1994, Sönmez
1999). It is also non-bossy and anonymous (Miyagawa 2002).

We argue that there are many real-world situations where people’s preferences
do exhibit indifference. For instance, if preferences are based on coarse descriptions
(perhaps from a housing brochure), there may be insufficient information to break
ties. Alternatively, if preferences are based on checklists of criteria (like blood-
type and genetic markers for organ transplant), distinct objects satisfying exactly
the same criteria are equivalent. Appropriate design of rules should take these
indifferences into account since breaking ties arbitrarily may lead to inefficiency.

We show that when we drop the assumption that people are never indifferent,
all of the problems mentioned above can be thought of as ones where every person
is endowed with an object. Thus, we study only such problems. Without strict
preferences, many of the results mentioned above no longer hold. Though the
weak core is not empty, the core is no longer guaranteed to exist (Shapley and
Scarf 1974).1 The set of competitive allocations no longer coincides with the core

1Quint and Wako (2004) provide necessary and sufficient conditions on preference profiles for
the core to be non-empty.
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(Wako 1991). Group strategy-proofness and Pareto-efficiency are incompatible
(Ehlers 2002).

We show that there may not even be an efficient competitive allocation. We
provide a direct proof that strategy-proofness, Pareto-efficiency, and individual
rationality are not compatible with non-bossiness.2 Further, we show that, even
when we drop individual rationality, they are not compatible with anonymity.

Our main contribution is to show that strategy-proof, Pareto-efficient, and in-
dividual rational rules do exist. We do so by defining adaptations of the “top
trading cycles” algorithm, and then showing that the associated rules satisfy these
properties.

The remainder of the paper is organized as follows. We present the model in
Section 2. We describe some desiderata of allocations and rules in Section 3 and
define our rules, along with some others, in Section 4. In Section 5 we present our
results. We show how the more general problems involving social endowments can
be encoded as problems with only private endowments in Section 6. We conclude
in Section 7.

2 The Model

Let O be a set of distinct objects. Let N be a set of people. There are exactly as
many objects as people: |O| = |N |. An endowment is a bijection, ω : N → O,
that associates an object with each person. For each i ∈ N , i’s component of the
endowment is ω(i). Each person has a preference relation over O. Let the set of
all preference relations be R. A preference profile associates each individual
with a preference relation in R. Let RN be the set of all preference profiles. Given
a profile R ∈ RN , for each i ∈ N , i’s preference relation is Ri. For each pair of
alternatives, a, b ∈ O, if i finds a to be at least as good as b, we write a Ri b. If
a is better than b, that is, a Ri b but not b Ri a, we write a Pi b. Similarly, if i
is indifferent between a and b, we write a Ii b. Let P ⊂ R be the set of “strict”
preference profiles. That is, P ≡ {R0 ∈ R : for each a, b ∈ O, a I0 b ⇔ a = b}.

We use the notation R−i to denote the preference relations of everyone but i.
For each group S ⊆ N , we denote the preferences of all the people in S by RS,
and those not in S by R−S. We denote the set of all preferences for people in the
group S by RS.

Let A, the set of all bijections from N to O, be the set of all possible allocations.
For each α ∈ A, and each i ∈ N , let α(i) denote i’s component of α. Similarly,

2Bogomolnaia, Deb and Ehlers (2005) show this by characterizing, for problems with no
private endowment, classes of strategy-proof and Pareto-efficient rules satisfying two different
forms of non-bossiness and some auxillary axioms.
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for each S ⊆ N , let α(S) be the collective assignment to members of S under α.
That is, α(S) =

⋃
i∈S{α(i)}.

A problem consists of a preference profile and an endowment, (R, ω) ∈ RN×A.
A rule, ϕ : RN × A → A, selects an allocation for each problem.

3 Properties of allocations and rules

In this section, we list some desiderata of allocations and rules. Let ϕ be a rule.
The first requirement is that a rule respects each individual’s endowment. That

is, the allocation selected by the rule should not assign, to any person, an object
that he finds worse than his endowment.

For each (R, ω) ∈ RN × A and α ∈ A, we say that α is individually ra-
tional at (R, ω) if for each i ∈ N, α(i) Ri ω(i). Let IR(R, ω) be the set of all
individually rational allocations at (R, ω).

Individual Rationality: For each (R, ω) ∈ RN × A, ϕ(R, ω) ∈ IR(R, ω).

Before we state the next requirement, we define an efficiency relation between
allocations. For each α, β ∈ A and R ∈ RN , α Pareto dominates β at R if at
least one person is better off at α than at β and nobody is worse off. That is, for
some i ∈ N , α(i) Pi β(i) and for each i ∈ N, α(i) Ri β(i).

For each R ∈ RN , let the set of allocations that are not Pareto dominated by
any other allocation be PE(R).

Pareto-efficiency: For each (R, ω) ∈ RN × A, ϕ(R, ω) ∈ PE(R).

The next property is that misreporting one’s preferences is never beneficial.

Strategy-proofness: For each (R, ω) ∈ RN × A, each i ∈ N , and each R′
i ∈ R,

ϕ( Ri︸︷︷︸
truth

, R−i, ω)(i) Ri︸︷︷︸
truth

ϕ( R′
i︸︷︷︸

lie

, R−i, ω)(i).

The following is the requirement that nobody can affect what the rule assigns
to others without affecting his own assignment.

Non-bossiness: For each R ∈ RN , each ω ∈ A, each i ∈ N , and each R′
i ∈ R,

ϕ(R, ω)(i) = ϕ(R′
i, R−i, ω)(i) ⇒ ϕ(R, ω) = ϕ(R′

i, R−i, ω).

The next desideratum is that the rule is a function of preferences and endow-
ments, but not identities. Let π : N → N be a permutation of N . For each
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(R, ω) ∈ RN × A, define the permutation of R with respect to π and ω,
Rπ,ω ∈ RN , such that for each i, j, k ∈ N ,

ω(j) Ri ω(k) ⇔ ω(π(j)) Rπ,ω
π(i) ω(π(k)).

Anonymity: For each i, j ∈ N , each R ∈ RN , ω ∈ A, and each π : N → N ,3

ϕ(Rπ,ω, ω) = ϕ(R, ω).

The final requirement is that no group of people would rather re-allocate their
endowments among themselves than participate in the application of the rule. This
can be expressed in two ways. First, for each α ∈ A, R ∈ RN , ω ∈ A, and S ⊆ N ,
we say that α is blocked by S if members of S can re-allocate their endowments
in a way that makes each of them better off than at α. That is, there is β ∈ A
such that β(S) = ω(S), for each i ∈ S, β(i) Pi α(i). Second, we say that α is
weakly blocked by S if members of S can re-allocate their endowments in a
way that makes at least one of them better off than at α, while none of the rest
are made worse off than at α. That is, there is β ∈ A such that β(S) = ω(S), for
some i ∈ S, β(i) Pi α(i), and for each i ∈ S, β(i) Ri α(i).

The weak core, CW(R, ω), is the set of allocations that are not blocked by
any coalition and the core, C(R, ω), is the set of allocations that are not weakly
blocked by any coalition.

4 Rules

Let ≺ be a linear ordering of N .

Sequential priority rules: Let a tie-breaker θ : P(A) \ {∅} → A be such that
for each A′ ⊆ A, θ(A′) ∈ A′.4 The sequential priority rule with respect to
≺ and θ, SP ≺,θ, is defined as follows. Suppose ≺ is such that 1 ≺ 2 ≺ · · · ≺ n.

For each (R, ω) ∈ RN × A, we define a sequence of subsets of A, {AR,ω
i }i=n

i=0 .
Let AR,ω

0 = A. For each i = 1, . . . n,

AR,ω
i = {α ∈ AR,ω

i−1 : for each β ∈ AR,ω
i−1 , α(i) Ri β(i)}.

Finally, define SP≺(R, ω) = θ(AR,ω
n ).5 +

Sequential priority rules are strategy-proof and Pareto-efficient (Svensson 1994).
But they are not individually rational.

3This formulation of anonymity is taken from Miyagawa (2002).
4Given a set S, we denote the power set of S by P(S).
5This definition is taken from Svensson (1994).
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Sequential priority selections from IR: Let g : P(A) → A be a function that
selects an allocation from each subset of A. The sequential priority selection
from IR with respect to ≺ and g, SP -IR≺,g, is defined exactly as SP≺,g

except that AR,ω
0 = IR(R, ω). +

Sequential priority selections from IR are not strategy-proof but are Pareto-
efficient and, by definition, individually rational.

The notion of “most preferred” objects among a subset of O is critical for
the definition of our next rule. For each R ∈ RN , O′ ⊆ O, and i ∈ N , let
i’s most preferred objects, under Ri, among O′, τ (Ri, O′) ≡ {a ∈ A :
for each b ∈ O′, a Ri b}.

Gale’s “top trading cycles” algorithm (Shapley and Scarf 1974) is applicable
after breaking ties arbitrarily. The associated rules are strategy-proof and indi-
vidually rational but not Pareto-efficient. The next class of rules that we define
are based on an an adaptation of this algorithm.6

Top cycles rules: For each R ∈ RN and ω ∈ A, we define the allocation selected
by top cycles rule with priority ≺, TC≺(R, ω), via the following algorithm.

At every step, for each person we check if he “stays” or “leaves” with what he
holds, based on an efficiency condition. Then, every person who remains “points”
at another person who holds one of his most preferred objects among those re-
maining. Objects are traded according to cycles of pointing people.

The goal of our algorithm is to enlarge, at each step, the “satisfied” people:
those holding one of their most preferred objects among those remaining. However,
this is to be done in a way that provides incentives for every person to report his
true preferences. To provide such incentives, the algorithm favors people who have
higher priority by connecting more people to them (via direct or indirect pointing)
as compared to people with lower priority.
Note: The description of the algorithm is fairly involved. The reader may find it
useful to concurrently refer to the extensive example that we have provided after
the formal description of the algorithm.

Formally, for each step t = 0, 1, 2, . . . , we define the remaining objects,
Ot ⊆ O, the remaining people, Nt ⊆ N , and the next step’s holding vector,
ht+1 : Nt → Ot. We also define, for each i ∈ Nt, the person whom i points
at, pt(i). For notational convenience, for each i, j ∈ Nt, we use i −→

t
j to denote

pt(i) = j. If pt(pt(i)) = j, we write i −→
t

−→
t

j, and so on. Given M ⊆ Nt, if

pt(i) ∈ M , we write i −→
t

M . If pt(pt(i)) ∈ M , we write i −→
t

−→
t

M , and so
on.

6However, we have the departure phase at the beginning of each step rather than at the end.
We have done this for expositional simplicity since it rules out people “pointing” at themselves.
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For (Ot, Nt, ht), let the satisfied people, St be the set of people who hold
one of their most preferred objects among Ot. That is, St ≡ {i ∈ Nt : ht(i) ∈
τ(Ri, Ot)}. Let the unsatisfied people, Ut ≡ Nt \ St.

Let O0 ≡ O, N0 ≡ N , and h1 ≡ ω.
At step t = 1, 2, . . . , we get (Ot, Nt, ht+1, pt) as follows.

Departure phase: We define {Nk
t }K

k=0 and {Gk
t }K

k=1 as follows. Let N0
t = Nt−1. For each

k = 1, 2, . . . , let Gk
t ⊆ Nk−1

t be the largest7 set such that for each i ∈ Gk
t ,

i) ht−1(i) ∈ τ(Ri, ht−1(N
k−1
t )) and

ii) τ(Ri, ht−1(N
k−1
t )) ⊆ ht−1(Gk

t ).

Let Nk
t = Nk−1

t \ Gk
t .

Finally, let K be such that GK
t = ∅ and for each k < K, Gk

t ,= ∅.

Then, each i ∈
⋃

l≤k Gk
t , departs with ht(i). That is, TC≺(R, ω)(i) ≡ ht(i).

Further,
Nt ≡ NK

t and
Ot ≡ ht(Nt).8

Pointing phase: We determine pt in stages, as follows: For each i ∈ Nt, let i’s candidate
pointees, Ci,t≡ {j ∈ Nt : ht(j) ∈ τ(Ri, Ot)}.

Stage 1) If t ,= 1, we first consider i ∈ Nt such that i’s pointee in Step t − 1
still remains and holds the same object as he did at Step t− 1. Then,
i points at the same person in Step t as well. That is, if t ,= 1, for each
i ∈ Nt such that i −→

t−1
j ∈ Nt, and ht(j) = ht−1(j), we have i −→

t
j.

Stage 2) Now, we consider i ∈ Nt that has only one candidate pointee. He
points at his unique candidate pointee. That is, for each i ∈ Nt such
that Ci,t = {j}, we have i −→

t
j.

Stage 3) Next, we consider i ∈ Nt with at least one unsatisfied candidate pointee.
He points at the unsatisfied candidate pointee with highest priority.9

That is,
pt(i) ≡ arg ≺ -max

j∈Ci,t\St

j.10

7To obtain this largest set, start with the Nk−1
t and eliminate one member violating the

condition at a time.
8If K = 1 then Nt = Nt−1.
9The order within a stage is unimportant because stages are performed sequentially, and if

pt(i) is defined at Stage k, then pt(pt(i)) is defined at Stage k′ < k. Further, pt(i) is independent
of pt(j) if pt(j) is defined at Stage k′′ ≥ k.
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Stage 4) Now, we consider i ∈ Nt with only satisfied candidate pointees, at least
one of whom has an unsatisfied pointee. He points at the satisfied
candidate whose unsatisfied pointee has highest priority (breaking ties
with respect to ≺). That is,

C1
i,t ≡ {j ∈ Ci,t : j −→

t
Ut} ⊆ St,

Jt(i) ≡ arg ≺ -max
j∈C1

i,t

pt(j), and

pt(i) ≡ arg ≺ -max
j∈Jt(i)

j.

Stage 5) Next, we consider i ∈ Nt whose candidate pointees are all satisfied and
have satisfied pointees, at least one of whom has an unsatisfied pointee.
He points at the candidate who points at the person who points at the
unsatisfied person with highest priority (again, breaking ties with ≺).
That is,

C2
i,t ≡ {j ∈ Ci,t : j −→

t
−→

t
Ut} ⊆ St,

Jt(i) ≡ arg ≺ -max
j∈C2

i,t

pt(pt(j)), and

pt(i) ≡ arg ≺ -max
j∈Jt(i)

j.

Stage . . . ) The process is repeated until for each i ∈ Nt, pt(i) is defined.

By definition of the departure phase, each i ∈ Nt points, directly or indirectly,
at an unsatisfied person. Thus, the pointing phase terminates in a finite
number of stages.

Trading phase: There is at least one cycle C ≡ {i1, i2, . . . , is} such that i1 −→
t

i2 −→
t

. . . −→
t

is −→
t

i1. Further, each i ∈ Nt is a member of at most one cycle. We get ht+1

by performing the trades prescribed by each cycle. That is, for each cycle,
{i1, i2, . . . , is}, and each k = 1, . . . s, ht+1(ik−1) = ht(ik). For each i ∈ Nt

who is not in a cycle, ht+1(i) = ht(i).

The algorithm terminates at Step t̊ such that Nt̊ = ∅. +

Since the algorithm terminates and provides a unique allocation for every prob-
lem, TC≺ is a well-defined rule. To see this, note that at each step, since N is
finite and there is at least one cycle involving an unsatisfied person, either

10For each f : X → N and each X ′ ⊆ X, we define arg ≺ -max
j∈X′

f(j) ≡ i ∈ X ′ such that for

each j ∈ X ′ \ {i}, f(i) ≺ f(j).
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1. At least one person departs with his holding, or

2. At least one person’s holding is switched to an object that he ranks highest
among those remaining. Therefore, for each t, Ut+1 ⊆ Ut.

Therefore, the algorithm terminates in a finite number of steps.

Remark 1. (Evolving priority orders) An interpretation of the pointing phase
is that the priority order is updated at every stage to demote satisfied people
relative to unsatisfied people. We define the rule in this way to achieve Pareto-
efficiency.

If the priority is unchanging, and the satisfied people all have higher priority
than unsatisfied people, they may trade among themselves indefinitely. In such
a case, due to the condition for departure, which is required to achieve Pareto-
efficiency, the algorithm will not terminate. ◦

To help illustrate the top cycles rule, we provide an example.

Example 1. Top cycles rule.
Let O = {a, b, c, d, e, f, g, h, i, j}, and N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Consider

(R, ω) ∈ RN × A such that ω = (a, b, c, d, e, f, g, h, i, j) and R ∈ RN as follows:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

a a f c d e f d e g d e d d h i c i a b j
... b

...
...

...
... g

...
...

...
...

...

Let ≺ be such that 1 ≺ 2 ≺ 3 ≺ 4 ≺ 8 ≺ 5 ≺ 6 ≺ 7 ≺ 9 ≺ 10.
We start with O0 = O, N0 = N , and h1 = ω.

Step 1:

Departure phase: The sequence satisfying the departure condition is G1
1 = {1} and G2

1 =
{2, 10}. To see this, note that 1’s most preferred object in O is the unique
object a, his endowment. Given that 1 leaves with a, 2’s most preferred
object in O \ {a} is the unique object b and 10’s most preferred objects
in O \ {a} are b and j. Now, TC≺(R, ω)(1) = a, TC≺(R, ω)(2) = b, and
TC≺(R, ω)(10) = j. Further, N1 = {3, 4, 5, 6, 7, 8, 9}, and O1 = ω(N1).
From this, S1 = {4, 5, 8, 9}.

Pointing phase: This is illustrated in Figure 1.

Stage 1) Not applicable to the first step.

Stage 2) Each person with a unique most preferred object in O1 points at whomever
holds that object. In this case, 3 −→

1
6 and 7 −→

1
4.
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Stage 3) Each person such that one of their most preferred objects is held by an
unsatisfied person points at an unsatisfied person. Such people are 4,
5, and 9. Since 5 and 9 have only one unsatisfied person to point at,
they point accordingly. That is, 5 −→

1
7 and 9 −→

1
3. However, 4 is

indifferent between the objects held by 3 and 6. In accordance with ≺,
4 −→

1
3.

Stage 4) Each person whose most preferred objects are held by satisfied people
with unsatisfied pointees point. 6 and 8 are such people. Since 4 and
5 hold 6’s most preferred objects, we consider who their pointees are.
Since 4 −→

1
3, 5 −→

1
7, and 3 ≺ 7, we have 6 −→

1
4 rather than 6 −→

1
5.

8’s candidate-pontees are 9 and 4 who both point at 3. Since 4 ≺ 9,
8 −→

1
4.

Trading phase: We observe that there is only one cycle and it involves 3, 4, and 6. Thus,
h2 = (−,−, f, c, e, d, g, h, i,−).

Step 2:

Departure phase: The sequence satisfying the departure condition is G1
2 = {3}. From this,

TC≺(R, ω)(3) = f , N2 = {4, 5, 6, 7, 9}, O2 = {c, d, e, g, h, i}, and S2 =
{4, 5, 6, 8, 9}.

Pointing phase: This is illustrated in Figure 2.

Stage 1) Since 5 −→
1

7 ∈ N2 and h2(7) = h1(7), we have 5 −→
2

7.

Stage 2) Since 7’s unique most preferred object is d, 7 −→
2

6.

Stage 3) No person, other than 5, most prefers g (7’s holding) among O2.

Stage 4) 4 and 6 point at 5 whose pointee is unsatisfied: 4 −→
2

5 and 6 −→
2

5.

Stage 5) The pointee of the pointees of 8 and 9 is 5. Thus, 8 −→
2

6 and 9 −→
2

4.

Trading Phase: At the end of this Step, there is one cycle and it involves 5, 6, and 7. In the
trading phase, we get h3 = (−,−,−, c, g, e, d, h, i,−).

Step 3:

Departure phase: We end after the departure phase of Step 3 since G1
3 = {4, 5, 6, 7, 8, 9} and

N3 = ∅.

Thus, TC≺(R, ω) = (a, b, f, c, g, e, d, h, i, j). •
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(a)

c
3

7

g

6 f
5
e

8 h

4 d

9 i

(b)

c
3

7

g

6 f
5
e

8 h

4 d

9 i

(c)

c
3

7

g

6 f
5
e

8 h

4 d

9 i

Figure 1: Pointing phase of Step 1: (a) Since 3 and 7 have unique most
preferred objects, they point at whoever holds those objects. (b) Next, we consider
4, 9 and 5: those who have a most preferred object that is held by an unsatisfied
person in the bubble. (c) Finally, we consider 6 and 8: those who have a most
preferred object that is held by a member of the bigger bubble: people who can
point at an unsatisfied person.
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6 d

7

g

5
e

8 h

9 i

4 c

6 d

(e)

7

g

5
e

8 h

9 i

4 c

6 d

(c)

(a)

7

g

5
e

8 h

9 i

4 c

6 d

7

g

5
e

8 h

9 i

4 c

6 d

(d)

(b)

7

g

5
e

8 h

9 i

4 c

Figure 2: Pointing phase of Step 2: (a) Since 5 pointed at 7 in step 1 and
7 has not traded, 5 points at 7 in Step 2 as well. (b) 7 is the only person with a
unique most preferred object. (c) We now consider people who can point at the
only unsatisfied person, 7. However, there is no such person. (d) Next, we consider
4 and 6 who point into the bubble containing 7 and 5. (e) Finally, 8 and 9 point
into the biggest bubble.
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In the next section, we show that TC≺ is strategy-proof, Pareto-efficient, and
individually rational. We also show that TC≺ always picks an allocation from the
weak core.

When the input preference profile does not involve any indifference, the priority
order ≺ plays no role in the definition of TC≺ since for each i ∈ N and each t,
τ(Ri, Ot) is a singleton and pt(i) is defined in the first two stages of the pointing
phase. Thus, for each (P, ω) ∈ PN ×A and each pair of priority orders ≺ and ≺′,
TC≺(P, ω) = TC≺′

(P, ω).

Remark 2. It is natural to ask whether, for each (R, ω) ∈ RN × A, there is a
corresponding problem (P ′, ω) ∈ PN × A such that,

1. For each i ∈ N and each pair x, y ∈ O, if x P ′
i y, then x Ri y, and

2. TC≺(R, ω) = TC≺(P ′, ω).

However, this is not the case. Consider the following example. Let N = {1, 2, 3},
ω ≡ (a, b, c), and R ∈ RN be as follows.

R1 R2 R3

b c a a
a c b

b c

For each ≺ such that 2 ≺ 3, TC≺(R, ω) = (c, a, b). There are exactly two profiles
P 1, P 2 ∈ PN that meet the above condition (1.):

P 1
1 P 1

2 P 1
3

b a a
c c b
a b c

P 2
1 P 2

2 P 2
3

c a a
b c b
a b c

But TC≺(P 1, ω) = (b, a, c) and TC≺(P 2, ω) = (c, b, a), neither of which coincides
with TC≺(R, ω). 11 ◦

11The reason for this is that regardless of how we break ties, the result of the top-trading cycles
algorithm is a “competitive allocation” (Shapley and Scarf 1974). In fact every competitive
allocation can be found in this way. However, as evidenced by the above example, for some
profiles of preferences, no competitive allocation is Pareto-efficient and TC≺(R,ω) need not be
a competitive allocation.
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5 Results

We first show that strategy-proofness and Pareto-efficiency are incompatible with
anonymity. We also show that the additional requirement of individual rationality
leads to an incompatibility with non-bossiness. We then show that these incom-
patibilities are tight by proving that top cycles rules satisfy all three of our central
axioms. The proofs of these results are in the appendix.

Proposition 1. If N > 2, no rule is strategy-proof, Pareto-efficient and anony-
mous.

Proposition 2. If N > 2, no rule is strategy-proof, Pareto-efficient, individually
rational, and non-bossy.12

Next, we show that both Propositions 2 and 1 are tight. When we drop non-
bossiness or anonymity from the list of requirements, the incompatibility does not
persist, as evidenced by top cycles rules.

By definition top cycles rules are not anonymous. To see that they are bossy,
consider the following example.

Example 2. Bossiness of top cycles rules: Let O = {a, b, c}, N = {1, 2, 3}, ω =
(a, b, c), and 1 ≺ 2 ≺ 3. Let R, R′ ∈ RN be such that,

R1 R2 R3

a b c© a© a
b b©
c c

R′
1 R2 R3

c© a a©
a b b© b

c c

.

Then, TC≺ selects the circled allocations above, showing that it is bossy. •

Proposition 3. For each priority order ≺, TC≺ is Pareto-efficient and individ-
ually rational. That is, for each (R, ω) ∈ RN × A and each ≺, TC≺(R, ω) ∈
PE(R) ∩ IR(R, ω).

Proof: By definition of TC≺, it is individually rational.
We show that it is Pareto-efficient. Consider the sequence {Gk

1}K
k=1 of people

who leave at the first step. Each member of G1
1 leaves with one of his most preferred

objects and can be made no better off. Each member of G2
1 leaves with one of his

most preferred objects after members of G1
1 have left and can be made no better

off without hurting at least one member of G1
1. Continuing, each member of GK−1

1

leaves with one of his most preferred objects after members of G1
1∪G2

1∪ · · ·∪GK−2
1

12This is a corollary of Theorem 2 in (Bogomolnaia et al. 2005). We provide a direct proof in
the appendix.

14



have left and can be made no better off without hurting at least one person who
has left.

A similar argument applies to the subsequent steps. Those leaving in later
steps can be made no better off without hurting those who have left in prior steps.
Thus, TC≺ is Pareto-efficient. !

Proposition 4. For each priority order ≺, TC≺ selects an allocation from the
weak core. That is, for each (R, ω) ∈ RN×A and each ≺, TC≺(R, ω) ∈ CW (R, ω).

Proof: Suppose not. Then, there are (R, ω) ∈ RN × A and S ⊆ N such that S
blocks α ≡ TC≺(R, ω). That is, there is β ∈ A such that β(S) = ω(S) and for
each i ∈ S, β(i) Pi α(i).

For each t and each i ∈ S, if β(i) ∈ Ot, then i ,−→
t

j such that β(i) Pi ht(j).

Let t̂ be the first step at which there is i ∈ S such that i is part of a trading
cycle at the end of step t̂. Then ht̂+1(i) Ii α(i). So β(i) Pi ht̂+1(i). This implies
that i −→̂

t
j such that β(i) Pi ht̂(j) = ht̂+1(i). Thus, β(i) /∈ Ot̂. However, since

β(S) = ω(S), there is k ∈ S such that β(i) = ω(k) and since ω(k) /∈ Ot̂, k is part
of a trading cycle at some t̃ < t̂. This contradicts the definition of t̂. !

In order to show that for each ≺, TC≺ is strategy-proof, we make a preliminary
remark and show two key lemmas.

For each problem (R, ω) ∈ RN × A, the “state” of the algorithm at Step t
is summarized by the tuple (Ot, Nt, ht+1, pt). Our remark and lemmas pertain to
how these tuples change in response to changes in the input problem. Though
they seem monotonous, these lemmas provide useful insight into the dynamics of
the algorithm.

Remark 3. (Persistence) If i points at j at Step t, then he points at j as long
as j holds the same object. That is, if i −→

t
j, then for every t′ > t such that

ht′(j) = ht′−1(j) = ht′−2(j) = ... = ht(j), i −→
t′

j.

Before we proceed to our first lemma, we introduce some additional notation.
Let (R, ω) ∈ RN × A and i ∈ N . At the Step t of the algorithm, let the set of
people connected to i, CONN(i, R, t), be those, including i, connected to i
via pt. That is,

CONN(i, R, t) =





j ∈ Nt :

j ≡ i, or
j −→

t
i, or

j −→
t
−→

t
i, or

. . .





.

15



Fix ω ∈ A and priority order ≺. Let R ∈ RN , i ∈ N , and R′
i ∈ R. Let

R′ = (R′
i, R−i). For each t̂ = 0, 1, . . . , let ht̂ be the holding vector at Step t̂ of the

algorithm for the problem (R, ω). Similarly define h′
t̂
for the problem (R′, ω). We

also define, Ot̂, O
′
t̂
, Nt̂, N

′
t̂
, pt̂, p

′
t̂
, St̂, S

′
t̂
, Ut̂, and U ′

t̂
. Finally, for each i, j ∈ N , we

indicate pt̂(i) = j by i
R−→̂
t

j and p′
t̂
(i) = j by i

R′
−→̂

t
j. We also use i , R−→̂

t
j to

indicate pt̂(i) ,= j.
Let t be the step at which i either leaves or makes his first trade under R.

Define t′ similarly with respect to R′. Let t be the first step at which i is satisfied
for exactly one of the two problems if such a number exists, and ∞ otherwise.
That is, i ∈ St and i ∈ U ′

t
, i ∈ Ut and i ∈ S ′

t
, or t = ∞.13

Let t ≡ min{t, t′, t}.
Our first lemma states that up to Step t, there is no difference in the state of

the algorithm, regardless of whether i reports Ri or R′
i.

Lemma 1. (t equality) At t, for both R and R′, the objects and people remaining,
as well as the holding vector and previous step’s pointing vector, except for i’s
component, are the same. That is,

Ot Nt ht

" " "
O′

t N ′
t h′t

and for each j, k ∈ Nt such that j ,= i,

j
R−→

t−1
k

4
j

R′
−→
t−1

k.

Proof:

Step 1: Since i ∈ U1 and i ∈ U ′
1, and for each j ∈ N \ {i}, Rj = R′

j and h1(j) =
h′1(j) = ω(j), we have S0 = S ′

0. Thus, O1 = O′
1 and N1 = N ′

1. Therefore, for
each j ∈ N1 \ {i}, p1(j) = p′1(j).

If 1 < t, i does not trade at Step 1 under either R or R′. Therefore, the
cycles formed under p1 and p′1 are the same and do not involve i. Then, for
each j ∈ N1, h2(j) = h′2(j).

Step 2: Since i ∈ U1 and i ∈ U ′
1, and for each j ∈ N1 \ {i}, Rj|O1 = R′

j|O1 and
h2(j) = h′2(j), we have S1 = S ′

1. Thus, O2 = O′
2 and N2 = N ′

2.

As an induction hypothesis, suppose that for some ẗ < t, Oẗ = O′
ẗ
, Nẗ = N ′

ẗ
,

hẗ = h′
ẗ
, and for each j ∈ Nẗ \ {i}, pẗ−1(j) = p′

ẗ−1
(j).

Step ẗ + 1: We show that for ẗ < t, Oẗ+1 = O′
ẗ+1

, Nẗ+1 = N ′
ẗ+1

, hẗ+1 = h′
ẗ+1

, and for each
j ∈ Nẗ \ {i}, pẗ(j) = p′

ẗ
(j).

13The last case, t = ∞, only occurs if t = t′.
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a a

Ra↑
0R0

Figure 3: Local push-up of a preference relation: Given R0 ∈ R and a ∈ O,
the local push-up of R0 at a, Ra↑

0 is as shown above.

Since ẗ < t, i ∈ Uẗ and i ∈ U ′
ẗ
. In addition, by our induction hypothesis,

Oẗ = O′
ẗ
, Nẗ = N ′

ẗ
, hẗ = h′

ẗ
and Rj|Oẗ

= R′
j|Oẗ

. Thus, for each j ∈ Nẗ \ {i},
pẗ(j) = p′

ẗ
(j).

Since ẗ < t, i does not trade under R or R′ at ẗ. Therefore, the cycles formed
by pẗ and p′

ẗ
are the same and do not involve i. Thus, for each j ∈ Nẗ,

hẗ+1(j) = h′t+1(j). Also, Oẗ+1 = O′
ẗ+1

and Nẗ+1 = N ′
ẗ+1

. ♣

For each R0 ∈ R, and each a ∈ O, let the indifference class of a at R0,
I(a, R0), be

I(a, R0) = {b ∈ O | b I0 a}.
Given R0 ∈ R, and a ∈ O, define the local push-up of R0 at a, Ra↑

0 ∈ R
be the relation that it differs from R0 only in that it ranks a above all objects in
I(a, R0), as shown in Figure 3. That is,

R0|O\{a} = Ra↑

0 |O\{a} and for each b ∈ O \ {a}, b P0 a ⇒ b P a↑
0 a and

a R0 b ⇒ a P a↑
0 b.

To prove that TC≺ is strategy-proof we will have to consider all possible prefer-
ence relations that a person can misreport. However, we can split all the available
misreports into two categories. The first category includes only preference relations
under which the person is not indifferent between the object that he is assigned
and any other object. The second category consists of all the remaining preference
relations. The following lemma implies that for each preference relation in the
second category, we can find a preference relation in the first category such that
the person is assigned the same object regardless of which of the two preference
relations he reports. We use this to prove that TC≺ is strategy-proof since it
means that we only need to rule out successful misreports from the first category.
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Lemma 2. (Invariance) If the preference relation of a person changes to a lo-
cal push-up of his original preference at his assignment, then his assignment is

unchanged. That is, if α = TC≺(R, ω), R′
i = Rα(i)↑

i , and α′ = TC≺(R′, ω), then
α(i) = α′(i).

Proof: By the t equality lemma, Ot = O′
t, Nt = N ′

t , ht = h′t, and for each
j ∈ Nt \ {i}, pt−1(j) = p′t−1(j). Since Ot = O′

t, by the definition of Ri and R′
i,

τ(R′
i, Ot) = {α(i)} ⊆ τ(Ri, Ot).

The t equality lemma also implies that CONN(i, R, t−1) = CONN(i, R′, t− 1).
The rest of the proof proceeds as follows. First we show that at min{t, t′}, any

person connected to i under R is connected to i under R′. Then, we show that i’s
component of the allocation chosen under R is the same as his component of the
allocation chosen under allocation under R′: α′(i) = α(i).

Claim 1. (Pre-trade inclusion)14 For each ẗ = t, ..., min{t, t′},15

(i) The objects and people remaining at ẗ under R are a subset of those remaining
under R′. Further, those remaining under R′ but not under R are connected
to i. That is,

Oẗ ⊆ O′
ẗ
, Nẗ ⊆ N ′

ẗ
O′

ẗ
\ Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\ Nẗ ⊆ CONN(i, R′, ẗ− 1).

(ii) Every person who is satisfied at ẗ under R′ is satisfied under R. Every person
who is not satisfied under R′ but is satisfied under R is connected to i under
R′. That is, S ′

ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1).

(iii) Every person not connected to i at ẗ under R′ points at the same person under
R as under R′. That is, for each j ∈ N ′

ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j).

(iv) Every person not connected to i at ẗ under R′ holds the same object under R
as under R′. That is, for each j ∈ N ′

ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).

(v) The set of people connected to i under R is a subset of the people connected
to i under R′. That is, CONN(i, R, ẗ) ⊆ CONN(i, R′, ẗ).

Proof: Suppose t ,= min{t, t′}. Then t = t. Since τ(R′
i, Ot) = {α(i)}, t < t′, and

by definition of t, i ∈ U ′
t

and i ∈ St.
Let ẗ = t. Statements (i) and (ii), for t, are implied by the t equality lemma.

Further, St = S ′
t
∪ {i}.

14As illustrated in Figure 4.
15If t = min{t, t′} statements (i) - (v) are implied by the t equality lemma.
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n

(c)l k(a)

j(b)

m

i

R′R

(c)l k(a)

j(b)

m

i

Figure 4: Pre-trade inclusion.

We now prove statement (iii), for t, by following the progression of the pointing
phase.16 By the t equality lemma, each j ∈ Nt \ {i} pointed at the same person
under R as he did under R′ at step t− 1.

Stage 1) At the beginning of the pointing phase we consider people who were pointing
at someone who remains in Nt̄ and holds the same object. In particular, we

consider j ∈ N ′
t
\CONN(i, R′, t) such that j

R′
−→
t−1

k ∈ N ′
t
and h′

t
(k) = h′

t−1
(k).

Then, j
R′
−→

t
k. By the t equality lemma, j

R−→
t−1

k and ht(k) = ht−1(k) =

h′
t−1

(k) . Thus j
R−→
t

k.

j

R′R

k kj

Stage 2) Now we consider people who have a unique most preferred object. They
point at the same person under R as under R′.

Stage 3) Next, we consider the people who point at unsatisfied people under R′. In

particular, j ∈ N ′
t
\ CONN(i, R′, t) such that j

R′
−→

t
k ∈ U ′

t
. Since j /∈

CONN(i, R′, t), k /∈ CONN(i, R′, t). Since k ∈ U ′
t

and St = S ′
t
∪ {i},

k ∈ Ut. Further, ht(k) = h′
t
(k) = ω(k). Suppose j

R−→
t

m ,= k. Then,

m ∈ Ut ⊆ U ′
t

and so ht(m) = h′
t
(m) = ω(m) and m ≺ k. This contradicts

j
R′
−→

t
k.

16We provide a graphical illustration of the argument following each stage of the pointing
phase.
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U ′
t

R′R

jj k ∈ U ′
tk ∈ Ut

m ≺ k∈
Ut

m ≺ k∈

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

t
\ CONN(i, R′, t) such

that j
R′
−→

t
j1 ∈ S ′

t

R′
−→

t
k ∈ U ′

t
. Then, by (ii), j1 ∈ St.

By the preceding arguments, j1
R−→
t

k and k ∈ Ut. Suppose j
R−→
t

m1 ,= j1. If

m1 ∈ Ut, then ht(m1) = h′
t
(m1) = ω(m1) and m1 ∈ U ′

t
. But this contradicts

j
R′
−→

t
S ′

t
. So m1 ∈ St and m1

R−→
t

m2 such that m2 ∈ Ut and m2 ≺ k. Then,

m2 ∈ U ′
t

and thus m1
R′
−→

t
m′

2 ∈ U ′
t

such that m′
2 6 m2 ≺ k. 17 By the t

equality lemma, ht(m1) = h′
t
(m1). This contradicts j

R′
−→

t
j1.

k ∈ U ′
t

R′R

j1 k ∈ Ut

j j

m1

m2 ≺ k∈

Ut

St

m1

S ′
t # j1

∈

m2 ≺ k

U ′
t

m′
2 $ m2 ≺ k

U ′
t

∈
∈

Stage 5) Now we consider the people who point at satisfied people with satisfied
pointees whose pointees are unsatisfied, under R′. Particularly, consider

j ∈ N ′
t
\ CONN(i, R′, t) be such that j

R′
−→

t
j1 ∈ S ′

t

R′
−→

t
j2 ∈ S ′

t

R′
−→

t
k ∈ U ′

t
.

Then, j1, j2 ∈ St.

By the preceding arguments, j1
R−→
t

j2
R−→
t

k ∈ Ut. Suppose j
R−→
t

m1 ,= j1.

If m1 ∈ Ut, then ht(m1) = h′
t
(m1) = ω(m1) and m1 ∈ U ′

t
. But this contra-

17We use the notation i 6 j to indicate i ≺ j or i = j.
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dicts j
R′
−→

t
S ′

t
. So m1 ∈ St. By the t equality lemma, ht(m1) = h′

t
(m1).

Let m1
R−→
t

m2. If m2 ∈ Ut, then ht(m2) = h′
t
(m2) = ω(m2) and m2 ∈ U ′

t
.

So m1
R′
−→

t
U ′

t
. But this contradicts j

R′
−→

t
S ′

t

R′
−→

t
S ′

t
. So m2 ∈ St. By the

t equality lemma, ht(m2) = h′
t
(m2). Since k ∈ Ut, m2

R−→
t

m3 ∈ Ut and

m3 ≺ k. Then, m3 ∈ U ′
t

and so m2
R′
−→

t
m̂3 ∈ U ′

t
such that m̂3 6 m3 ≺ k.

If m1
R′
−→

t
m2, this contradicts j

R′
−→

t
j1. Then m1

R′
−→

t
m′

2 ,= m2 and

m′
2

R′
−→

t
m′

3. Note that m′
2 ∈ S ′

t
, otherwise this contradicts j

R′
−→

t
S ′

t

R′
−→

t
S ′

t
.

In addition, since m1 ,
R′
−→

t
m2 and m1

R′
−→

t
m′

2, we have m′
3 ∈ U ′

t
and m′

3 ≺ m̂3.

Then, m3 ≺ k, which contradicts j
R′
−→

t
j1.

m′
2

R′R

m1 m2 m3 ≺ k

kj2j1

j j

j2 kj1

m1 m2 m3

m̂3 " m3

m′
3 " m̂3 " m3 ≺ k

Stage . . . ) Repeating this argument for the rest of the pointing phase, we show (iii).

We show that (v) CONN(i, R, t) ⊆ CONN(i, R′, t) is a consequence of (iii). To
see this, suppose j ∈ CONN(i, R, t) \ CONN(i, R′, t). Then, there is a sequence

{j1, j2, ..., jr, i} ⊂ Nt, such that j
R−→
t

j1
R−→
t

j2
R−→
t

...
R−→
t

jr
R−→
t

i. Since

j /∈ CONN(i, R′, t), then by (iii), j
R′
−→

t
j1. Then, j1 /∈ CONN(i, R′, t). Again,

by (iii), j1
R′
−→

t
j2 and j2 /∈ CONN(i, R′, t). Repeating the argument r times,

jr /∈ CONN(i, R′, t). By (iii), jr
R′
−→

t
i, and this contradicts j /∈ CONN(i, R′, t).
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R

i

jr

j2

j1
j

i

jr

j2

j1
j

R′

Finally, we prove (iv) for Step t. We show that for each j ∈ N ′
t
\CONN(i, R′, t),

ht+1(j) = h′
t+1

(j). Note that since at t < t′, i does not trade. Then, no trad-
ing cycle under R′ involves i. So, no trading cycle involves any member of
CONN(i, R′, t). That is, for each trading cycle C ′ ⊂ N ′

t
, CONN(i, R′, t)∩C ′ = ∅.

By (iii) and since Nt = N ′
t”, we have C ′ ⊂ Nt is also a trading cycle under R.

Therefore, for each j ∈ N ′
t
\CONN(i, R′, t), h′

t+1
(j) = ht+1(j). Moreover, for each

j ∈ CONN(i, R′, t), h′
t+1

(j) = h′
t
(j).

As an induction hypothesis, suppose that for some ẗ ∈ {t, ..., min{t, t′}−1},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ
O′

ẗ
\ Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\ Nẗ ⊆ CONN(i, R′, ẗ− 1),

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j),

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j), and

(v) CONN(i, R, ẗ) ⊆ CONN(i, R′, ẗ).

We prove that these statements are true of ẗ+1. To prove (i) and (ii) for ẗ+1,
note that by (iv) and (v) of the induction hypothesis, if C ∈ Nẗ is a trading cycle
under R and is not a trading cycle under R′, then C ⊆ CONN(i, R′, ẗ). Thus, at
Step ẗ + 1, we have statements (i) and (ii).

We now prove (iii), for ẗ+1, by following the progression of the pointing phase
just as in the case of t.

Stage 1) We consider people whose pointee at ẗ remains at ẗ + 1 and holds the same
object under R as R′. In particular, we consider j ∈ N ′

ẗ+1
\CONN(i, R′, ẗ+1)

such that j
R′
−→̈

t
k ∈ N ′

ẗ
and h′

ẗ+1
(k) = h′

ẗ
(k). Then, j

R′
−→
ẗ+1

k. By the

induction hypothesis, j
R−→̈
t

k and hẗ+1(k) = hẗ(k) = h′
ẗ
(k) . Thus j

R−→
ẗ+1

k.

22



Stage 2) Now we consider people who have a unique most preferred object. For each
j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), if τ(Rj, O′

ẗ+1
) = {a}, then by the induction

hypothesis, h−1
ẗ+1

(a) = h
′−1
ẗ+1

(a) /∈ CONN(i, R′, ẗ + 1). Thus, a ∈ Oẗ+1 and so
pẗ+1(j) = p′

ẗ+1
(j).

Stage 3) Next, we consider the people with unsatisfied pointees under R′. In par-

ticular, j ∈ N ′
ẗ+1

\ CONN(i, R′, ẗ + 1) such that j
R′
−→
ẗ+1

k ∈ U ′
ẗ
. Since j /∈

CONN(i, R′, ẗ+1), k /∈ CONN(i, R′, ẗ+1). Since k ∈ U ′
ẗ+1

and Sẗ+1\S ′
ẗ+1
⊆

CONN(i, R′, ẗ + 1), k ∈ Uẗ+1. Further, hẗ+1(k) = h′
ẗ+1

(k) = ω(k). Suppose

j
R−→

ẗ+1
m ,= k. Then, m ∈ Uẗ+1 ⊆ U ′

ẗ+1
and so hẗ+1(m) = h′

ẗ+1
(m) = ω(m)

and m ≺ k. This contradicts j
R′
−→
ẗ+1

k.

U ′
t

R′R

jj k ∈ U ′
tk ∈ Ut

m ≺ k∈
Ut

m ≺ k∈

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

ẗ+1
\CONN(i, R′, ẗ + 1)

such that j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′
−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, by (ii), j1 ∈ Sẗ+1.

By the preceding arguments, j1
R−→

ẗ+1
k and k ∈ Uẗ+1. Suppose j

R−→
ẗ+1

m1 ,= j1.

We consider the following two cases.

h′
ẗ+1

(m1)

"
hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′
−→
ẗ+1

m1, which contradicts j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Suppose m1
R−→

ẗ+1
m2. Since j

R−→
ẗ+1

m1 and k ∈ Uẗ+1, then m2 ∈ Uẗ+1 and

m2 6 k. Then, m2 ∈ U ′
ẗ+1

. Further, either [m2 ≺ k] or [m2 = k and

m1 ≺ j1]. Since j , R
′

−→
ẗ+1

m1, we have m1 ,
R′
−→
ẗ+1

m2. Let m1
R′
−→
ẗ+1

m′
2. Since
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m2 ∈ U ′
ẗ+1

, we have m′
2 ∈ U ′

ẗ+1
and m′

2 ≺ m2. Then, m′
2 ≺ k, which

contradicts j
R′
−→
ẗ+1

j1.

k ∈ U ′
t

R′R

j1 k ∈ Ut

j j

m1

m2 ≺ k∈

Ut

St

m1

S ′
t # j1

∈

m2 ≺ k

U ′
t

m′
2 $ m2 ≺ k

U ′
t

∈
∈

h′
ẗ+1

(m1)

#
hẗ+1(m1)

: Let a ≡ hẗ+1(m1). By the induction hypothesis, since h′
ẗ+1

(m1) ,= a,

m1 ∈ CONN(i, R′, ẗ). Thus, m1 ∈ CONN(i, R′, ẗ + 1). Further, m1 ∈
Sẗ+1. Since Oẗ+1 ⊆ O′

ẗ+1
, there is m̂ ∈ N ′

ẗ+1
such that h′

ẗ+1
(m̂) = a.

Suppose m1
R−→

ẗ+1
m2. Since j

R−→
ẗ+1

m1, we have m2 ∈ Uẗ+1 ⊆ U ′
ẗ+1

and

m2 ≺ k.

Since j , R
′

−→
ẗ+1

m̂, m̂ ∈ S ′
ẗ+1

. Since hẗ+1(m̂) ,= a, by the induction hy-

pothesis, m̂ ∈ CONN(i, R′, ẗ + 1). So there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Then, ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now we consider the first ť, which is between t̂ and ẗ + 1, such that

hť(m1) = a. Then, m1
R−→

ť−1
Sť−1 which contradicts m2 ∈ Uẗ+1 ⊆ Uť−1.
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(a)

Step ẗ + 1:

R′R

m̂(a)

i

m2 ∈ Uť−1m1

m̃2 ∈ St̂ ⊆ Sť−1

j

j1 kk

j

j1

m1 m2
(a)

R′R

R′R

Step t̂:

Step ť− 1:

i

m̂(a)

m̂ ∈ St̂
(a)

. . .

. . .

. . .

. . .

. . .

Stage 5) Next we consider the people who point at satisfied people whose pointees
satisfied and have unsatisfied pointees, under R′. Particularly, consider j ∈
N ′

ẗ+1
\ CONN(i, R′, ẗ + 1) be such that j

R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′
−→
ẗ+1

j2 ∈ S ′
ẗ+1

R′
−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, j1, j2 ∈ Sẗ+1.

By the preceding arguments, j1
R−→

ẗ+1
j2

R−→
ẗ+1

k ∈ Uẗ+1. Suppose j
R−→
t

m1 ,= j1.

Let m1
R−→

ẗ+1
m2

R−→
ẗ+1

m3. We consider the following cases.

h′
ẗ+1

(m1)

"
hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′
−→
ẗ+1

m1, which contradicts j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Two sub-cases are as follows:

h′
ẗ+1

(m2) = hẗ+1(m2): If m2 ∈ Uẗ+1, then m2 ∈ U ′
ẗ+1

and hẗ+1(m2) =

h′
ẗ+1

(m2) = ω(m2). Then, m1
R−→

ẗ+1
U ′

ẗ+1
and j

R′
−→
ẗ+1

m1, which contra-

dicts j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m2 ∈ Sẗ+1.
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Since j
R−→

ẗ+1
m1 ,= j1, m3 ∈ Uẗ+1. Further, m3 ∈ U ′

ẗ+1
and either

[m3 ≺ k] or [m3 = k and m1 ≺ j1]. Since, j , R
′

−→
ẗ+1

m1, then either,

(a) m1
R′
−→
ẗ+1

m2
R′
−→
ẗ+1

m′
3 ,= m3: Since m3 ∈ U ′

ẗ+1
, m′

3 ∈ U ′
ẗ+1

and

m′
3 ≺ m3 ≺ k. This contradicts j

R′
−→
ẗ+1

j1.

(b) m1
R′
−→
ẗ+1

m′
2 ,= m2: Since j

R′
−→
ẗ+1

j1 ,= m1, we have m′
2 ∈ S ′

ẗ+1
.

Suppose m2
R′
−→
ẗ+1

m̂3 and m′
2

R′
−→
ẗ+1

m′
3. Since m3 ∈ U ′

ẗ+1
, m̂3 ∈ U ′

ẗ+1

and m̂3 6 m3. Since m′
2 ∈ S ′

ẗ+1
, m1

R′
−→
ẗ+1

m′
2, and m̂3 ∈ U ′

ẗ+1
, we

have m′
3 ∈ U ′

ẗ+1
and m′

3 6 m̂3. Thus, m′
3 ≺ k which contradicts

j
R′
−→
ẗ+1

j1.

m′
2

R′R

m1 m2 m3 ≺ k

kj2j1

j j

j2 kj1

m1 m2 m3

m̂3 " m3

m′
3 " m̂3 " m3 ≺ k

h′
ẗ+1

(m2) %= hẗ+1(m2): Let a ≡ hẗ+1(m2). By the induction hy-

pothesis, since h′
ẗ+1

(m2) ,= a, we have m2 ∈ Sẗ+1. Since j
R−→̈
t

m1,

m3 ∈ Uẗ+1 ⊆ U ′
ẗ+1

.

Since Oẗ+1 ⊆ O′
ẗ+1

, there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a and by

the induction hypothesis, m̂ ∈ CONN(i, R′, ẗ + 1).

Since a Im1 hẗ+1(m1), and j , R
′

−→
ẗ+1

m1, we have that m1 ∈ S ′
ẗ+1

, m1
R′
−→
ẗ+1

S ′
ẗ+1

, and m̂ ∈ S ′
ẗ+1

.

Since hẗ+1(m̂) ,= a and since there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂),
ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.
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Now consider the first ť, which is between t̂ and ẗ + 1, such that

hť(m2) = a. Then, m2
R−→

ť−1
Sť−1 which contradicts m3 ∈ Uẗ+1 ⊆ Uť−1.

j2

i

m̂(a)

i

m̂(a)

m3 ∈ Uť−1m2

m̃3 ∈ St̂ ⊆ Sť−1

jj

j1

m1 m2
(a)

R′R

R′R

Step t̂:

Step ť− 1:

m̂ ∈ St̂
(a)

. . .

. . .

. . .

. . .

. . .

(a)

j1

Step ẗ + 1:

R′R

kk

m3

j2

h′
ẗ+1

(m1)

#
hẗ+1(m1)

: Let a ≡ hẗ+1(m1). Since h′
ẗ+1

(m1) ,= a, m1 ∈ Sẗ+1. Since Oẗ+1 ⊆ O′
ẗ+1

,

there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a. Since j
R′
−→
ẗ+1

j1, we have

that m̂ ∈ S ′
ẗ+1

and m̂
R′
−→
ẗ+1

S ′
ẗ+1

. Since hẗ+1(m̂) ,= a, by the induction

hypothesis, m̂ ∈ CONN(i, R′, ẗ + 1) and there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Since m̂ ∈ S ′

ẗ+1
and p′

ẗ+1
(m̂) = p′

t̂
(m̂), we have

that m̂ ∈ S ′
t̂
. This implies that m̂ ∈ St̂ and ht̂(m̂) = a. Since m̂

R′
−→̂

t
S ′

t̂
,

then m̂
R−→̂
t

St̂. And for each ˆ̂t > t̂, we have m̂
R−→̂
t̂

Sˆ̂t
. Now consider

the first ť, which is between t̂ and ẗ + 1, such that hť(m1) = a. Then,

m1
R−→

ť−1
Sť−1

R−→
ť−1

Sť−1. However, if m2 ∈ Uẗ+1 ⊆ Uť, then m1
R−→

ẗ+1

Uẗ+1 ⊆ Uť and if m2 ∈ Sẗ+1, then m3 ∈ Uẗ+1 and m1
R−→

ẗ+1
Sẗ+1

R−→
ẗ+1

Uẗ+1.

In either case, we have reached a contradiction.
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m1

i

m̂(a)

m̈ ∈ S ′
ẗ+1

i

m̂(a)

m̈ ∈ S ′
t̂

jj

j1

m1 m2
(a)

R′R

R′R

Step t̂:

. . .. . .

j1

Step ẗ + 1:

R′R

kk

m3

j2 j2

. . .

. . .
m̌ ∈ St̂

m2 m∗
3 ∈ Uť−1

Step ť− 1:
. . .

m̃2 ∈ St̂ ⊆ Sť−1

m̃3 ∈ St̂ ⊆ Sť−1

(a)

m̂(a)

Stage . . . ) Repeating this argument for the rest of the pointing phase we show (iii).

Now, we prove (v) for ẗ+1. Suppose j ∈ CONN(i, R, ẗ+1) \CONN(i, R′, ẗ+1).

Then, there is {j1, j2, ..., jr, i} ⊂ Nẗ+1 ⊆ N ′
ẗ+1

, such that j
R−→

ẗ+1
j1

R−→
ẗ+1

j2
R−→

ẗ+1

...
R−→

ẗ+1
jr

R−→
ẗ+1

i. Since j /∈ CONN(i, R′, ẗ + 1), by (iii), j
R′
−→
ẗ+1

j1. Then, j1 /∈

CONN(i, R′, ẗ + 1). Again, by (iii), j1
R′
−→
ẗ+1

j2 and j2 /∈ CONN(i, R′, ẗ + 1).

Repeating the argument r times, jr /∈ CONN(i, R′, ẗ + 1). By (iii), jr
R′
−→
ẗ+1

i, and

this contradicts j /∈ CONN(i, R′, ẗ + 1).
Finally, we prove (iv) for Step ẗ + 1. We show that for each j ∈ N ′

ẗ+1
\

CONN(i, R′, ẗ + 1), hẗ+1(j) = h′
ẗ+1

(j). By (iii) each trading cycle that does not
involve people connected to i under R′ is also a trading cycle under R. Therefore,
for each j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), h′

ẗ+2
(j) = hẗ+2(j). Moreover, for each

j ∈ CONN(i, R′, ẗ + 1), h′
ẗ+2

(j) = h′
ẗ+1

(j). 7

If t′ ≤ t, by pre-trade inclusion, and the t equality lemma, Ot ⊆ O′
t and

O′
t ⊆ O′

t′ . Thus, α(i) ∈ O′
t′ . Since i is part of a trading cycle at Step t′, he is

28



assigned one of his most preferred objects in O′
t′ which is uniquely α(i). Thus,

α′(i) = α(i).
Suppose not, then t′ > t. To show that α(i) = α′(i) we first prove the following

claim.

Claim 2. (Post-trade inclusion) For each ẗ ∈ {t.., t′},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ
,

O′
ẗ
\ Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\ Nẗ ⊆ CONN(i, R′, ẗ− 1)

,

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j), and

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).

The proof of this claim is similar to that of pre-trade inclusion. We have
provided it in the appendix.

Suppose α′(i) ,= α(i). Since i is assigned α(i) under R, there is t̃ such that
ht̃+1(i) = α(i). By post-trade inclusion, t̃ < t′. Since τ(R′

i, Ot̃) = {α(i)}, we have

i
R′
−→̃

t
j ∈ N ′

t̃
such that h′

t̃
(j) = α(i). Since α′(i) ,= α(i), h′

t̃+1
(i) ,= α(i). Thus

j /∈ CONN(i, R′, t̃+ 1). Thus by post-trade inclusion, ht̃(j) = h′
t̃
(j) = α(i). Since

j /∈ CONN(i, R′, t̃), we have j
R′
−→̃

t
j1(,= i)

R′
−→̃

t
j2(,= i) . . .

R′
−→̃

t
jr(,= i). Again, by

post-trade inclusion, j
R−→̃
t

j1(,= i)
R−→̃
t

j2(,= i) . . .
R−→̃
t

jr(,= i). This contradicts

ht̃(i) = α(i). ♣

We are now ready to show that TC≺ is strategy-proof.

Proposition 5. For priority order ≺, TC≺(R, ω) is strategy-proof.

Proof: Suppose that TC≺ is not strategy-proof. Then, there is (R, ω) ∈ RN ×A,
i ∈ N and R′

i ∈ R such that TC≺(R′
i, R−i, ω)(i) Pi TC≺(R, ω)(i). Let α ≡

TC≺(R, ω) and α′ ≡ TC≺(R′
i, R−i, ω). By the invariance lemma, we only need to

consider R′
i such that I(α′(i), Ri) = {α′(i)}. Otherwise, there is Rα′(i)↑

i ∈R such

that TC≺(Rα(i)↑

i , R−i, ω)(i) = α′(i) and thus, TC≺(Rα′(i)↑

i , R−i, ω)(i) Pi α(i).
Define t, t′, t, and t as in the proof of the invariance lemma. Since α′(i) ,=

ω(i), α′(i) P ′
i ω(i) and for each ẗ ≤ t′, i ∈ U ′

ẗ
. We consider the following cases.

Case 1: t = t ≤ t′. In this case, i ∈ St. That is, ω(i) ∈ τ(Ri, Ot). By the t
equality lemma, Ot = O′

t
. Since α′(i) ∈ O′

t
, α′(i) ∈ Ot. Thus, ω(i) Ri α′(i) and by

individual rationality, α(i) Ri α′(i).
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Case 2: t = t′ < t. By the t equality lemma, Ot′ = O′
t′ , Nt′ = N ′

t′ , and for
each j ∈ N ′

t′ \ {i}, pt′(j) = p′t′(j) and ht′(j) = h′t′(j). Since i trades under R′,
{h′t′+1(i)} = {α′(i)} = τ(R′

i, O
′
t′). Then, i leaves with α′(i). Therefore, there is

{j1, j2, . . . , j3} ⊆ N ′
t such that j1

R′
−→

t
j2

R′
−→

t
j3 . . .

R′
−→

t
jr

R′
−→

t
i and h′t(j1) = α′(i).

Then, by the t equality lemma, j1
R−→
t

j2
R−→
t

j3 . . .
R−→
t

jr
R−→
t

i and ht(j1) = α′(i).

By persistence, ht+1(i) Ri α′(i).
Case 3: t = t ≤ t′. Since ht+1(i) ∈ τ(Ri, Ot) and ht+1(i) Ii α(i), α(i) ∈ τ(Ri, Ot).
Since α′(i) ∈ O′

t and by by the t equality lemma O′
t = Ot we have α′(i) ∈ Ot.

Thus, α(i) Ri α′(i). !

6 Generality of our model

In this section, we show that the model that we have studied is general enough
to include the problems where there may or may not be a private endowment in
addition to a social endowment (Hylland and Zeckhauser 1979, Abdulkadiroğlu
and Sönmez 1999).

Let Õ be a set of objects and Ñ be a set of people. Let ∅ /∈ Õ be the null
object. The private endowment, ω̃ : Ñ → Õ ∪ {∅}, is such that for each
i, j ∈ Ñ , ω̃(i) ,= ω̃(j) unless ω̃(i) = ∅. Let R̃ be the set of preference relations
over Õ. Let R̃ ∈ R̃Ñ . The tuple (Õ, Ñ , ω̃, R̃) defines a problem. We show how
this problem can be encoded as a problem in our original model without social
endowments.

Define (O, N, ω, R) as follows. For each a ∈ Õ \ ω̃(Ñ), we introduce ia, a
“dummy person” with degenerate preferences, Ria = I0. For each i ∈ Ñ such that
ω̃(i) = ∅, we introduce di, a “dummy object” which every person considers to be
worse than any object in Õ. For each person in Ñ , his preferences over Õ are
kept the same. That is,

O ≡ Õ ∪ {di : for each i ∈ Ñ such that ω̃(i) = ∅},
N ≡ Ñ ∪ {ia : for each a ∈ Õ \ ω̃(Ñ)},

For each i ∈ N, ω(i) ≡






ω̃(i) if i ∈ Ñ and ω̃(i) ,= ∅
di if i ∈ Ñ and ω̃(i) = ∅
a if i = ia, and

R ∈ RN is such that for each i ∈ Ñ , Ri|Õ = R̃i|Õ, and for each dj ∈ O \ Õ and
each a ∈ Õ, a Pi dj.

We also point out that the top cycles rules described in this paper can be gener-
alized to problems where each object is associated with an “inheritance hierarchy”
and each person may be endowed with any number of objects (Pápai 2000).
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Remark 4. (Two-sided matching) The “two-sided matching” model is closely
related to the one we study here. Dropping the assumption that people are never
indifferent between alternatives has a striking effect on this model as well. The
“deferred acceptance” algorithm holds a place in the literature on this model sim-
ilar to the one held by the top trading cycles algorithm for our model. The key
axioms for two-sided matching are “stability” and efficiency, both of which are sat-
isfied by the deferred acceptance algorithm. Like the top trading cycles algorithm,
the deferred acceptance algorithm can be adapted to preserve both these axioms
in the presence of indifference (Erdil and Ergin 2006). However, this adaptation
does not preserve “one-sided” strategy-proofness, which means that an application
of this algorithm to our model does not satisfy strategy-proofness. ◦

7 Conclusion

Through Proposition 5, we show that strategy-proofness, Pareto-efficiency, and
individual rationality are compatible. But this leaves open the question of what
other rules satisfy these properties. We know that any such rule selects from the
core when it is non-empty (Ma 1994), but it is not yet clear what it can select when
the core is empty. It is easy to show that the three axioms are independent. While
there are rules other than top cycles rules that satisfy them, the only such rules
that we are aware of are minimal variation of top cycles rules. For instance, the
tie-breaking scheme can be changed when two satisfied candidate pointees point
at the same unsatisfied person. It is still unclear if more substantial departures
are possible.

Appendices

A Proof of the “post-trade inclusion” claim

Claim 2: (Post-trade inclusion)
For each ẗ ∈ {t.., t′},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ
,

O′
ẗ
\ Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\ Nẗ ⊆ CONN(i, R′, ẗ− 1)

,

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j), and

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).
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Proof: Let ẗ = t + 1. First, we prove statements (i) and (ii) for t + 1. At
t, i is a member of a trading cycle under R, but not under R′. By pre-trade
inclusion, each trading cycle that does not involve people connected to i under R′

is also a trading cycle under R. In addition, for each j ∈ N ′
t \ CONN(i, R′, t),

ht+1(j) = h′t+1(j). Thus, if C ∈ Nt is a trading cycle under R but not under R′,
then C ⊂ CONN(i, R′, t). Therefore, at Step t + 1, Ot+1 ⊂ O′

t+1, O′
t+1 \ Ot+1 ⊆

ht+1(CONN(i, R′, t)), Nt+1 ⊂ N ′
t+1, and N ′

t+1 \ Nt+1 ⊆ CONN(i, R′, t). Further,
S ′

t+1 ⊂ St+1 and St+1 \ S ′
t+1 ⊆ CONN(i, R′, t).

We now prove (iii) for t+1, by following the progression of the pointing phase.

Stage 1) We first consider people whos pointee in Step t remains in N ′
t+1 and holds

the same object. In particular, we consider j ∈ N ′
t+1 \ CONN(i, R′, t + 1)

such that j
R′
−→

t
k ∈ N ′

t+1 and h′t+1(k) = h′t(k). Then, j
R′
−→
t+1

k. By pre-trade

inclusion, j
R−→
t

k and ht+1(k) = ht(k) = h′t(k). Thus, by (ii), j
R−→

t+1
k.

Stage 2) Now we consider people who have a unique most preferred object. For each
j ∈ N ′

t+1 \ CONN(i, R′, t + 1), if τ(Rj, O′
t+1) = {a}, then by pre-trade

inclusion, h−1
t+1(a) = h

′−1
t+1(a) /∈ CONN(i, R′, t + 1). Thus, a ∈ Ot+1 and so

pt+1(j) = p′t+1(j).

Stage 3) Next, we consider the people with unsatisfied pointees under R′. In partic-

ular, we consider j ∈ N ′
t+1 \ CONN(i, R′, t + 1) such that j

R′
−→
t+1

k ∈ U ′
t+1.

Since j /∈ CONN(i, R′, t + 1), k /∈ CONN(i, R′, t + 1). Since k ∈ U ′
t+1

and St+1 \ S ′
t+1 ⊂ CONN(i, R′, t + 1), k ∈ Ut+1. Further, ht+1(k) =

h′t+1(k) = ω(k). Suppose j
R−→

t+1
m ,= k. Then, m ∈ Ut+1 ⊂ U ′

t+1 and so

ht+1(m) = h′t+1(m) = ω(m) and m ≺ k. This contradicts j
R′
−→
t+1

k.

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

t+1 \CONN(i, R′, t + 1)

such that j
R′
−→
t+1

j1 ∈ S ′
t+1

R′
−→
t+1

k ∈ U ′
t+1. Then, by (ii), j1 ∈ St+1.

By the preceding arguments, j1
R−→

t+1
k and k ∈ Ut+1. Suppose j

R−→
t+1

m1 ,= j1.

We consider the following cases.

h′
t+1(m1)

"
ht+1(m1)

: If m1 ∈ Ut+1, then m1 ∈ U ′
t+1 and ht+1(m1) = h′t+1(m1) = ω(m1).

Then, j
R′
−→
t+1

m1, which contradicts j
R′
−→
t+1

j1 ∈ S ′
t+1. Thus, m1 ∈ St+1.
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Suppose m1
R−→

t+1
m2. Since j

R−→
t+1

m1 and k ∈ Ut+1 and m2 6 k. Then,

m2 ∈ U ′
t+1. Further, either [m2 ≺ k] or [m2 = k and m1 ≺ j1]. Since

j , R
′

−→
t+1

m1, we have m1 ,
R′
−→
t+1

m2. Let m1
R′
−→
t+1

m′
2. Since m2 ∈ U ′

t+1,

we have m′
2 /∈ S ′

t+1 and m′
2 ≺ m2. Then, m′

2 ≺ k, which contradicts

j
R′
−→
t+1

j1.

h′
t+1(m1)

#
ht+1(m1)

: Let a ≡ ht+1(m1). By pre-trade inclusion, since h′t+1(m1) ,= a, m1 ∈

CONN(i, R′, t). Thus, m1 ∈ CONN(i, R′, t + 1). Further, m1 ∈ St+1.
Since Ot+1 ⊆ O′

t+1, there is m̂ ∈ N ′
t+1 such that h′t+1(m̂) = a. Suppose

m1
R−→

t+1
m2. Since j

R−→
t+1

m1, we have m2 ∈ Ut+1 ⊆ U ′
t+1 and m2 ≺ k.

Since j , R
′

−→
t+1

m̂, m̂ ∈ S ′
t+1.

Since ht+1(m̂) ,= a, by pre-trade inclusion, m̂ ∈ CONN(i, R′, t + 1). So
there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂), ht̂(m̂) = h′

t̂
(m̂) = a,

and m̂ ∈ S ′
t̂
⊆ St̂.

Now we consider the first ť, which is between t̂ and t + 1, such that

hť(m1) = a. Then, m1
R−→

ť−1
Sť−1, which contradicts m2 ∈ Ut+1 ⊆ Uť−1.

Stage 5) Now we consider the people who point at satisfied people whose pointees are
satisfied people with unsatisfied pointees under R′. Particularly, we consider

j ∈ N ′
t+1 \ CONN(i, R′, t + 1) such that j

R′
−→
t+1

j1 ∈ S ′
t+1

R′
−→
t+1

j2 ∈ S ′
t+1

R′
−→
t+1

k ∈ U ′
t+1. Then, by (ii), j1, j2 ∈ St+1.

By the preceding arguments, j1
R−→

t+1
j2

R−→
t+1

k ∈ Ut+1. Suppose j
R−→
t

m1 ,= j1.

Let m1
R−→

t+1
m2

R−→
t+1

m3. We consider the following cases.

h′
t+1(m1)

"
ht+1(m1)

: If m1 ∈ Ut+1, then m1 ∈ U ′
t+1 and ht+1(m1) = h′t+1(m1) = ω(m1).

Then, j
R′
−→
t+1

m1, which contradicts j
R′
−→
t+1

j1 ∈ S ′
t+1. Thus, m1 ∈ St+1.

Two sub-cases are as follows:

h′
t+1(m2) = ht+1(m2): If m2 ∈ Ut+1, then m2 ∈ U ′

t+1 and ht+1(m2) =

h′t+1(m2) = ω(m2). Then, ma
R′
−→
t+1

U ′
t+1 and j

R′
−→
t+1

m1, which contra-

dicts j
R′
−→
t+1

j1 ∈ S ′
t+1. Thus, m2 ∈ St+1.
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Since j
R−→

t+1
m1 ,= j1, m3 ∈ Ut+1. Further, m3 ∈ U ′

t+1 and either

[m3 ≺ k] or [m3 = k and m1 ≺ j1]. Since, j , R
′

−→
t+1

m1, then either,

(a) m1
R′
−→
t+1

m2
R′
−→
t+1

m′
3 ,= m3: Since m3 ∈ U ′

t+1, m′
3 ∈ U ′

t+1 and

m′
3 ≺ m3 ≺ k. This contradicts j

R′
−→
t+1

j1.

(b) m1
R′
−→
t+1

m′
2 ,= m2: Since j

R′
−→
t+1

j1 ,= m1, we have m′
2 ∈ S ′

t+1.

Suppose m2
R′
−→
t+1

m̂3 and m′
2

R′
−→
t+1

m′
3. Since m3 ∈ U ′

t+1, m̂3 ∈ U ′
t+1

and m̂3 6 m3. Since m′
2 ∈ S ′

t+1, m1
R′
−→
t+1

m′
2, and m̂3 ∈ U ′

t+1, we

have m′
3 ∈ U ′

t+1 and m′
3 ≺ m̂3. Thus, m′

3 ≺ k which contradicts

j
R′
−→
t+1

j1.

h′
t+1(m2) %= ht+1(m2): Let a ≡ ht+1(m2). By pre-trade inclusion,

since h′t+1(m2) ,= a, we have m2 ∈ St+1. Since j
R−→̈
t

m1, m3 ∈ Ut+1 ⊆
U ′

t+1.

Since Ot+1 ⊆ O′
t+1, there is m̂ ∈ N ′

t+1 such that h′t+1(m̂) = a and by
pre-trade inclusion, m̂ ∈ CONN(i, R′, t + 1).

Since a Im1 ht+1(m1), and j , R
′

−→
t+1

m1, we have that m1 ∈ S ′
t+1, m1

R′
−→
t+1

S ′
t+1, and m̂ ∈ S ′

t+1.

Since ht+1(m̂) ,= a and since there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂),
ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now consider the first ť, which is between t̂ and t + 1, such that

hť(m2) = a. Then, m2
R−→

ť−1
Sť−1 which contradicts m3 ∈ Uẗ+1 ⊆ Uť−1.

h′
t+1(m1)

#
ht+1(m1)

: Let a ≡ ht+1(m1). Subce h′t+1(m1) ,= a, m1 ∈ St+1. Since Ot+1 ⊆ O′
t+1,

there is m̂ ∈ N ′
t+1 such that h′t+1(m̂) = a. Since j

R′
−→
t+1

j1, we have

that m̂ ∈ S ′
t+1 and m̂

R′
−→
t+1

S ′
t+1. Since ht+1(m̂) ,= a, by pre-trade

inclusion, m̂ ∈ CONN(i, R′, t + 1) and there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Since m̂ ∈ S ′

t+1 and p′
t̂
(m̂) = p′t+1(m̂), we have

that m̂ ∈ S ′
t̂
. This implies that m̂ ∈ St̂ and ht̂(m̂) = a. Since m̂

R′
−→̂

t
S ′

t̂
,

then m̂
R−→̂
t

St̂. And for each ˆ̂t > t̂, we have m̂
R−→̂
t̂

Sˆ̂t
. Now consider
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the first ť, which is between t̂ and t + 1, such that hť(m1) = a. Then,

m1
R−→

ť−1
Sť−1

R−→
ť−1

Sť−1. However, if m2 ∈ Ut+1 ⊆ Uť, then m1
R−→

t+1

Ut+1 ⊆ Uť and if m2 ∈ St+1, then m3 ∈ Ut+1 and m1
R−→

t+1
St+1

R−→
t+1

Ut+1.

In either case, we have reached a contradiction.

Stage . . . ) Repeating this argument for the rest of the pointing phase we show (iii).

Now, we prove (iv) for t+1. That is, we show that for each j ∈ N ′
t+1\CONN(i, R′, t+ 1),

ht+1(j) = h′t+1(j). Note that since at t + 1 < t′, i is not part of any trading cycle
under R′. Thus is, no trading cycle under R′ involves people connected to i under
R′. That is for each trading cycle C ′ ⊂ N ′

t+1, CONN(i, R′, t + 1) ∩ C ′ = ∅. By
(iii), each trading cycle that does not involve people connected to i under R′ is
also a trading cycle under R. Therefore, for each j ∈ N ′

t+1 \ CONN(i, R′, t + 1),
h′t+2(j) = ht+2(j). Moreover, for each j ∈ CONN(i, R′, t + 1), h′t+2(j) = h′t+1(j).

As an induction hypothesis, suppose that for some ẗ ∈ {t, ..., t′ − 1},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ
O′

ẗ
\ Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\ Nẗ ⊆ CONN(i, R′, ẗ− 1),

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j), and

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ(j) = h′

ẗ
(j), and

Now we prove that these statements are true of ẗ + 1. To prove (i) and (ii) for
ẗ + 1 note that by (iv) and (v) of the induction hypothesis, if C ∈ Nẗ is a trading
cycle under R and is not a trading cycle under R′, then C ⊆ CONN(i, R′, ẗ).
Thus, at Step ẗ + 1, we have statements (i) and (ii).

We now prove (iii), for ẗ+1, by following the progression of the pointing phase
just as in the case of t + 1.

Stage 1) At the beginning of the pointing phase we consider people who were pointing
at someone who remains in N ′

ẗ+1
and holds the same object. In particular,

we consider j ∈ N ′
ẗ+1

\ CONN(i, R′, ẗ + 1) such that j
R′
−→̈

t
k ∈ N ′

ẗ
and

h′
ẗ+1

(k) = h′
ẗ
(k). Then, j

R′
−→
ẗ+1

k. By the induction hypothesis, j
R−→̈
t

k and

hẗ+1(k) = hẗ(k) = h′
ẗ
(k) . Thus j

R−→
ẗ+1

k.
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Stage 2) Now we consider people who have a unique most preferred object. For each
j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), if τ(Rj, O′

ẗ+1
) = {a}, then by the induction

hypothesis, h−1
ẗ+1

(a) = h
′−1
ẗ+1

(a) /∈ CONN(i, R′, ẗ + 1). Thus, a ∈ Oẗ+1 and so
pẗ+1(j) = p′

ẗ+1
(j).

Stage 3) Next, we consider the people with unsatisfied pointees under R′. In par-

ticular, j ∈ N ′
ẗ+1

\ CONN(i, R′, ẗ + 1) such that j
R′
−→
ẗ+1

k ∈ U ′
ẗ
. Since j /∈

CONN(i, R′, ẗ+1), k /∈ CONN(i, R′, ẗ+1). Since k ∈ U ′
ẗ+1

and Sẗ+1\S ′
ẗ+1
⊆

CONN(i, R′, ẗ + 1), k ∈ Uẗ+1. Further, hẗ+1(k) = h′
ẗ+1

(k) = ω(k). Suppose

j
R−→

ẗ+1
m ,= k. Then, m ∈ Uẗ+1 ⊆ U ′

ẗ+1
and so hẗ+1(m) = h′

ẗ+1
(m) = ω(m)

and m ≺ k. This contradicts j
R′
−→
ẗ+1

k.

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

ẗ+1
\CONN(i, R′, ẗ + 1)

such that j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′
−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, by (ii), j1 ∈ Sẗ+1.

By the preceding arguments, j1
R−→

ẗ+1
k and k ∈ Uẗ+1. Suppose j

R−→
ẗ+1

m1 ,= j1.

We consider the following two cases.

h′
ẗ+1

(m1)

"
hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′
−→
ẗ+1

m1, which contradicts j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Suppose m1
R−→

ẗ+1
m2. Since j

R−→
ẗ+1

m1 and k ∈ Uẗ+1, then m2 ∈ Uẗ+1 and

m2 6 k. Then, m2 ∈ U ′
ẗ+1

. Further, either [m2 ≺ k] or [m2 = k and

m1 ≺ j1]. Since j , R
′

−→
ẗ+1

m1, we have m1 ,
R′
−→
ẗ+1

m2. Let m1
R′
−→
ẗ+1

m′
2. Since

m2 ∈ U ′
ẗ+1

, we have m′
2 ∈ U ′

ẗ+1
and m′

2 ≺ m2. Then, m′
2 ≺ k, which

contradicts j
R′
−→
ẗ+1

j1.

h′
ẗ+1

(m1)

#
hẗ+1(m1)

: Let a ≡ hẗ+1(m1). By the induction hypothesis, since h′
ẗ+1

(m1) ,= a,

m1 ∈ CONN(i, R′, ẗ). Thus, m1 ∈ CONN(i, R′, ẗ + 1). Further, m1 ∈
Sẗ+1. Since Oẗ+1 ⊆ O′

ẗ+1
, there is m̂ ∈ N ′

ẗ+1
such that h′

ẗ+1
(m̂) = a.
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Suppose m1
R−→

ẗ+1
m2. Since j

R−→
ẗ+1

m1, we have m2 ∈ Uẗ+1 ⊆ U ′
ẗ+1

and

m2 ≺ k.

Since j , R
′

−→
ẗ+1

m̂, m̂ ∈ S ′
ẗ+1

.

Since hẗ+1(m̂) ,= a, by the induction hypothesis, m̂ ∈ CONN(i, R′, ẗ +
1). So there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂). Then, ht̂(m̂) =
h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now we consider the first ť, which is between t̂ and ẗ + 1, such that

hť(m1) = a. Then, m1
R−→

ť−1
Sť−1 which contradicts m2 ∈ Uẗ+1 ⊆ Uť−1.

Stage 5) Next we consider the people who point at satisfied people whose pointees
satisfied and have unsatisfied pointees, under R′. Particularly, consider j ∈
N ′

ẗ+1
\ CONN(i, R′, ẗ + 1) be such that j

R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′
−→
ẗ+1

j2 ∈ S ′
ẗ+1

R′
−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, j1, j2 ∈ Sẗ+1.

By the preceding arguments, j1
R−→

ẗ+1
j2

R−→
ẗ+1

k ∈ Uẗ+1. Suppose j
R−→
t

m1 ,= j1.

Let m1
R−→

ẗ+1
m2

R−→
ẗ+1

m3. We consider the following cases.

h′
ẗ+1

(m1)

"
hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′
−→
ẗ+1

m1, which contradicts j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Two sub-cases are as follows:

h′
ẗ+1

(m2) = hẗ+1(m2): If m2 ∈ Uẗ+1, then m2 ∈ U ′
ẗ+1

and hẗ+1(m2) =

h′
ẗ+1

(m2) = ω(m2). Then, m1
R−→

ẗ+1
U ′

ẗ+1
and j

R′
−→
ẗ+1

m1, which contra-

dicts j
R′
−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m2 ∈ Sẗ+1.

Since j
R−→

ẗ+1
m1 ,= j1, m3 ∈ Uẗ+1. Further, m3 ∈ U ′

ẗ+1
and either

[m3 ≺ k] or [m3 = k and m1 ≺ j1]. Since, j , R
′

−→
ẗ+1

m1, then either,

(a) m1
R′
−→
ẗ+1

m2
R′
−→
ẗ+1

m′
3 ,= m3: Since m3 ∈ U ′

ẗ+1
, m′

3 ∈ U ′
ẗ+1

and

m′
3 ≺ m3 ≺ k. This contradicts j

R′
−→
ẗ+1

j1.

(b) m1
R′
−→
ẗ+1

m′
2 ,= m2: Since j

R′
−→
ẗ+1

j1 ,= m1, we have m′
2 ∈ S ′

ẗ+1
.
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Suppose m2
R′
−→
ẗ+1

m̂3 and m′
2

R′
−→
ẗ+1

m′
3. Since m3 ∈ U ′

ẗ+1
, m̂3 ∈ U ′

ẗ+1

and m̂3 6 m3. Since m′
2 ∈ S ′

ẗ+1
, m1

R′
−→
ẗ+1

m′
2, and m̂3 ∈ U ′

ẗ+1
, we

have m′
3 ∈ U ′

ẗ+1
and m′

3 6 m̂3. Thus, m′
3 ≺ k which contradicts

j
R′
−→
ẗ+1

j1.

h′
ẗ+1

(m2) %= hẗ+1(m2): Let a ≡ hẗ+1(m2). By the induction hy-

pothesis, since h′
ẗ+1

(m2) ,= a, we have m2 ∈ Sẗ+1. Since j
R−→̈
t

m1,

m3 ∈ Uẗ+1 ⊆ U ′
ẗ+1

.

Since Oẗ+1 ⊆ O′
ẗ+1

, there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a and by

the induction hypothesis, m̂ ∈ CONN(i, R′, ẗ + 1).

Since a Im1 hẗ+1(m1), and j , R
′

−→
ẗ+1

m1, we have that m1 ∈ S ′
ẗ+1

, m1
R′
−→
ẗ+1

S ′
ẗ+1

, and m̂ ∈ S ′
ẗ+1

.

Since hẗ+1(m̂) ,= a and since there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂),
ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now consider the first ť, which is between t̂ and ẗ+1, such that hť(m2) =

a. Then, m2
R−→

ť−1
Sť−1 which contradicts m3 ∈ Uẗ+1 ⊆ Uť−1.

h′
ẗ+1

(m1)

#
hẗ+1(m1)

: Let a ≡ hẗ+1(m1). Since h′
ẗ+1

(m1) ,= a, m1 ∈ Sẗ+1. Since Oẗ+1 ⊆ O′
ẗ+1

,

there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a. Since j
R′
−→
ẗ+1

j1, we have

that m̂ ∈ S ′
ẗ+1

and m̂
R′
−→
ẗ+1

S ′
ẗ+1

. Since hẗ+1(m̂) ,= a, by the induction

hypothesis, m̂ ∈ CONN(i, R′, ẗ + 1) and there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Since m̂ ∈ S ′

ẗ+1
and p′

ẗ+1
(m̂) = p′

t̂
(m̂), we have

that m̂ ∈ S ′
t̂
. This implies that m̂ ∈ St̂ and ht̂(m̂) = a. Since m̂

R′
−→̂

t
S ′

t̂
,

then m̂
R−→̂
t

St̂. And for each ˆ̂t > t̂, we have m̂
R−→̂
t̂

Sˆ̂t
. Now consider

the first ť, which is between t̂ and ẗ + 1, such that hť(m1) = a. Then,

m1
R−→

ť−1
Sť−1

R−→
ť−1

Sť−1. However, if m2 ∈ Uẗ+1 ⊆ Uť, then m1
R−→

ẗ+1

Uẗ+1 ⊆ Uť and if m2 ∈ Sẗ+1, then m3 ∈ Uẗ+1 and m1
R−→

ẗ+1
Sẗ+1

R−→
ẗ+1

Uẗ+1.

In either case, we have reached a contradiction.

Stage . . . ) Repeating this argument for the rest of the pointing phase we show (iii).

38



Finally, we prove (iv) for Step ẗ + 1. That is, we show that for each j ∈ N ′
ẗ+1

\
CONN(i, R′, ẗ + 1), hẗ+1(j) = h′

ẗ+1
(j). By (iii) each trading cycle that does not

involve people connected to i under R′ is also a trading cycle under R. Therefore,
for each j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), hẗ+1(j) = h′

ẗ+1
(j). Moreover, for each

j ∈ CONN(i, R′, ẗ + 1), h′
ẗ+2

(j) = h′
ẗ+1

(j). 7

B Proof of Propositions 1 and 2

Proposition 1: If N > 2, no rule is strategy-proof, Pareto-efficient and anony-
mous.
Proof: Let ϕ by a rule satisfying the axioms. We prove this for the case of N = 3.

Suppose ϕ is a strategy-proof and Pareto-efficient. Let O = {a, b, c}, N =
{1, 2, 3}, and let ω = (a, b, c). Consider the following preference profile:

R1 R2 R3

a b c a a©
b c b c

By efficiency, ϕ(R, ω)(1) ,= a. Thus, either ϕ(R, ω)(2) = a or ϕ(R, ω)(3) = a.
Suppose ϕ(R, ω)(3) = a.

Claim (Limited favoritism): If 1 is indifferent between all three objects, and
if 3’s unique most preferred object is a, it is assigned to him. That is, for each
R′ ∈ RN ,18

R′
1 = I0, and

τ(R′
3, O) = {a}

}
⇒ ϕ(R′, ω)(3) = a.

Proof: By strategy-proofness, for each R′
3 ∈ R \ {R3} such that τ(R′

3, O) = {a},
ϕ(R′

3, R−3, ω)(3) = a. Otherwise,

ϕ( R3︸︷︷︸
lie

, R−3, ω)(3) P ′
3︸︷︷︸

truth

ϕ( R′
3︸︷︷︸

truth

, R−3, ω)(3).

Also by strategy-proofness, there is no R′
2 ∈ R, such that ϕ(R′

2, R−2, ω)(2) = a.
Otherwise,

ϕ( R′
2︸︷︷︸

lie

, R−2, ω)(2) P2︸︷︷︸
truth

ϕ( R2︸︷︷︸
truth

, R−2, ω)(2).

Thus, for any R′ ∈ RN such that R′
1 = I0 and τ(R′

3, O) = {a}, ϕ(R′, ω)(3) = a.7
18I0 is indifference between all objects.
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Since ϕ exhibits limited favoritism, it cannot be anonymous. !

Proposition 2: If N > 2, no rule is strategy-proof, Pareto-efficient, individually
rational, and non-bossy.
Proof: Suppose ϕ is strategy-proof, Pareto-efficient, individually rational, and
non-bossy. We begin by noting that it satisfies limited favoritism as in the proof
of the previous proposition.

Claim (General favoritism): If a is not assigned to 1, then 3 finds his assign-
ment to be at least as good as a. That is, for each R ∈ RN ,

ϕ(R, ω)(1) ,= a ⇒ ϕ(R, ω)(3) R3 a.

Proof: Suppose not. Then, there is R ∈ RN such that ϕ(R, ω)(1) ,= a and
a P3 ϕ(R, ω)(3). Let α ≡ ϕ(R, ω). Since α(1) ,= a and α(3) ,= a, we have
α(2) = a.

Case b P3 a: Since α(1) ,= a, by individual rationality, there is x ∈ {b, c} such that x R1 a.
Since b P3 a, α(3) ,= b. Thus, by Pareto-efficiency, α(1) = b. Further, by
Pareto-efficiency, b P1 c and by individual rationality, b R1 a. There are four
possible configurations for the preference profile:

R1 R2 R3

b© a© b
...

... a
c©

,

R1 R2 R3

b© a© b b
... c a

c©

,

R1 R2 R3

b© a a© b

c
... a

c©

or

R1 R2 R3

b© a a© b b
c c a

c©

.

The circled allocation in each of the above is α. By strategy-proofness, if α
is chosen at any one of the four configurations, it is chosen at the first. Thus,
it is suffices to show that α cannot be chosen for the first configuration.

Consider the following preference profile:

R′
1 R2 R3

b© a© b

a c
... a

c©
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By strategy-proofness, b is assigned to 1. By non-bossiness, a is assigned
to 2 and c is assigned to 3.

Now, consider another preference profile:

R′
1 R2 R′

3

b© a© a

a c
... b c©

At (R′
1, R2, R′

3), by strategy-proofness, c is assigned to 3 and by Pareto-
efficiency, b is assigned to 1 and a is assigned to 2. By strategy-proofness
and non-bossiness the allocation is unchanged for the following profile.

R′
1 R′

2 R′
3

b© a© a
a c c b c©

b

Now suppose 1 reports I0,

R̄1 R′
2 R′

3

a b© c a a©
c© b c
b

At (R̄1, R′
2, R

′
3), by limited favoritism, a is assigned to 3 and by Pareto-

efficiency c is assigned to 2, leaving b for 1. But by strategy-proofness, b is
assigned to 1 at (R′

1, R
′
2, R

′
3). By non-bossiness, the circled allocation cannot

be chosen.

Case a P3 b: This case is similar. 7

Now, we show that general favoritism is incompatible with individual rationality
and Pareto-efficiency. Consider the following profile.

R̃1 R̃2 R̃3

b a a
a b b c
c c

By Pareto-efficiency and individual rationality, b is assigned to 1 and a is assigned
to 2. This violates general favoritism. !

41



References
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Sönmez, Tayfun and M. Utku Ünver (2008) “House Allocation with Existing Ten-
ants: A Characterization,” Working Paper.

Svensson, L-G (1994) “Queue allocation of indivisible goods,” Social Choice and
Welfare, Vol. 11, pp. 323–330.

Wako, Jun (1991) “Some properties of weak domination in an exchange market
with indivisible goods,” Exonomic Studies Quarterly, Vol. 42, pp. 303–314.

43


