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“The jury is still out on corporate short-termism.” — Lawrence Summers

Financial Times, February 9, 2017

1 Introduction

Corporate short-termism has often been criticized because it could harm long-term performance.1

That is, managers arguably take actions that are favorable for them in the short-term at the expense

of shareholders’ interest in increasing stock prices. Are corporate managers myopic when they do

not invest sufficiently for the long term and hence short-termism is sub-optimal for shareholders?

Or rather, can the behavior of managers be a result of equity value-maximization that crucially

depends on firm characteristics, such as debt-equity ratio and growth prospects?

In this paper, we study optimal contracting between the agent (manager) and shareholders in a

dynamic framework of a company funded with equity and risky debt. Shareholders choose optimal

debt and default policies (Leland, 1994). In addition, shareholders design incentives based upon

which the manager selects long-term effort (growth) and short-term effort (profit) in a multi-tasking

environment (Holstrom and Milgrom, 1991). Following He (2011), capital structure, contracting,

and provision of efforts are jointly optimized in our setting.

On the one hand, recoveries in bankruptcy transfer cash flows from equity to debt, so share-

holders do not internalize all benefits from long-term effort (underinvestment). On the other hand,

shareholders receive all benefits from short-term effort immediately, because it generates higher

contemporaneous cash flows that are not transferred to debt in bankruptcy. More specifically, debt

has two implications in our model. First, it decreases long-term effort (i.e., increases underinvest-

ment; Myers, 1977). Second, it does not reduce the gains from short-term effort. However, because

it decreases long-term effort, the manager has more resources for exerting short-term effort. If the

marginal benefit of short-term effort exceeds its marginal cost, it is optimal for shareholders to

induce short-term effort through an optimal contract.2 In equilibrium, shareholders trade off ben-

efits of short-termism (current cash flows) against benefits of higher growth from long-term effort

(future cash flows). In essence, there is an optimal level of short-termism for shareholders, because

short-term effort reduces default risk.

We model two stochastic processes: the firm’s size and its profitability. The firm’s cash flows are

1See McKinsey & Co.’s short-termism study or surveys by Poterba and Summers (1995) and Graham et al. (2005).
2This is similar to Morellec (2001), in which asset liquidity produces a commitment problem for shareholders.
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given by the product of these two processes. Shocks to firm size have a persistent effect on the firm’s

future cash flows (permanent shocks), while shocks to the firm profitability only have a contempora-

neous effect on cash flows (transitory shocks). In our multi-tasking framework, managerial effort can

be allocated towards increasing the baseline growth rate of the firm (long-term effort) or increasing

the baseline profitability of the firm (short-term effort). The timing is as follows: the initial owners

of the firm issue infinite maturity debt. Optimal leverage trades off the tax advantage of debt with

the costs of bankruptcy. Once debt is in place, shareholders design an incentive-compatible con-

tract to implement the effort and default policies that maximize equity value. Because effort is not

observable, incentive compatibility requires exposing the manager to the permanent and transitory

shocks. Upon default, bondholders collect the firm assets net of costs of bankruptcy.

While the paper’s main result is that short-termism can be optimal for shareholders, it is also

the first to highlight an asymmetric interaction between underinvestment and short-termism. When

the levered firm moves towards financial distress, the underinvestment problem increases and hence

it becomes increasingly desirable for shareholders to implement higher levels of short-term effort.

Less long-term effort reduces the risk of investment benefits being largely reaped by bondholders

and also make it cheaper for shareholders to incentivize more short-term effort (short-termism).

Such higher levels of short-termism are optimal for shareholders, but detrimental to bondholders.

Therefore, short-termism is another dimension of the agency cost of debt. Propositions 1 and 2

formalize that short-termism is an indirect — in addition to underinvestment as a direct — agency

cost of debt, and show, perhaps surprisingly, that if shareholders commit to not underinvest, then

this is also a commitment to no short-termism, but the converse is not true.

There are a number of additional results. First, our model highlights potential endogeneity

concerns in certain empirical specifications.3 We find that firms with bright growth prospects opti-

mally choose to focus on long-term growth, while firms with grim growth prospects optimally focus

on the short-term. Hence, in equilibrium one would observe that high growth firms are those that

invest in the long-term. This does not mean that low growth firms should mimic the long-term

approach of their high growth counterparts, because it would be value destroying for low growth

firms to implement higher levels of long-term effort.4

3See Summers (2017) for an analogy of golfers with long swings, such as Phil Mickelson, who hit the ball farther and
more accurately than amateur golfers with short swings. An index of swing length would be correlated with most mea-
sures of golf performance. However, this does not mean that amateur golfers should lengthen their swings. Mimicking
the long swing of professional golfers like Phil Mickelson would be detrimental for most amateur golfers’ performance.

4Indeed, Kaplan (2017) finds that there is little long-term evidence in favor of the so-called short-termism critique.
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Second, the continuous-time, dynamic framework also permits analytic comparative statics,

which reveal the effect of parameters on equity value and default boundary. To begin, note that

because default is equity value-maximizing, a higher equity value implies a lower default boundary

and vice versa. For example, higher costs of short-term or long-term efforts lower equity value and

hence raise the default threshold. Higher baseline profitability or higher baseline growth increase

equity value and hence decrease the default threshold. Moreover, the default threshold is an in-

verted U-shaped in the volatility of the permanent shocks. To see this, consider an increase in the

volatility of the permanent shocks. On the one hand, the information filtering effect accelerates de-

fault time. With a higher volatility, the firm size is a more noisy signal about the agent’s long-term

action. By the informativeness principle, the shareholders reduce the long-term incentives, because

they are costlier (incentive cost effect). This results in lower cash flow growth rate and hence a

higher default threshold. On the other hand, a more volatile permanent shock makes the option

to default (or wait) more valuable (real option effect). In sum, for low values of permanent shock

volatility, the incentive cost effect dominates, while for high values the real option effect dominates.

In contrast, the default threshold rises with the volatility of the transitory shocks because of the

incentive cost effect. As profitability becomes a noisier signal about short-term effort, shareholders

diminish short-term incentives. If the firm is in financial distress, shareholders absorb more losses

and endogenously default sooner. Therefore, equity value decreases in the volatility of the tran-

sitory shocks. Finally, a higher correlation of transitory and permanent shocks increases the risk

borne by the manager, which increases compensation costs. However, a higher correlation does not

affect the option to default. Therefore, correlation unambiguously reduces equity value.5

Third, we adopt a baseline calibration and quantify the agency cost of debt, which we de-

compose into underinvestment and excessive short-termism. We compute equity and debt values if

shareholders can commit to unlevered effort policies, and compare them to values with levered effort

policies. The reduction in total firm value due to debt overhang is about one percent, where up to

one half of this reduction is due to excessive short-termism. However, contrary to standard intuition,

managerial short-termism is not detrimental to equity value, but is in fact desirable. Short-termism

is an indirect cost of debt overhang, and hence there are two related commitment problems, one for

underinvestment and one for short-termism, which bondholders have to recognize at the outset.6

5In a dynamic liquidity management model, Décamps et al. (2017) find correlation decreases default risk, because
their state variable, scaled cash holdings, drifts away faster from the default boundary when the correlation is higher.

6He (2011) assumes implicitly commitment to no short-termism and hence obtains higher ex-ante firm values.
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Fourth, we extend the model to the case in which a subset of shareholders with a shorter time

horizon (higher discount rate) takes control of the firm. Impatient shareholders will find it optimal

to implement higher short-term effort and lower long-term effort, which in turn will reduce equity

value for the patient, regular shareholders, and bondholders, who both employ the baseline discount

rate. In our baseline calibration, a one percentage point increase in the discount rate of impatient

shareholders leads approximately to a reduction of one percent in equity value, five percent of debt

value, and two and a half percent of total firm value. Thus, our model predicts that a transfer of

control to investors with shorter time horizons induces a sizable reduction in debt, equity, and firm

values, which is consistent with the conventional critique of short-termism (e.g., Stein, 1989).7

Fifth, our model reveals opposite effects for increases in the volatility of permanent shocks

(growth shocks) versus and increases in the volatility of transitory shocks (profit shocks). In par-

ticular, higher volatility of permanent shocks increases the value of the shareholders’ option to

default, thereby increasing equity value at the expense of bondholders. However, higher volatility

of transitory shocks is value reducing for both shareholders and bondholders, since higher volatility

increases the cost of providing managerial incentives. Thus, our model predicts that shareholders

have an incentive to risk-shift with regards to permanent shocks but not to transitory shocks.

Our paper relates to the literature on financial markets and managerial myopia. Early works by

Stein (1988, 1989), Shleifer and Vishny (1990), and Von Thadden (1995) argue that short-termism

arises when a manager faces takeover threats or arbitrageurs with short-horizon; and also when a

firm is financed by short-term debts. Holmstrom and Tirole (1993) show that the liquidity of the

stock market affects the efficiency of equity-based compensation in disciplining managerial myopia.

Froot, Perold, and Stein (1992) discuss a potential link between the short-term horizon of share-

holders and short-term managerial behavior. Compared to these works, our full-fledged dynamic

framework allows us to quantify the impact of short-termism on firm valuations and decisions.

More recently, Bolton et al. (2006) argue that overly optimistic investors choose an equity-based

compensation that weights the short-run stock performance more heavily, thus inducing myopia.

Edmans et al. (2012) and Marinovic and Varas (2017) show that equity vesting implements the

manipulation-minimizing optimal dynamic contract. Zhu (2017) shows that a contract tracking the

number of consecutive high outputs mitigates myopic agency. While these works focus on short-

However, ex-post equity values are higher in our setting, because short-termism enhances equity value.
7To the extent that activist investors, hedge funds, and vulture funds have a shorter time horizon, they may not

necessarily add value, but of course they also influence incentives of managers in other ways.
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term actions that are value-destroying (e.g., earnings manipulation), our paper focuses on the case

in which short-term effort can be value- enhancing (e.g., cost cutting, streamlining). Thus, we do

not seek for contracts that induce no short-termism. Instead, we characterize the optimal amount

of short-termism, leverage, and default in a joint optimization problem.8

Our paper also builds on recent research in dynamic corporate finance. Gorbenko and Strebu-

laev (2010) study the effect of temporary Poisson shocks in the Leland framework. Décamps et al.

(2016) and Byun et al. (2017) study permanent and transitory shocks in an equity financed firm with

liquidity concerns. In contrast, we assume costless external financing and focus on the moral hazard

dimensions of persistent and transitory shocks. These allow us to capture the endogenous variations

in the distribution of returns of the long-term and short-term and relate them to the debt overhang

problem. In a contemporaneous paper, Gryglewicz et al. (2017) study short- and long-term efforts a

dynamic agency model of an all-equity financed firm, which rationalizes asymmetric benchmarking

and pay-for-luck observed in the data. Hence our paper’s contribution is complementary to theirs.

Numerous empirical studies examine the determinants and effects of short-termism, especially

in accounting. Notably, Edmans et al. (2017a, 2017b) use stock option vesting periods to corrobo-

rate the causal link between short-term incentives and value-reducing corporate decisions. Brochet

et al. (2015) create an index of short-termism from the language used by executives during confer-

ence calls and document that short-term oriented companies have lower accounting performance

in the future. Terry (2017) finds short-termism matters at the aggregate level in a quantitative

macro model. Our result on optimal short-termism complements one of his specifications in which

short-term targets ameliorate empire-building (i.e., overinvestment in R&D) problems.

The paper proceeds as follows. Section 2 describes the model and Section 3 solves it. To study

the properties of the solution numerically in Section 5, we further specify the model in Section 4.

Section 6 concludes and the Appendices contain mathematical developments.

2 Model Setup

Consider a continuous-time principal-agent model with infinite time horizon. At time 0, the firm

(principal) hires a manager (agent) to operate a project, which produces a stream of cash flows

subject to both permanent and transitory shocks. The principal is risk neutral and discounts cash

8Finally, ongoing work by Han and Sangiorgi (2017) builds an information-based theory of rational short-termism.
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flows at rate r > 0. Permanent shocks affect the long-term prospects of the project. In particular,

denote δt as the firm size, and it follows the stochastic process

dδt = µ(at, δt)dt+ σ(δt)dZ
P
t , (1)

where µ(at, δt) is the growth rate of firm size, at ≥ 0 is an unobservable long-term effort exerted by

the agent, σ(δt) > 0 is the volatility, and ZPt is a standard Brownian motion. The long-term effort

increases the growth rate at a decreasing rate, so we assume the partial derivatives are µa(a, δ) > 0

and µaa(a, δ) ≤ 0. In addition to permanent shocks, cash flows are subject to transitory shocks.

The contemporaneous profitability follows the stochastic process

dAt = α(et)dt+ σAdZ
T
t , (2)

where α(et) is the drift rate of the profitability, et ≥ 0 is an unobservable short-term effort exerted

by the agent, σA > 0 is the volatility, and ZAt is a standard Brownian motion. Here, the short-term

effort is productive and increases the drift at a decreasing rate: αe(e) > 0 and αee(e) ≤ 0. Over a

small time interval (t, t+ dt), the project generates cash flows

dYt = δtdAt = δt
(
α(et)dt+ σAdZ

T
t

)
. (3)

Permanent shocks ZPt and transitory shocks ZTt have a correlation coefficient ρ ∈ [−1, 1], so that

Et
[
dZPt dZ

T
t

]
= ρdt. The principal can observe the paths of the cash flows (Yt)t≥0 and firm size δ =

(δt)t≥0. This implies that the incremental profitability dAt is observable to the principal as well.9

Our formulation is in fact a multi-tasking agency problem.10 While the agent’s long-term

effort at directly increases the growth rate of firm size, the short-term action et increases the

contemporaneous profitability, which only affects the current cash flows. To see this more closely,

suppose µ(a, δ) = µ(a)δ and σ(δ) = σδδ, then δt follows a geometric Brownian motion with the

drift rate controlled by the agent: dδt = δt
(
µ(at)dt+ σδdZ

P
t

)
. The time-t project value under a

fixed effort pair (ā, ē), for example, the first-best effort (see Section 4), is

V (δt) = Eā,ēt
[∫ ∞

t
e−r(s−t)dYs

]
=

α(ē)δt
r − µ(ā)

.

From this expression, a positive permanent shock dZPt > 0 increases the firm size δt and thus the

project value. In contrast, a positive profitability shock dZAt > 0 has no effect on the project value.

9All stochastic processes are defined on a probability space (Ω,F , P ) with the filtration F = (Ft)t≥0 that satisfies
the usual conditions. For tractability, we impose more structure on the stochastic processes (1) and (2) in Section 4.

10See Holmstrom and Milgrom (1991). Wong (2017) uses a multitasking framework to study dynamic incentives
for risk-taking. See Rivera (2016) for a related analysis on dynamic risk-shifting problems.
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The technology specification admits two important special cases. First, when σA = 0, et is per-

fectly observable and the principal can always implement optimal short-term effort. The cash flow

dynamics will be driven solely by the firm size, as in many structural models of corporate finance.11

Second, when σ(δt) = 0, at is perfectly observable and the principal can always implement optimal

long-term effort. The profitability will drive the cash flows.12

The agent is risk averse and her instantaneous utility takes the form of exponential preferences

u(ct, at, et) = −1

γ
e−γ(ct−g(at,et;δt)),

where ct ∈ R is the consumption rate and g(at, et; δt) is the monetary cost of effort. We assume the

effort cost is increasing and convex in each task: ga(a, e; δ) > 0, gaa(a, e; δ) ≥ 0, ge(a, e; δ) > 0, and

gee(a, e; δ) ≥ 0. We allow for interdependency of tasks. When gae(a, e; δ) ≤ 0, tasks are complement;

and when gae(a, e; δ) ≥ 0, tasks are substitute. Lastly, γ is the coefficient of absolute risk aversion

under CARA utility. Given a stream of consumption (ct)t≥0, her expected discounted utility is

E
[∫ ∞

0
−1

γ
e−γ(ct−g(at,et;δt))e−rtdt

]
.

In addition, the agent has access to a private saving account, in which she can borrow and save at

the interest rate r. We denote St as the account balance at time t, and for simplicity, we assume

that the agent has no initial saving S0 = 0.

2.1 The Contracting Problem

At time 0, the principal designs a contract to maximize her expected discounted profits. Both

principal and agent can fully commit to the contract, Γ = 〈c, a, e〉, which specifies the agent’s

wage process (ct)t≥0 , and the recommended effort pair (at, et)t≥0; all processes are adapted to the

filtration generated by (δt, At)t≥0. Given a contract Γ, the agent solves the following problem

W0(δ0,Γ) = max
(ĉt,ât,êt)t≥0

Eâ,ê
[∫ ∞

0
−1

γ
e−γ(ĉt−g(ât,êt;δt))e−rtdt

]
s.t. dSt = rStdt+ ctdt− ĉtdt, S0 = 0, St ≥ 0, (4)

and also subject to (1) to (3). In (4), W0(δ0,Γ) is the agent’s time-0 value under the contract Γ and

E(a,e) [·] is the expectation under the probability measure induced by (a, e). The inter-temporal

11See, e.g., Leland (1994), Hackbarth et al. (2006), Goldstein et al. (2001), Strebulaev (2007), and, for a recent
survey, Strebulaev and Whited (2012). Note that He (2011) is a special case of our model when σA = 0 and α(e) ≡ 1.

12The technology resembles liquidity management models (Bolton, Chen, and Wang, 2011; Décamps et al., 2012)
and models with dynamic agency (DeMarzo and Sannikov, 2006; DeMarzo et al., 2012; Miao and Rivera, 2016).
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budgeting constraint specifies the evolution of the agent’s savings account: Over a small time

interval (t, t + dt), the change in saving dSt is the accumulated interest rStdt plus his wage ctdt

minus his actual consumption ĉtdt.

We define a contract as incentive-compatible and no-savings (ICNS) if the solution to the agent’s

problem is (c, a, e). That is, the agent follows the recommended effort pair obediently (i.e., ât = at

and êt = et); and does not save or withdraw from the bank account (i.e., ĉt = ct).
13 Formally, the

principal’s optimal contracting problem is

max
Γ

E(a,e)

[∫ ∞
0

e−rt(dYt − ctdt)
]
,

s.t. Γ is ICNS and W0(Γ) ≥ w0

where the first constraint requires the contract to be incentive-compatible and no-savings, and the

second constraint is the agent’s participation constraint for an initial outside option with value w0.

3 Model Solution

3.1 Necessary and Sufficient Conditions for ICNS Contracts

To characterize the optimal contract, we need to characterize the necessary and sufficient conditions

for the contract to be incentive-compatible and no-savings. We first derive the dynamics of the

agent’s continuation value.

3.1.1 Dynamics of continuation value

Following the dynamic contracting theory (see Sannikov (2008)), we take the agent’s continuation

value as the state variable. Given a contract Γ, the agent’s continuation value is defined as

Wt(δt,Γ) ≡ E(a,e)
t

[∫ ∞
t
−1

γ
e−γ(cs−g(as,es;δs))−r(s−t)ds

]
. (5)

Here, the agent’s continuation value depends on the firm size δt, which serves as a natural state vari-

able, and the contract Γ that induces continuation consumption (cs)s≥t and effort choices (as, es)s≥t.

By the martingale representation theorem, the dynamics of the continuation value is

dWt = rWtdt− u(ct, at, et)dt+ (−γrWt)
(
βPt σ(δt)dZ

P
t︸ ︷︷ ︸

Permanent

+ βTt δtσAdZ
T
t︸ ︷︷ ︸

transitory

)
(6)

13The focus on incentive-compatible and no saving contracts is without loss of generality. This is because the
principal has full commitment and she can save on behalf of the agent.
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where (βPt , β
T
t )t≥0 are progressively measurable processes that capture the agent’s exposure to per-

manent and transitory shocks. In equation (6), the scaling factor −γrWt translates value in dollars

to value in utility. This is because −γrWt > 0 equals the agent’s marginal utility of consumption, as

we will see in the next subsection. On the equilibrium path, the last two terms on the right-hand side

of (6) are the increment of the standard Brownian motions. Hence, E(a,e)
t [dWt + u(ct, at, et)dt] =

rWtdt, which states that the current flow utility and the expected changes in the continuation value

equals the required return, and it reflects the promise-keeping constraint.

The novelty of our model is that the agent’s effort choice affects both the firm size and the

contemporaneous profitability. Thus, there are both short-term incentives and long-term incentives

that control the effort choices of the multi-tasking agent. The incentive provisions are captured by

the volatility terms in (6). In a more detailed way, substitute (1) and (2) into (6) to obtain

dWt = (rWt − u(ct, at, et)) dt+ (−γrWt)
(
βPt (dδt − µ(at, δt)dt) + βTt δt(dAt − α(et)dt)

)
where the “transitory” (“permanent”) part captures the compensation promised to the agent due

to the exposure to the transitory (permanent) shocks.

3.1.2 Conditions for no-savings

It is well-known that the wealth effect is absent with CARA preferences. This implies that the

agent’s continuation value will scale with savings St in a convenient way. Specifically, consider the

optimal continuation policy (cs, as, es)s≥t given a contract Γ; and suppose the agent is given extra

savings S at time t. In the absence of wealth effect, the new optimal continuation policy is to

follow the original continuation effort choices and consume an extra amount rS at every time in

the future s ≥ t, that is (cs+rS, as, es)s≥t is the new optimal policy. It follows from the exponential

preferences that u(cs + rS, as, es) = e−γrSu(cs, as, es) for all s ≥ t. Then, in terms of utility, an

agent with savings S at time t must have continuation value

Wt(δt,Γ;S) = e−γrSWt(δt,Γ; 0), (7)

where Wt(δt,Γ; 0) is the agent’s continuation value without savings, as defined in (5).14

Given an effort policy, the agent’s problem (4) implies a necessary condition for consumption on

the no-savings path: The agent’s marginal utility from consumption must equal her marginal value

14For a formal proof, see Lemma 3 in He (2011).
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of wealth. That is, uc(ct, at, et) = ∂
∂SWt(δt,Γ; 0). Then by condition (7), we have ∂

∂SWt(δt,Γ;S) =

−γre−γrSWt(δt,Γ; 0). Evaluating this expression at S = 0 we obtain

uc(ct, at, et) =
∂

∂S
Wt(δt,Γ; 0) = −γrWt(δt,Γ; 0) (8)

as a necessary condition for the contract Γ to induce no savings. Condition (8) has a few implica-

tions. First, uc = −γrWt implies the scaling factor in (6) is the marginal utility of consumption.

Therefore, this factor translates dollar values to units of utility and allows us to interpret the in-

centive loading βPt and βTt as monetary incentives. Second, given our CARA assumption, it must

be true that u(ct, at, et) = rWt and the drift of (6) vanishes. The continuation of the agent’s

continuation value satisfies

dWt = (−γrWt)
(
βTt δt (dAt − α(et)dt) + βPt (dδt − µ(at, δt)dt)

)
in equilibrium. As a result, the continuation Wt evolves as a martingale under the no-savings con-

tract. This also implies that the marginal utility of consumption uc = −γrWt follows a martingale.

Finally, the no private saving condition u(ct, at, et) = rWt allows us to pin down the consumption

process for a given continuation value and effort levels:

ct = g(at, et; δt)−
1

γ
ln(−γrWt). (9)

3.1.3 Incentive compatibility

We now characterize the necessary and sufficient conditions for incentive compatibility. Given the

monetary incentives (βPt , β
T
t ), the agent chooses long-term action ât and short-term action êt to

maximize her continuation value at each point in time. Specifically, the payoff consists of the current

flow utility u(ct, ât, êt) and the expected change in continuation value Et [dWt(ât, êt)]. Effort choice

affects the current utility because it is costly, but effort also affects the evolution of continuation

value because effort changes the growth rate of the firm size dδt as well as profitability shocks dAt,

which are in turn connected to the continuation value through the monetary incentives (βPt , β
T
t ).

Therefore, the agent solves:

max
(at,et)

{
u(ct, at, et) + βPt ucµ(at, δt) + βTt ucα(et)δt

}
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The first-order conditions are

−ga(at, et; δt) + βPt µa(at, δt) = 0⇒ βPt =
ga(at, et; δt)

µa(at, δt)
, (10)

−ge(at, et; δt) + βTt αe(et)δt = 0⇒ βTt =
ge(at, et; δt)

αe(et)δt
. (11)

Intuitively, given incentives (βPt , β
T
t ), the agent balances the marginal monetary benefit of effort

(given by the “βt” term times the marginal impact of the drift of the respective process) and the

marginal monetary cost of effort. As the agent is multi-tasking, the marginal cost of effort on one

task depends also on the effort exerted on the other task. To implement ât = at and êt = et, that

is, for the long-term effort at and the short-term effort et to be incentive-compatible, the monetary

incentives (βPt , β
T
t ) must satisfy conditions (10) and (11) simultaneously.15

3.2 Optimal Contract

Given the dynamics of continuation value and the conditions for incentive-compatible and no-

savings contracts, we can now write the principal’s problem recursively. At each point in time,

given the state variables δt and Wt, the principal’s problem is

P (δt,Wt) = max
(ct,at,et)

E
[∫ ∞

t
e−r(s−t)(dYs − csds)

]
s.t. dWt = (−γrWt)

(
βTt δtσAdZ

T
t + βPt σ(δt)dZ

P
t

)
and conditions (9), (10), (11),

where P (δt,Wt) denotes the principal’s value function. Following He (2011), we guess that the

principal’s value takes the form:

P (δt,Wt) = f(δt)︸ ︷︷ ︸
firm value

− −1

γr
ln(−γrWt)︸ ︷︷ ︸

agent’s certainty equivalent

. (12)

The Hamilton-Jacobi-Bellman (HJB) equation for the principal’s problem is

rP (δ,W ) = max
(a,e)

{
δα(e)− c(a, e, δ,W ) + Pδµ(a, δ) + 1

2Pδδσ(δ)2 + PδWβ
P
t (−γrW )σ(δ)2

+1
2PWW (−γrW )2

(
(βTt )2σ2

Aδ
2
t + (βPt )2σ(δt)

2 + 2ρβPt β
T
t δσAσ(δ)

) }
where c(a, e, δ,W ) satisfies (9), βPt and βTt satisfy (10) and (11), respectively. From the conjectured

value function (12), Pδ = f ′(δ), Pδδ = f
′′
(δ), PWW = − 1

γrW 2 , and PδW = 0. Plugging these

15In Appendix B, we provide a verification theorem regarding the global optimality of the obedient and no-saving
policy. The result implies that the first-order conditions (10) and (11) together with the no-saving conditions are
sufficient for contracts to be incentive-compatible and no-savings.

11



expressions into the HJB equation, the firm value f(δ) must satisfy the ODE

rf(δ) = max
(a,e)

{
δα(e)− g(a, e; δ) + µ(a, δ)f ′(δ) + 1

2σ(δ)2f ′′(δ)
−1

2γr
(
(βTt )2σ2

Aδ
2
t + (βPt )2σ(δt)

2 + 2ρβPt β
T
t δσAσ(δ)

) } . (13)

The first line of (13) is the expected cash flows net of the direct monetary cost of effort plus

the expected capital gain due to changes in the firm size. The second line of (13) represents the

incentive cost for the principal to induce both the long-term and short-term effort. Incentive costs

arise because the risk-averse agent is exposed to both the permanent and transitory shocks for her

to work hard, and the risk compensation is required.

3.3 Deferred Compensation

Following the implementation of the optimal contract in He (2011), we interpret the agent’s cer-

tainty equivalent as a deferred compensation balance Bt = − 1
γr ln(−γrWt). Under the optimal

contract, the dynamics of the balance are given by

dBt =
1

2
γr
(
(βTt )2δ2

t σ
2
A + (βPt )2σ(δt)

2 + 2ρβTt β
P
t δtσAσ(δt)

)
dt+ βTt δtσAdZ

T
t + βPt σ(δt)dZ

P
t . (14)

In words, the agent’s stake inside the firm is given by Bt at any point in time; and the shareholders

adjust the balance continuously according to (14) in order to provide the appropriate incentives to

the agent. The adjustment in (14) includes the drift term that reflects the incentive cost in (13);

and the volatility terms that reflects the agent’s exposure to both the transitory and permanent

shocks. In the optimal consumption (9), the agent’s wage compensates her for the effort cost and

the interest rBt earned from the deferred compensation balance.

4 Dynamic Agency and Capital Structure

This section embeds the dynamic agency problem into a Leland-style model. Following He (2011),

the embedding allows us to endogenize the firm’s cash flows process. For tractability, we assume

dAt = (ψ + et) dt+ σAdZ
A
t and dδt = (φ+ at) δtdt+ σδδtdZ

P
t ,

where ψ, φ, and σδ are constant. In other words, we have µ(a, δ) = (φ + a)δ and σ(δ) = σδδ in

equation (1), and α(e) = ψ + e in equation (2), where φ is the baseline growth rate and ψ is the

baseline expected per-period profitability. Notice that δt evolves as a geometric Brownian motion

with the agent controlling the drift rate. Moreover, the agent’s effort cost takes the quadratic form

12



g(a, e, δ) = 1
2

(
θaa

2 + θee
2 + 2θaeae

)
δ. The tasks are asymmetric in cost, the cost is proportional

to firm size δ, and the two efforts can be either complements (θae ≤ 0) or substitutes (θae ≥ 0).

To derive the first-best contract, suppose there is no agency problem, for example, when actions

are perfectly observable σA = σδ = 0 or the agent is risk-neutral γ = 0, so the risk-compensation in

HJB-equation (13) vanishes. Here, we assume γ = 0 and the first-best firm value fFB(δ) satisfies

rfFB(δ) = max
(a,e)

{
δ(ψ + e)− 1

2

(
θaa

2 + θee
2 + 2θaeae

)
δ + (φ+ a)δf

′
FB(δ) +

1

2
σ2
δδ

2f
′′
FB(δ)

}
. (15)

Since the cash flows and expected capital gains are proportional to δ, homogeneity implies fFB(δ) =

qδ, where q is a constant that reflects the marginal value per unit of firm size. Substituting the

conjecture into (15), we have a equation that determines the unknown coefficient q:

rq = max
(a,e)

{
(ψ + e)− 1

2

(
θaa

2 + θee
2 + 2θaeae

)
+ (φ+ a)q

}
.

The equation implies the first-order conditions q = (θaa
FB + θaee

FB) and 1 = θee
FB + θaea

FB for

long-term and short-term efforts. These conditions determine the coefficient q (valuation multiple).

There are a few implications. First, the marginal value per unit of firm size is constant. This

implies, together with the scaling in the marginal effort costs, that first-best efforts are independent

of firm size. Second, permanent shocks, transitory shocks, and their correlation do not affect q, and

hence efforts are independent of volatility. However, the firm value qδt is still volatile; it evolves

as a geometric Brownian motion. Third, a positive permanent shock dZPt > 0 increases firm value

through its effect on δt, but a positive transitory shock dAt > 0 has no effect on firm value.

4.1 Optimal Contract in an Unlevered Firm

Now we characterize the optimal contract in an unlevered firm. Let fu(δ) be the value of an

unlevered firm. Then, using the incentive compatibility conditions (10), βPt = θaat + θaeet, and

(11), βTt = θeet + θaea, the HJB-equation (13) for fu(δ) becomes

rfu(δ) = max
e∈[0,ē]

a∈[0,ā]

{
δ(ψ + e)− (θaa2+2θaeae+θee2)δ

2 + (φ+ a)δf
′
u(δ) + 1

2σ
2
δδ

2f
′′
u (δ)

−γrδ2

2

(
(θaa+ θaee)

2σ2
δ + (θee+ θaea)2σ2

A + 2ρ(θaa+ θaee)(θee+ θaea)σδσA
) }
(16)

For an interior solution, we use the first order conditions for the maximization of (16) to obtain

a∗u(δ) =
f
′
u(δ)D̂ − B̂
ÂD̂ − B̂2

and e∗u(δ) =
Â− f ′u(δ)B̂

ÂD̂ − B̂2
, (17)
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where Â, B̂, and D̂ are given Appendix B.16 Using equation (17), one can show the marginal

unlevered firm value f ′u(δ)→ ψ
r−φ as δ →∞. Together with the boundary condition fu(0) = 0, the

HJB-equation (16) can be solved numerically. For the special case where ρ = 0 and θae = 0, tasks

are independent and the optimal effort policies are:

a∗u(δ) =
f
′
u(δ)

θa(1 + γrθaσ2
δδ)

and e∗u(δ) =
1

θe(1 + γrθeσ2
Aδ)

. (18)

We can make a few observations. First, since long-term effort a∗ affects the firm size, it depends

on the marginal value of firm size f
′
u(δ). However, f

′
u(δ) is irrelevant to the short-term action e∗

because it only affects the current profitability. Second, the optimal effort depends on the volatility:

σδ affects a∗ and σA affects e∗. This is because the volatility of the processes At and δt measure

how informative these processes are about e and a, respectively.

4.2 Optimal Contract in a Levered Firm

As in Leland (1994), the firm issues a perpetual debt with a constant coupon rate C. With a

marginal corporate tax rate τ ∈ (0, 1), the tax shield per unit of time is τC. And we interpret the

quantity dYt = δtdAt as the after-tax cash flows. Once debt is in place, shareholders implement

the effort and default policies that are optimal for them. We refer to this specification as the base

case model. We denote fE(δ) as the value of equity and D(δ) as the value of corporate debt. From

(12), fE(δ) = PE(δ,W ) + −1
γr ln(−γrWt). That is, equity value consists of the shareholders value

PE(δ,W ) (outside equity) and the agent’s value −1
γr ln(−γrWt) (inside equity).

The structural credit risk models have illustrated that endogenous default by the shareholders

is an important mechanism in understanding credit risks. Let δB be the default threshold. We

expect that when the firm’s fundamental (firm size) δt becomes sufficiently weak, especially after

a sequence of negative permanent shocks, shareholders will default once δt < δB. Following He

(2011), we assume that at default, the shareholders can fulfill the promise and pay the agent her

remaining continuation value. In other words, the agent has higher seniority than bondholders.

The latter receives the liquidation value of the firm and continues to run the firm as an unlevered

firm. This implies the debt valued at bankruptcy is D(δB) = (1 − α)fu(δB), where α ∈ (0, 1) is a

proportional bankruptcy cost parameter.

16In Appendix B, we show how to deal with the cases in which the constraints on the effort policies bind.
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4.2.1 Shareholders value and endogenous default

The shareholders value function is given by PE(δ,W ) = fE(δ) − −1
γr ln(−γrWt) under the optimal

contract. With leverage, the equity value satisfies the following ODE:

rfE(δ) = max
e∈[0,ē]

a∈[0,ā]

{
δ(ψ + e)− (1− τ)C − (θaa2+2θaeae+θee2)δ

2 + (φ+ a)δf
′
E(δ) + 1

2σ
2
δδ

2f
′′
E(δ)

−γrδ2

2

(
(θaa+ θaee)

2σ2
δ + (θee+ θaea)2σ2

A + 2ρ(θaa+ θaee)(θee+ θaea)σδσA
) } ,
(19)

subject to the value matching fE(δB) = 0, smooth-pasting f ′E(δB) = 0, and transversality condi-

tions limδ→∞ f
′
E(δ) → ψ

r−φ . The first two boundary conditions are the standard conditions in the

case of endogenous (optimal) default. The transversality conditions states that as the firm grows

arbitrarily large, the growth rate is proportional to the cash flow per unit of capital ψ capitalized

by the baseline growth rate of the firm φ. This is due to the fact that effort policies converge to

zero as δ goes to infinity.

Compare (19) to the ODE (16) for the unlevered firm: equation (19) contains the promised

coupon payment C and the tax shield τC, as well as an additional control δB over the default

threshold. Assuming an interior solution over the effort choices delivers solutions:

a∗t (δ) =
f
′
E(δ)D̂ − B̂
ÂD̂ − B̂2

and e∗t (δ) =
Â− f ′E(δ)B̂

ÂD̂ − B̂2
. (20)

In our numerical simulations the constraints on e never bind. Hence we focus on the cases when

the constraints on a bind. In particular in Appendix B, we show that when the constraint a ≥ 0

binds, the optimal policies are given by e∗t (δ) = 1
D̂

and a∗t (δ) = 0. If the constraint on long-term

effort binds at a ≤ ā (upper bound), optimal policies are given by e∗t (δ) = 1−āB̂
D̂

and a∗t (δ) = ā.

Because of the additional after-tax coupon payment (1−τ)C, shareholders absorb more losses when

the firm’s fundamental (firm size) is weak: δt(ψ+e∗t ) < (1−τ)C, net of the monetary compensation

for the effort cost. Therefore, as δt falls to δB, shareholders default optimally and refuse to fulfill the

debt obligation. Standard value-matching fE(δB) = 0 and smooth-pasting f
′
E(δB) = 0 conditions

characterize the endogenous default threshold and its optimality.17

4.2.2 Debt valuation and optimal leverage

Once debt is in place, shareholders select the optimal long-term contract and default policy. Bond-

holders anticipate the effect of debt on shareholders’ future behavior. Hence, in pricing the per-

17In Appendix B, we provide a verification theorem for the optimality of the contract.
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petual debt contract, creditors take the optimal effort policy (a∗(δ), e∗(δ)) in (20), and the default

threshold δB as given. For any coupon C, the debt value D(δ) satisfies the following ODE:

rD(δ) = C + (φ+ a∗(δ))δD′(δ) +
1

2
σ2
δδ

2D′′(δ) (21)

with boundary conditions D(δ) → C
r as δ → ∞, and D(δB) = (1 − α)fu(δB). Observe that in

equation (21), long-term effort directly affects the expected capital gains of the debt contract. In

contrast, the short-term action affects cash flows and shareholders’ ability to absorb losses. Thus,

both efforts affect the default boundary and debt and equity values.

Given an initial firm size δ0, initial shareholders choose coupon C to maximize levered firm

value (ex-ante equity value) TV (δ0;C) = fE(δ0;C) + D(δ0;C) at time 0. Then they design the

optimal long-term contract with the agent that implements the effort policy (a∗(δ), e∗(δ)), and run

the firm until they declare bankruptcy. We define the firm’s optimal initial market leverage ratio as

ML(δ0) ≡ D(δ0;C∗(δ0))

fE(δ0;C∗(δ0)) +D(δ0;C∗(δ0))
.

4.3 Short-termism as an Indirect Cost of Debt-overhang

In this section, we highlight the asymmetry between underinvestment and short-termism with

respect to the debt overhang problem. We argue that underinvestment is a direct consequence

of debt, as it is well known in the literature. In contrast, short-termism is only affected by the

presence of debt indirectly through the underinvestment problem. Moreover, the effect of debt on

short-termism disappears when the costs of implementing a particular effort policy pair (a, e) for

the shareholders are independent. Independence occurs when the cross term in the cost function

is zero (θae = 0) and the shocks are uncorrelated (ρ = 0). Proposition 1 formalizes this result.

Furthermore, we show that when shareholders can commit to the unlevered long-term effort policy

(i.e., when they can commit to avoiding underinvestment), this will suffice as a commitment device

to avoid short-termism (i.e., they will automatically be committing to the unlevered short-term

effort policy). Proposition 2 formalizes this result. Figure 1 summarizes the findings of this section.

DEBT LONG-TERM EFFORT SHORT-TERM EFFORT

distort distort

Figure 1. Diagram illustrating chain of distortions induced by debt
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Proposition 1. Suppose that ρ = θae = 0, then the optimal short-term effort policy e(δ) is inde-

pendent of the coupon payment C.

The intuition for this proposition is straight forward: debt generates underinvestment in long-

term effort because shareholders pay up front for the cost of long-term effort, but do not fully

internalize the benefit of this investment. The reason is that some of the cash flows generated

by investment take place after default, thereby accruing to bondholders. In contrast, the benefit

of short-term effort is immediately realized by shareholders; therefore, they fully internalize the

benefits of short-term effort.18 Hence, the only mechanism by which debt can distort the short-term

effort policy is when the cost of short-term effort depends on the implemented level of long-term

effort. When these costs are independent from each other (θae = 0 and ρ = 0), there is no distortion,

and the optimal e(δ) is not affected by the presence of debt.

In Figure 2 we illustrate the optimal amount of long-term effort a(δt) and short-term effort

e(δt) for the optimally levered firm and for an all equity financed firm (unlevered firm). First,

consider the case in which the actions are independent (Panels A and B). Panel A corroborates

the reduction in long-term effort due to debt. Panel B is a numerical illustration of Proposition 1

showing that short-term effort is identical in the levered and unlevered cases when the two actions

are independent. Second, consider the case in which the two actions are substitutes (Panels C and

D). In this case optimal short-term effort is larger in the presence of debt. Short-term effort is

not affected by debt overhang since it increases contemporaneous cash flows but has no permanent

effect. Hence, shareholders find it optimal to incentivize the manager to focus in boosting short-

term profitability as opposed to improving the long-term prospects of the firm. Our model reverses

the common intuition that CEO short-termism is detrimental to shareholders. To the contrary, we

show that shareholders find it optimal to encourage managers to focus myopically in the short-term

when there is a large probability the company will not survive in the long-term.19 In the sequel

we refer to the underinvestment problem as the fact that debt induces shareholders to implement

a lower long-term effort (i.e., a(δ) ≥ au(δ)), and to the short-termism problem to the fact that

18A similar mechanism is present in Manso (2008), who shows the agency cost of debt is proportional to the degree
of irreversibility of the investment project. In our case, the inefficiency depends on whether the effort policy will have
a permanent effect (long-term effort) or a transitory effect (short-term effort) on the firm’s cash flows.

19The previous intuition is straight forward in case of actions being substitutes, θae > 0. However, even if actions
are independent, θae = 0, and the correlation between the transitory and the permanent shock ρ is positive, a similar
result takes place. Intuitively, when ρ > 0, implementing both actions is very costly for shareholders because the
manager will be exposed to two positively correlated shocks. Hence, the manager will need to be compensated for
bearing this risk. Therefore, having correlated shocks (ρ > 0) is “as if” the two actions were substitutes (i.e., θae > 0).
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shareholders implement more short-term effort (i.e., e(δ) ≥ eu(δ)).

Firm size: δ
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A. Long-term effort: a(δ)
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Figure 2. Long-term and short-term effort as a function of firm size.

This pictures illustrates the effect of debt over-hang on the optimal amount of long-term effort
(Panel A) and short-term effort (Panel B) when the actions are independent θae = 0. Panels C
and D illustrate the effect when the actions are substitutes θae = 1.5. Other parameter values are
δ0 = 100, r = 0.05, θa = 30, θe = 1, γ = 5, σδ = 0.25, σA = 0.12, ρ = 0, τ = 0.15, α = 0.30,
φ = −0.005, and ψ = 1. The dashed (solid) line represents for the unlevered (levered) firm.

Next, we show that commitment to the long-term effort policy au(δ) suffices as a commitment

device when shareholders would like to commit to the unlevered effort policies (au, eu). To compare

and contrast the base case without commitment, we consider three important benchmarks:

1. The no debt-overhang case (denoted NO): In this case, shareholders commit to implementing

the unlevered effort policies (au, eu) for both short-term and long-term effort. We denote the

value function in this case by fNO(δ).

2. The no short-termism case (denoted NS): In this case, shareholders commit to implementing

the unlevered short-term effort policy eu, but they can freely choose the long-term effort

policy. We denote the value function in this case by fNS(δ).20

3. The no underinvestment case (denoted NU): In this case, shareholders commit to implement-

ing the unlevered long-term effort policy au, but they can freely choose the short-term effort

20Note that, in the NS case, shareholders request some amount of short-term effort. This is different from assuming
away short-term effort by setting θe =∞, which, as indicated by Footnote 11, delivers He (2011) given that α(0) = 1.
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policy. We denote the value function in this case by fNU (δ).

The rigorous statement of the problems that are solved by each of the cases above can be found in

Appendix A. We can now state the main result of this section.

Proposition 2. f(δ) solves the no underinvestment case (NU) if and only if it solves the no

overhang case (NO).

In other words, debt has an asymmetric effect on long-term and short-term effort policies. If

shareholders commit to the unlevered long-term effort policy au, they find it optimal to (ex-post)

implement the unlevered short-term effort policy eu. Therefore, if they wanted to commit to the

long-term effort pair (au, eu), committing to au would suffice to achieve this goal.21 However, the

converse is not true. If shareholders can commit to the unlevered short-term effort policy eu, they

would ex-post choose a different long-term effort policy from au.

In summary, debt distorts the choice of long-term effort through the well known logic of the

under-investment problem. When the cost of the actions are independent, the choice of short-term

effort is unaffected by the presence of debt (Proposition 1). In the general case in which the actions

are not independent, the choice of short-term effort is also distorted. However, this distortion is

only indirect: debt distorts the choice of long-term effort, and then the distortion in long-term effort

induces a distortion in short-term effort. Therefore, if one could prevent the distortion of debt on

long-term effort, then there would be no distortion in short-term effort either (Proposition 2).

This result has two implications for debt covenant design. First, debt covenants that restrict

shareholder payout can be interpreted as covenant that restrict the short-term effort policy. As

shown in Section 5.1, such covenants would mitigate some of the cost of debt and increase total firm

value. However, debt covenants that restrict the long-term effort policy of the firms are much more

effective at maximizing firm value. Such covenants could potentially minimize the underinvestment

problem, while at the same time discouraging shareholder to engage in excessive short-termism.

4.4 Comparative Statics

Now we provide the effects of the parameters on the equity value fE(δ) and the endogenous default

threshold δB. Here, we focus on the ex-post value and default decision. That is, we treat the coupon

as an exogenous parameter rather than taking into account the ex-ante capital structure choice.

21This is useful because committing to the unlevered firm policies is value enhancing (see Section 5.1).
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Results independent of ρ Only when ρ ≥ 0

∂ψ ∂φ ∂ρ ∂C ∂τ ∂γ ∂θa ∂θe ∂θae ∂σA ∂σδ

∂fE(δ)/ + + – – + – – – – – ?
∂δB/ – – + + – + + + + + ?

Table 1. Analytical comparative statics.

Several results can be observed from Table 1. First, the increase in the drifts ψ and φ, a higher

tax saving from the increase in the corporate tax rate τ , and the decrease in coupon C will increase

the equity value and delay default. The effect of the agency parameter γ depends on the correlation.

The results are intuitive because these variations generate more cash flows to the shareholders.

Second, the increase in the effort parameters, θa, θe, and θae, implies a higher compensation

the equity needs to make to the agent, and hence the equity value reduces. However, this set of

results only holds true when ρ ≥ 0 because the tasks tend to be substitute in this case. Consider

an increase in θa. The direct effect implies a lower equity value because of the increased effort and

incentive cost. In response to the increase in θa, the shareholders would like to implement a lower

at. And a ρ ≥ 0 implies et will increase at the same time. This indirect effect from the information

filtering channel implies a further increase in the effort and incentive compensation. As a result,

equity value decreases and the shareholders default earlier. Panels C and D of Figure 3 below

illustrate these comparative statics with ρ = 0: The default threshold is increasing in the cost of

short-term effort and long-term effort, respectively.

In a similar vein, the effect of the variation of the volatilities parameters, σδ and σA, on the

default threshold can be understood from the information filtering channel. Consider an increase

in the volatility σδ; this effect makes the firm size δt a more noisy signal about the long-term effort

at and thus increases the incentive cost and accelerates default. However, the comparative statics

of σδ is ambiguous. This is because an increase in the volatility σδ also generates a real option

effect that delays the equity’s default decision. This can be observed from the terms involving σδ

on the HJB-equation (19) (with ρ = 0):

1

2
σ2
δδ

2f
′′
E(δ)− 1

2
γrδ2

(
(θaa+ θaee)

2σ2
δ

)
.

While the second term captures the incentive cost effect, the first term captures the real op-

tion effect, and it is increasing in σδ under the convexity of the shareholders value.22 The two

22f ′′E(δ) > 0 in our numerical simulations. For the incentive cost effect, see Holmstrom (1979) and a related analysis
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countervailing forces generate an inverted U-shape for the default threshold as a function of σδ.

Numerically, this result is illustrated on Panel A of Figure 3.
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Figure 3. Comparative statics for default boundary.

The parameter values are C = 47.83, δ0 = 100, r = 0.05, θa = 30, θe = 1, θae = 1.5, γ = 5,
σδ = 0.25, σA = 0.12, ρ = 0, τ = 0.15, α = 0.30, φ = −0.005, and ψ = 1.

In contrast, the increase in the volatility of transitory shocks σA has no real option effect.

While the variation makes the incentive cost of effort more expensive, the comparative statics is

ambiguous. It is only definite when ρ ≥ 0. The idea is similar to the comparative statics of the

effort cost parameters: An increase in σA will lower the short-term effort et. If the correlation was

negative, then tasks tend to be complement and the shareholders would like to implement a lower

long-term effort at as well. The latter effect reduces the effort cost and counters the increase in

incentive cost. Panel B of Figure 3 illustrates these comparative statics with ρ = 0.

Finally, we explore the effect of the correlation between the transitory and the permanent shock

on the default decision of the firm. Panel A of Figure 4 shows that the default boundary is increasing

in the correlation between the transitory and the permanent shock. Higher correlation makes it

more costly for shareholders to compensate a given effort policy (a, e) because the (risk-averse)

manager would necessarily bear more risk and thus require compensation for bearing such risk.

This higher cost would induce the shareholders to default earlier. We can check this intuition by

by Chaigneau et al. (2017) in a setting with limited liability.
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inspecting the HJB and collecting terms involving ρ

−γrδ
2

2
(2ρ(θaa+ θaee)(θee+ θaea)σδσA)

and noticing that the incentive costs are increasing in ρ. Panels B and C of (4) depict effort levels

for three different values of ρ. As the correlation between shocks increases, shareholders find it

more costly to incentivize the manager to exert effort. Hence, they find it optimal to implement a

lower level of short and long-term effort.

Correlation between shocks: ρ
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Figure 4. Effects of correlation and substitutability.

The parameter values are C = 47.83, δ0 = 100, r = 0.05, θa = 30, θe = 1, θae = 1.5, γ = 5,
σδ = 0.25, σA = 0.12, τ = 0.15, α = 0.30, φ = −0.005, ψ = 1, ρ is either −0.3, 0, or 0.3, and θae is
either 1.4, 1.5, or 1.6.

Interestingly, the comparative statics of θae are similar to the ones of ρ. Panels D, E, and F of

Figure 4 compute comparatives statics for the default boundary and the effort policies with respect

to the term governing the substitutability/complementarity of cost function of the manager θae. As

θae increases, the two tasks become substitutes, and it becomes more costly to incentivize a given

effort policy (a, e). Moreover, the marginal cost of increasing e for a given value of a is increasing

in θae. The same is true for ρ, fix a and suppose shareholders want to increase e; the marginal

cost of increasing e is larger for a given ρ since the agent will be exposed to more risk (due to the

correlation between shocks). Thus, the equilibrium effects of ρ and θae are quite similar.
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5 Quantitative Analysis

In this section, we numerically explore the implications of our model. First, we compute in our

calibrated model the various sources of firm value, and show that the total agency cost of debt is of

the order of 1%. Of this 1%, about half of the cost of debt comes from excessive short-termism. Sec-

ond, we highlight potential endogeneity concerns when studying the relationship between excessive

short-termism and a firm’s growth rate. In particular, we show that firms with high (low) growth

rates optimally choose to implement lower (higher) levels of short-term effort and higher (lower)

levels of long-term effort. Third, we extend the model to the case in which a subset of investors

with higher discount rates takes control of the firm. We find that impatient shareholders implement

higher levels of short-term effort and lower levels of long-term effort, which in turn reduce equity

value for the regular (patient) shareholders and bondholders. Finally, we show that an increase in

the volatility of permanent shocks can be desirable for shareholders (risk-shifting type of intuition),

but not an increase in volatility of transitory shocks.

For numerical solutions, we adopt the following baseline parameter values: interest rate r = 5%,

baseline growth rate of firm size φ = −0.5%, correlation ρ = 0, volatility of firm size σδ = 25%,

profitability σA = 12%, corporate tax rate τ = 15%, and bankruptcy cost α = 30%.23 Following He

(2009, 2011), we set the baseline profitability ψ = 1, risk aversion γ = 5, and long-term effort costs

to θa = 30. In Appendix B, we calibrate the cost of short-term effort θe = 1 and the substitutability

parameter θae = 1.5. For an initial firm size of, for example, δ0 = 100 the firm’s optimal coupon is

C∗ = 47.83 and market leverage is ML(δ0) = 39.42%.

5.1 Analysis of Sources of Firm Value

In this section, we quantify the various sources of firm value. First, we define the tax advantage of

debt TB(δ) and the cost of bankruptcy BC(δ) in the usual way,

TB(δ) = Et

[∫ χ

t
e−r(s−t)τCds

]
and BC(δ) = Et

[
e−r(χ−t)αfu(δB)

]
, (22)

where χ = inf{t : δt ≤ δB} corresponds to the endogenously chosen default time.

Second, we define the total cost of managerial compensation CC(δ). The total expected cost of

managerial compensation is the sum of the direct cost of compensating the manager for his effort

23These baseline parameter values are consistent with, e.g., Bolton, Chen, and Wang (2011), He (2011), and
Morellec, Nikolov, and Schürhoff (2012).
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DC(δ) plus the indirect cost of compensating the manager IC(δ) for his risk exposure. Formally,

DC(δ) = Et

[∫ χ

t
e−r(s−t)g(as, es; δs)ds

]
, (23)

IC(δ) = Et

[∫ χ

t
e−r(s−t)

1

2
γr
(
(βTs )2σ2

Aδ
2
s + (βPs )2σ(δs)

2 + 2ρβPs β
T
s δsσAσ(δs)

)
ds

]
, (24)

and

CC(δ) = DC(δ) + IC(δ). (25)

Table 2 shows the different components of firm value for our baseline calibration.

Panel A: Optimal Leverage

δ C∗ δ0/(φ− r) TV (δ) fE(δ) D(δ) BC(δ) TB(δ) CC(δ) δB
75 33.38 1363.63 1,654.88 1,043.06 611.82 14.93 86.53 189.44 10.89
100 47.83 1818.18 2,124.98 1,287.24 837.74 28.65 115.60 173.56 16.59
150 81.07 2727.27 3,070.32 1,732.44 1,337.88 58.29 180.22 160.98 29.81

Panel B: Unlevered Case

δ C δ0/(φ− r) TV (δ) f(δ) D(δ) BC(δ) TB(δ) CC(δ) δB
75 0 1363.63 1,587.70 1,587.70 0 0 0 224.46 0
100 0 1818.18 2045.68 2045.68 0 0 0 228.06 0
150 0 2727.27 2,959.19 2,959.19 0 0 0 232.32 0

Table 2. Sources of firm value in base case.
This table shows the various sources of firm value for the base case (i.e., the case without com-
mitment where effort policies are optimally chosen by shareholders after debt has been issued) for
three different firm sizes δ. For each firm size, we calculate quantities at the optimal leverage C∗

and for the unlevered case C = 0. The parameter values are r = 0.05, θa = 30, θe = 1, θae = 1.5,
γ = 5, σδ = 0.25, σA = 0.12, ρ = 0, τ = 0.15, α = 0.30, φ = −0.005, and ψ = 1.

5.1.1 Quantifying the cost of debt-overhang

In this section, we tease-out the total cost of debt-overhang (i.e., the cost of under-investment plus

the cost of short-termism for firm value). In particular, we consider the case in which shareholders

can commit ex-ante to implementing the optimal unlevered long-term and short-term effort policies

(which are ex-post suboptimal for shareholders). This case corresponds to the no overhang case

(NO) described in section 4.3. We denote the resulting equity, debt, total firm, and leverage values,

respectively, by fNO(δ), DNO(δ), TVNO(δ0;C), and MLNO(δ0) (see Appendix A for details).

Table 3 computes firm values for three different initial firm sizes δ0 = 75, 100, 150. Column 1

computes quantities for the base case, i.e., the case when effort policies are optimally chosen by
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shareholders after debt has been issued (normalized relative to the unlevered unmanaged total firm

value δ0/(φ− r) ≡ 100 in parentheses). Column 2 computes quantities for the case in which there

is commitment to the no-overhang policies as described at the beginning of this section. They

correspond to the cases with the subscript NO. Column 3 computes quantities for the base case

but uses the optimal coupon C∗NO calculated under the no-overhang policies. Finally, column 4

computes the percentage change between columns 3 and 2.

A number of interesting observations can be made about Table 3. First, committing to the

no-overhang effort policies increases normalized total firm value between 0.50 (large firms) to 0.92

(small firms). By alleviating short-termism and underinvestment (due to debt overhang) total firm

value can be enhanced. Since small firms are more prone to the distortions of debt overhang, it is

expected that commitment to the no-overhang policies will induce a larger increment for small firms.

Second, committing to the no-overhang effort policies au and eu reduces shareholder value. The

reduction in shareholder value ranges from 0.53% (small firms) to 0.80% (large firms). Because

shareholders cannot implement their optimal policies, for a given level of δ their expected value is

reduced (i.e., fE(δ) > fNO(δ)) and they choose to default earlier (i.e. δB < δNOB ). Since share-

holders cannot reduce long-term investment when the firm is in financial distress and focus on

implementing higher short-term profitability, it is more costly for them to keep on running their

firm during financial distress, thus triggering earlier default.

Third, the increment in debt value as a result of committing to the no-overhang policies ranges

from 1.99% (large firms) to 2.49% (small firms). On the one hand, shareholders default earlier,

but on the other hand, shareholder are committed to a higher level of long-term effort, which on

expectation keeps δ away from the default boundary. Our results indicate that, in general, the

latter effect dominates (i.e., DNO(δ) > D(δ)). Furthermore, the increment in debt value dominates

the reduction in shareholder value and, as discussed above, total firm value goes up.

Finally, the effect of debt-overhang in terms of short-termism and under-investment is stronger

for small firms. To mitigate the effect of debt overhang, optimal leverage is lower for small firms

(Column 1). Optimal leverage in the base case ranges from 36.97% (small firms) to 43.57% (large

firms). On the other hand, when firms can commit to the no overhang policies (Column 2) there

is no need to adjust leverage to mitigate the effects of short-termism and underinvestment, thus

optimal leverage is much less sensitive to initial firm size.
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Base Case No Overhang (NO) Base Case with C∗NO Change

δ0 δ0 = 150 δ0 = 150 δ0 = 150
δ0/(φ− r) 2727.27 (100)
fu(δ0) 2959.19 (108.50)

TVNO(δ0) 3070.32 (112.57) 3083.74 (113.07) 3070.25 (112.57) 0.43% (0.50)
fNO(δ0) 1732.44 1693.48 1707.22 -0.80%
DNO(δ0) 1337.88 1390.25 1363.02 1.99%
C∗NO 81.07 83.08 83.08
δNOB 29.81 33.79 30.62

MLNO(δ0) 43.57 45.08 44.39
CSNO(δ0) 105.95 97.58 109.52

Base Case No Overhang (NO) Base Case with C∗NO Change

δ0 100 100 100
δ0/(φ− r) 1818.18 (100)
fu(δ0) 2045.68 (112.51)

TVNO(δ0) 2124.98 (116.87) 2136.50 (117.51) 2124.70 (116.85) 0.55% (0.66)
fNO(δ0) 1287.24 1236.50 1244.56 -0.64%
DNO(δ0) 837.74 900.38 880.14 2.29%
C∗NO 47.83 50.98 50.98
δNOB 16.59 20.20 17.84

MLNO(δ0) 39.42 42.13 41.42
CSNO(δ0) 70.93 66.22 79.22

Base Case No Overhang (NO) Base Case with C∗NO Change

δ0 75 75 75
δ0/(φ− r) 1363.63 (100)
fu(δ0) 1587.70 (116.43)

TVNO(δ0) 1654.89 (121.35) 1665.98 (122.17) 1653.46 (121.25) 0.75% (0.92)
fNO(δ0) 1043.06 943.30 948.36 -0.53%
DNO(δ0) 611.82 722.67 705.10 2.49%
C∗NO 33.38 40.04 40.04
δNOB 10.89 14.92 13.53

MLNO(δ0) 36.97 43.37 42.64
CSNO(δ0) 45.57 54.05 67.85

Table 3. Firm value without debt-overhang in effort policies.
This table calculates the changes in equity, debt, and total firm value when there is no debt-overhang
over the effort policies. Column 1 corresponds to the base case without commitment where effort
policies are optimally chosen by shareholders (after debt has been issued). Column 2 corresponds
to the no overhang case (NO). Column 3 recomputes the base case when the coupon is given by
the no overhang case C∗NO. Column 4 computes percentage changes between Columns 2 and 3.
Normalized total firm values are in parentheses as the percentage value relative to the unlevered
unmanaged total firm value δ0/(φ− r) ≡ 100. The parameter values are r = 0.05, θa = 30, θe = 1,
θae = 1.5, γ = 5, σδ = 0.25, σA = 0.12, ρ = 0, τ = 0.15, α = 0.30, φ = −0.005, and ψ = 1.
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5.1.2 Quantifying the cost of short-termism

In this section, we quantify the effect of short-termism on firm value. In particular, we consider

first the case in which shareholders can commit ex-ante to implementing the unlevered short-term

effort policy (but which does not maximize ex-post shareholder value). However, shareholders are

free to choose the long-term effort policy that is optimal for them. This case corresponds to the no

short-termism case (NS) described in section 4.3. We denote the resulting equity, debt, total firm,

and leverage values by fNS(δ), DNS(δ), TVNS(δ0;C), and MLNS(δ0), respectively.

Table 4 performs a similar exercise as Table 3 but computes the changes in firm value resulting

from committing to the unlevered short-term effort policy. As expected, the ability to commit to

eu increases total firm value, but the effect is more modest than when the firm can commit to both

eu and au. In particular, normalized total firm value increases by 0.31 (large firms) or 0.44 (small

firms), which is approximately half of the increment observed in the previous case. Similarly, the

reduction in shareholder value ranges from 0.23% (small firms) to 0.49% (large firms), while the

increment in debt value ranges from 1.21% (large firms) to 1.38% (small firms).

In sum, this section shows that commitment to the unlevered short-term policy has the expected

qualitative effects on firm values: total firm value increases, debt values increases, and shareholder

value decreases. The quantitative effects are about half of those observed in the no-over hang case.

Economically, the experiments imply that outlawing short-termism destroys shareholder value once

debt is in place, but increases debt value. Hence, policy proposals should recognize ex-ante beneficial

and the ex-post harmful implications and, in particular, the expected net result for firm value.

5.2 Endogeneity of Growth Rate

In this section, we compute optimal policies for firms that have bright prospects and firms that have

grim prospects. We do so by computing comparative statics with respect to the baseline growth

rate of firm size φ and interpret a large (low) value of φ as having bright (grim) prospects, because

this firm is expected to experience fast (slow) growth in the future.

Figure 5 shows that firms with bright prospects focus a lot more in the long-term and put little

effort in the short-term. Conversely, firms with grim prospects optimally focus on the short-term

and put little effort in the long-term.24 Our results show that studies suggesting excessive short-

24Consider the example of IBM. IBM’s sales in 2017 are at the same level as they were in 1997. Over this period,
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Base Case No short-termism (NS) Base Case with C∗NS Change

δ0 150 150 150
δ0/(φ− r) 2727.27 (100)
fu(δ0) 2959.19 (108.50)

TVNS(δ0) 3070.32 (112.57) 3078.63 (112.88) 3070.31 (112.57) 0.27% (0.31)
fNS(δ0) 1732.44 1716.89 1725.51 –0.49%
DNS(δ0) 1337.88 1361.74 1344.80 1.26%
C∗NS 81.07 81.62 81.62
δNSB 29.81 31.60 30.03

MLNS(δ0) 43.57 44.23 43.80
CSNS(δ0) 105.95 99.41 106.92

Base Case No short-termism (NS) Base Case with C∗NS Change

δ0 100 100 100
δ0/(φ− r) 1818.18 (100)
fu(δ0) 2045.68 (112.51)

TVNS(δ0) 2124.98 (116.87) 2132.24 (117.27) 2124.64 (116.85) 0.35% (0.42)
fNS(δ0) 1287.24 1235.31 1240.01 –0.37%
DNS(δ0) 837.74 896.92 884.63 1.38%
C∗NS 47.83 51.32 51.32
δNSB 16.59 19.00 17.97

MLNS(δ0) 39.42 42.06 41.63
CSNS(δ0) 70.93 72.24 80.12

Base Case No short-termism (NS) Base Case with C∗NS Change

δ0 75 75 75
δ0/(φ− r) 1363.63 (100)
fu(δ0) 1587.70 (116.43)

TVNS(δ0) 1654.89 (121.35) 1660.15 (121.74) 1654.12 (121.30) 0.36% (0.44)
fNS(δ0) 1043.06 969.44 971.67 –0.23%
DNS(δ0) 611.82 690.71 682.45 1.21%
C∗NS 33.38 38.36 38.36
δNSB 10.89 13.30 12.86

MLNS(δ0) 36.97 41.60 41.25
CSNS(δ0) 45.57 55.45 62.08

Table 4. Firm value without debt-overhang in short-term effort.
This table calculates the changes in equity, debt, and total firm value when there is no debt overhang
over the short-term effort policies. Column 1 corresponds to the base case without commitment
where effort policies are optimally chosen by shareholders (after debt has been issued). Column
2 corresponds to the no short-termism (NS) case. Column 3 recomputes the base case when the
optimal coupon is given by the no short-termism case C∗NS . Column 4 computes percentage changes
between Columns 2 and 3. Normalized total firm values are in parentheses as the percentage value
relative to the unlevered unmanaged total firm value δ0/(φ − r) ≡ 100. The parameter values are
r = 0.05, θa = 30, θe = 1, θae = 1.5, γ = 5, σδ = 0.25, σA = 0.12, ρ = 0, τ = 0.15, α = 0.30,
φ = −0.005, and ψ = 1.
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Figure 5. Effect of growth rate.

The parameter values are C∗ = 47.83, δ0 = 100, r = 0.05, θa = 30, θe = 1, θae = 1.5, γ = 5,
σδ = 0.25, σA = 0.12, ρ = 0, τ = 0.15, α = 0.30, and ψ = 1.

termism need to be aware of simultaneous causality. One may be tempted to infer that success is

a consequence of long-term investment. However, our model shows that firms that are more likely

to succeed (high φ) optimally focus on the long-term. Consistent with Summers (2017), success is

thus not the result but also the cause of long-term investment (less short-termism).

5.3 Impact of Investor Horizon in Optimal Policies

In this section, we study the impact of investor’s horizon in the optimal policies of the firm. In

particular, we relax the assumption that shareholders, bondholders, and the manager have the same

discount rate r. Instead, we maintain the assumption that the manager’s discount rate is r, but

we allow the shareholders to have discount rate rS = r + λ. As λ increases, shareholders become

more impatient, and we interpret this as having a shorter investment horizon.25

Figure 6 depicts the optimal investment policies for three different values of rS . Panel A

shows that, as shareholders investment horizon decreases, the optimal amount of long-term effort

implemented goes down. This is intuitive because of the term-structure of the payoffs associated

it has reduced costs and cut investment by half. Our model suggests that such decisions are not suboptimal and
myopic. Instead, they are optimal responses to the new generation of technology firms, which took over the industry.

25While investor discount rates are not directly observable, it is conceivable that heterogeneity among investors’s
fee structure reflect heterogeneity in discount rates.
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Figure 6. Effect of investor horizon.

The parameter values are C∗ = 47.83, δ0 = 100, r = 0.05, θa = 30, θe = 1, θae = 1.5, γ = 5,
σδ = 0.25, σA = 0.12, τ = 0.15, α = 0.30, φ = −0.005, ψ = 1, and rS is either 0.05, 0.055, or 0.06.

with long-term effort a(δ). Shareholders pay upfront for the cost of effort (both direct and indirect),

but the payoff is realized over time via the increment in firm size δ. A higher discount rate will

reduce the value of future cash flows and thus reduce optimal long-term effort. Panel B shows that a

shorter investment horizon increases short-term effort. The payoff from short-term effort is realized

immediately for shareholders via higher contemporaneous cash flows. Under the assumption that

the two tasks are substitutes (or that transitory and permanent shocks are positively correlated),

the reduction in investment horizon will encourage shareholders to increase short-term effort at the

expense of long-term effort. Furthermore, a shorter investment horizon reduces shareholder value

for a given firm size, rendering it optimal to default earlier.

Finally, we quantify the changes in firm value associated with implementing policies dictated by

shareholders with shorter investment horizons. In Table 5, we compute the net present value of cash

flows that would accrue to shareholder and bondholders for the three different sets of effort policies

depicted in Figure 6. That is, we compute the effort policies that shareholders with discount rates

rS = 5%, 5.5%, and, 6% would deem optimal, and then calculate bond and equity values under the

discount rate r = 5%. The point of this exercise is to isolate the distortion in firm value associated

with implementing the policies desired by shareholders with shorter investment horizons from the
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mechanical reduction in value resulting from a higher discount rate.26

Panel A: δ0 = 75, C∗ = 33.38

rS TV (δ) % change TV (δ) fE(δ) % change f(δ) D(δ) % change D(δ)
5% 1,654.88 – 1,043.06 – 611.82 –

5.5% 1,633.90 -0.73 1,038.73 -0.41 595.16 -2.72
6% 1,611.13 -2.11 1,030.42 -1.21 580.70 -5.08

Panel B: δ0 = 100, C∗ = 47.83

rS TV (δ) f(δ) D(δ)
5% 2,124.98 – 1,287.25 – 837.74 –

5.5% 2,098.26 -1.25 1,283.03 -0.32 815.23 -2.68
6% 2,072.73 -2.45 1,275.90 -0.88 796.82 -4.88

Table 5. Firm value for different investor horizons.
The parameter values are r = 0.05, θa = 30, θe = 1, θae = 1.5, γ = 5, σδ = 0.25, σA = 0.12, ρ = 0,
τ = 0.15, α = 0.30, and φ = −0.005, and ψ = 1.

Table 5 shows that implementing policies dictated by investors with shorter investment horizons

reduces both equity and debt prices. It is intuitive that more under investment will be detrimental

for bondholders. Moreover, shareholders (with a discount rate of r) are also made worse off because

the implemented policies are no longer optimal for them. The implemented policies feature too

little long-term effort and too much short-term effort. Importantly, the associated changes induced

by an increase in the discount rate from 5% to 6% lead approximately to a reduction of 1% in equity

value, 2% in total firm value, and 5% in debt value. Thus, the potential welfare losses resulting

from investors with shorter investment horizons are potentially significant.27

5.4 Credit Spreads and Risk-Shifting

In this section we show that equity value responds very differently to an increase in the value of

volatility of transitory versus permanent shocks. Panels A and B of Figure 7 depict comparative

statics of equity value and credit spreads for different values of σδ. Equity value can be increasing in

the volatility of permanent shocks. As we discussed in the previous section, the real options effect

26One can think of this exercise as the following thought experiment: a majority shareholder with discount rate rS

takes control of the firm, and implements the effort policies that she finds optimal. We then compute the value of
equity from the perspective of the minority shareholder with discount rate r. Similarly, for bond prices. Moreover,
our result that giving control of corporate policies to short-termistic investors leads to additional and significant
reductions in value is consistent with the agenda of the FCLT Global.

27The model restricts attention to the effect of short-term investors in our multi-tasking problem, which does not
suggest there are no benefits from shorter investor time horizons in practice (see, e.g., Giannetti and Yu (2017)).
However, investors with shorter time horizons may, in practice, be precisely those who are better at identifying firms
with higher baseline growth rates φ that we analyzed in the previous section (see, e.g., Edmans (2017)).
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Figure 7. Comparative statics of equity value and credit spreads.

Panels A and B (C and D) chart the comparative statics of equity value and credit spreads for
different values of the volatility of transitory (permanent) shocks. The parameter values are C =
47.83, δ0 = 100, r = 0.05, θa = 30, θe = 1, θae = 0, γ = 5, σδ = 0.25, σA = 0.12, τ = 0.15, α = 0.30,
φ = −0.005, and ψ = 1.

and the incentive cost effect affect equity value. For the parameter values we considered, the real

option effect dominates and shareholders would benefit from an increase in σδ. Intuitively, share-

holders face an asymmetric payoff from higher volatility. On the upside, they can benefit if higher

σδ leads to a large value of δ, but can exercise their option to default if it leads to a low value of δ.

The higher probability of default negatively impacts debt value and leads to higher credit spreads on

debt. These conflicting views between shareholders and bondholders with regards to the desirability

of increasing volatility are known in the literature as asset substitution or risk-shifting problem.

Interestingly, such conflict of interests is not present when it comes to volatility of transitory

shocks σA. Panels C and D of Figure 7 depict comparative statics of shareholder value and credit

spreads for different values of σA. In the case of volatility of transitory shocks, shareholders are

made worse off as a result of the higher cost of incentive provision, but there is no real-option effect.

This higher cost is born by the shareholders and renders their claim less valuable, as seen in the

picture. Moreover, as we discussed in the previous section (Panel B in Figure 3), higher σA leads

to earlier liquidation. Since bondholders bear the costs of bankruptcy, they are made worse off by

the increase in transitory volatility (credit spreads increase). In Figure 7, we set θae = 0 to make

the results more visible. However they hold for our baseline calibration with θae = 1.5, but the
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changes are quantitatively smaller and harder to see in a figure.

Our results rationalize the finding that managers do not rank concerns about risk-shifting among

their most pressing concerns. In fact, Graham and Harvey (2001) find that managers are not con-

cerned about minimizing risk-shifting concerns when deciding on their debt policy (for example, by

issuing short-term debt). Our results show this is rational when these concerns are about increasing

volatility of transitory shocks. Such volatility would hurt both shareholders and bondholders, and

thus bondholders would know that it is also in shareholders’ interest to minimize it.

6 Conclusion

This paper studies the tension corporations face between incentivizing long-term growth versus

maximizing their short-term profitability. We show that short-termism is not necessarily the result

of myopic managerial behavior but is in fact optimal for shareholders. Short-termism is particularly

desirable for shareholders of a financially distressed firm financed with debt. Furthermore, we

characterize excessive short-termism as an indirect cost of debt and show that it is quantitatively as

important as the cost of underinvestment. Notably, the conventional wisdom to ban short-termism

(e.g., by the Securities and Exchange Commission) destroys shareholder value, and policy proposals

need to be more nuanced to recognize agency costs of debt and dynamic effects of commitment.

Two additional results have important implications for empirical work and policy making. First,

high growth firms endogenously choose to implement higher levels of long-term effort. Hence,

empirical results connecting firm performance and a proxy for long-term focus need to carefully

account for endogeneity concerns. Second, firms controlled by investors with sub-optimally short

horizons focus excessively in short-term profitability at the expense of long-term growth. Our

results indicate that such distortions significantly reduce firm value. Thus, designing capital gains

tax policies aimed at lengthening investors horizon can lead to an improvement in social welfare.

Finally, our analysis suggests that the excessive short-termism problem can be mitigated by

considering a richer set of debt contracts. That is, performance-sensitive debt or finite maturity

debt can discipline shareholders to strike the right balance between long and short-term effort.

Also, compensation contracts with inside debt can serve as a commitment device for shareholders to

incentivize long-term effort during financial distress. These questions are fruitful for future research.
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Structure Dynamics, Journal of Finance 67, 803848.

Myers, Stewart, 1977, Determinants of Corporate Borrowing, Journal of Financial Economics 5,
147-175.

35



Poterba, James, and Lawrence Summers, 1995, A CEO Survey of U.S. Companies’ Time Horizons
and Hurdle Rates, Sloan Management Review 37, 43-53.

Rivera, Alejandro, 2016, Dynamic Moral Hazard, Risk-Shifting, and Optimal Capital Structure,
Working Paper.

Sannikov, Yuliy, 2008, A Continuous-Time Version of the Principal-Agent Problem, Review of
Economic Studies 75, 957-984.

Shleifer, Andrei, and Robert Vishny, 1990, Equilibrium Short Horizons of Investors and Firms,
American Economic Review Papers and Proceedings 80, 148153.

Summers, Larry, 2017, Is Corporate Short-Termism Really a Problem? The Jury’s Still Out,
Harvard Business Review.

Stein, Jeremy, 1988, Takeover Threats and Managerial Myopiat, Journal of Political Economy 96,
61-80.

Stein, Jeremy, 1989, Efficient Capital Markets, Inefficient Firms: A Model of Myopic Corporate
Behavior, Quarterly Journal of Economics 104, 655–669.

Strebulaev, Ilya, 2007, Do Tests of Capital Structure Mean What They Say? Journal of Finance
62, 1747-1787.

Strebulaev, Ilya, and Toni Whited, 2012, Dynamic Models and Structural Estimation in Corporate
Finance, Foundations and Trends in Finance 6, 1-163.

Von Thadden, Ernst-Ludwig, 1996, Long-Term Contracts, Short-Term Investment and Monitoring,
Review of Economic Studies 62, 557-575.

Terry, Stephen, 2016, The Macro Impact of Short-Termism, Working paper.

Wong, Tak-Yuen, 2017, Dynamic Agency and Endogenous Risk-Taking, Working paper.

Zhu, John, 2017, Myopic Agency, Review of Economic Studies, forthcoming.

36



Appendix A

In this appendix we formally state the three adjoint problems that we use through the body of the paper: the
case with no overhang (NO), the case with no short-termism (NS), and the case with no underinvestment
(NU)

Case 1: No Overhang

Consider the case in which shareholders can commit ex-ante to implementing long-term and short-term effort
policies that maximize total firm value (but which do not maximize ex-post shareholder value). We denote
the resulting equity and debt values by fNO(δ) and DNO(δ) respectively, where the subscript NO stands for
no debt-overhang. Formally, fNO(δ) solves the following ODE

rfNO(δ) = max
δNOB

{
δ(ψ + eu)− (1− τ)C − (θaa2u+2θaeaueu+θee

2
u)δ

2 + (φ+ au)δf
′

NO(δ) + 1
2σ

2
δδ

2f
′′

NO(δ)

−γrδ
2

2

(
(θaau + θaeeu)2σ2

δ + (θeeu + θaeau)2σ2
A + 2ρ(θaau + θaeeu)(θeeu + θaeau)σδσA

) }
(26)

subject to the value matching, smooth-pasting, and transversality conditions:

fNO(δNOB ) = 0, f ′NO(δNOB ) = 0, lim
δ→∞

f ′NO(δ)→ ψ

r − φ
.

where au and eu are given by (17) which correspond to the effort policies obtained in the case of an un-
levered firm. We also compute optimal leverage for the case in which shareholders can commit to the no
overhang policies au and eu.. Initial shareholders choose coupon C to maximize the levered total firm value
TVNO(δ0;C) = fNO(δ0;C) +DNO(δ0;C). The resulting initial market leverage ratio in this case is given by

MLNO(δ0) ≡ DNO(δ0;C∗NO(δ0))

fNO(δ0;C∗NO(δ0)) +DNO(δ0;C∗NO(δ0))
,

where CNO denotes the optimal coupon.

Case 2: No short-termism

Consider the case in which shareholders can commit ex-ante to implementing the short-term effort policy that
maximizes total firm value (but which does not maximize ex-post shareholder value). However, shareholders
are free to choose the long-term effort policy that is optimal for them. We denote the resulting equity
and debt values by fNS(δ) and DNS(δ) respectively, where the subscript NS stands for no short-termism.
Formally, fNS(δ) solves the following ODE

rfNS(δ) = max
δNSB
a∈[0,ā]

{
δ(ψ + eu)− (1− τ)C − (θaa2+2θaeaeu+θee

2
u)δ

2 + (φ+ a)δf
′

NS(δ) + 1
2σ

2
δδ

2f
′′

NS(δ)

−γrδ
2

2

(
(θaa+ θaeeu)2σ2

δ + (θeeu + θaea)2σ2
A + 2ρ(θaa+ θaeeu)(θeeu + θaea)σδσA

) }
(27)

subject to the value matching, smooth-pasting, and transversality conditions:

fNS(δNSB ) = 0, f ′NS(δNSB ) = 0, lim
δ→∞

f ′NS(δ)→ ψ

r − φ
.

where eu is given by the solution of (17) which correspond to the effort policies obtained in the case of an
unlevered firm. We also compute optimal leverage for the case in which shareholders can commit to the
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short-term effort policy eu.. Initial shareholders choose coupon C to maximize the levered total firm value
TVNS(δ0;C) = fNS(δ0;C) +DNS(δ0;C). The resulting initial market leverage ratio in this case is given by

MLNS(δ0) ≡ DNS(δ0;C∗NS(δ0))

fNS(δ0;C∗NS(δ0)) +DNS(δ0;C∗NS(δ0))
,

where CNS denotes the optimal coupon.

Case 2: No Underinvestment

Consider the case in which shareholders can commit ex-ante to implementing the long-term effort policy that
maximizes total firm value (but which does not maximize ex-post shareholder value). However, shareholders
are free to choose the short-term effort policy that is optimal for them. We denote the resulting equity and
debt values by fNU (δ) and DNU (δ) respectively, where the subscript NU stands for no underinvestment.
Formally, fNU (δ) solves the following ODE

rfNU (δ) = max
δNUB
e∈[0,ē]

{
δ(ψ + e)− (1− τ)C − (θaa2u+2θaeaue+θee

2)δ
2 + (φ+ au)δf

′

NU (δ) + 1
2σ

2
δδ

2f
′′

NU (δ)

−γrδ
2

2

(
(θaau + θaee)

2σ2
δ + (θee+ θaeau)2σ2

A + 2ρ(θaau + θaee)(θee+ θaeau)σδσA
) }

(28)

subject to the value matching, smooth-pasting, and transversality conditions:

fNU (δNUB ) = 0, f ′NU (δNUB ) = 0, lim
δ→∞

f ′NU (δ)→ ψ

r − φ
.

where au(δ) is given by the solution of (17), and the subscript NU stands for “no underinvestment”.

Appendix B

Appendix for Section 3.

Dynamics of continuation value: Given any contract Γ = 〈c, a, e〉, define the value process of the
agent’s expected discounted utility Vt ≡ Et

[∫∞
0
e−rsu(cs, as, es)ds

]
for any t. As (Vt)t≥0 is a martingale,

and under the obedient choices ât = at and êt = et, (ZPt )t≥0 and (ZTt )t≥0 are two independent standard
Brownian motions from the principal’s perspective, the Martingale Representation Theorem implies that
there exists a progressively measurable process (βPt , β

T
t )t≥0 such that for any t > 0,

Vt = V0 +

∫ t

0

(−γrWs)e
−rsβTs δsσAdZ

T
s +

∫ t

0

(−γrWs)β
P
s σ(δs)dZ

P
s

By (5), Vt =
∫ t

0
e−rsu(cs, as, es)ds + e−rtWt. Differentiation of the two expressions for Vt with respect to t

gives the dynamics (6).�

Verification of Optimality of the Contract:

We verify that the contract derived “heuristically” is indeed optimal. We denote by {c, a, e} the recom-
mended consumption and effort, and by {ĉ, â, ê} the agents best response to the contract. We proceed in
two steps:

Step 1. We show that the necessary conditions derived in section 3 are indeed optimal for the contract.
That is, we show that the contract is incentive-compatible and induces no private savings. Fix an arbitrary
policy {ĉ, â, ê} and consider the gain process

G
{ĉ,â,ê}
t =

∫ t

0

−e
−γ(ĉs−g(âs,ês)

γ
e−rsds+ e−rte−γrStVt,
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where the agent’s cumulative private savings St evolves according to

dSt = rStdt+ (ct − ĉt)dt,

and the agent’s continuation value under the recommended policies according to

dWt = (−γrWt)
(
βTt δt (dAt − α(et)dt) + βPt (dδt − µ(at, δt)dt)

)
.

We now consider the dynamics of G
{ĉ,â,ê}
t under the probability measure induced by {â, ê}:

erteγrStdG
{ĉ,â,ê}
t =− e−γ(ĉt−g(ât,êt)

γ
eγrStdt− rWtdt− γr (rSt + ct − ĉt)Wtdt

− γrWt

(
βTt δt (α(êt)− α(et)dt) + βPt (µ(ât, δt)− µ(at, δt)dt)

)
+ (−γrWt)

[
βPt σ(δt)dZ

P
t + βTt δtσAdZ

T
t

]
.

Maximizing the drift with respect to {ĉ, â, ê} show that it is a concave problem in which the FOC guaran-

tee optimality. Moreover, the necessary conditions derived in section 3 ensure that Et

[
erteγrStdG

{ĉ,â,ê}
t

]
≤ 0

with equality for the optimal policies {c+ rS, a, e}. Hence, we obtain that

erteγrStdG
{ĉ,â,ê}
t = non-positive drift + (−γrWt)

[
βPt σ(δt)dZ

P
t + βTt δtσAdZ

T
t

]
. (29)

Integrating equation (29) yields:

G
{ĉ,â,ê}
T ≤ G{ĉ,â,ê}0 +

∫ T

0

e−rte−γrSt(−γrWt)
[
βPt σ(δt)dZ

P
t + βTt δtσAdZ

T
t

]
,

for all T. We impose extra conditions on the feasible paths of St to ensure that the second term is a martingale.

Importantly, under the recommended policies the second term becomes
∫ T

0
e−rtdVt which is a martingale

(since Vt is a martingale). Letting T → ∞ , taking expectations, and recalling that G
{ĉ,â,ê}
0 = W0 imply

that for any feasible policy {ĉ, â, ê}

E

[∫ ∞
0

−e
−γ(ĉs−g(âs,ês)

γ
e−rsds

]
≤ V0

provided that the transversality condition limT→∞E
[
e−rT e−γrST VT

]
= 0 holds. Under the optimal policy

the transversality conditions holds since ST = 0 and VT is a martingale. For a general policy the transversality
condition precludes Ponzi schemes with regard to the agent’s private savings. This completes the proof, since
the agent has no incentive to deviate from the recommended policies.

Step 2. We now verify the optimality of the shareholder’s policy. Define the gain process for an arbitrary
feasible effort policy I

GIt =

∫ t

0

e−rs (δs(ψ + es)− (1− τ)C − cs) ds+ e−rtP (δt,Wt),

where P (δ,W ) = fE(δ)− −1
γr ln(−γrWt). The gain process satisfies the following SDE

dGIt = aGIdt+ e−rt
(
σδδt

(
f ′E(δt)− βPt

)
dZPt − βTt σAδtdZTt

)
.

Since fE(δ) satisfies the HJB (19) the drift aGI is non-positive for an arbitrary I and equal to zero for the
proposed optimal policy. We impose integrability conditions on feasible contracts to ensure the second term
is a martingale.

Finally, integrating yields:∫ ∞
0

e−rs (δs(ψ + es)− (1− τ)C − cs) ds ≤ P (δ0,W0)
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provided that the transversality condition

E
[

lim
T→∞

e−rTP (δT ,WT )
]

= E

[
lim
T→∞

e−rT
(
fE(δ)− −1

γr
ln(−γrWt)

)]
= 0

is satisfied. For the optimal contract this condition is satisfied since fE(δ) is bounded by a linear function
(the first best) and the growth rate of δ is bounded above by r, and since the compensation fund evolves as
a semi-martingale with bounded drift. For an arbitrary policy we impose this transversality condition for
feasible contracts, which essentially ensure a no Ponzi scheme condition for the compensation fund of the
manager.

Calibration We calibrate the parameter values θae and θe such that the direct compensation for the
manager’s effort of an unlevered firm for size δ = 80 are such that 40% of the compensation comes from
long-term effort a, 40% comes from short-term effort 2/5 and the remaining 20% comes from the cross-term
between the two effort choices. To be precise this means that:

θaa
2
u(δ)δ

2
=
θee

2
u(δ)δ

2
= 2θaeu(δ)au(δ)δ

for δ = 80 which is right in the middle of the various values of δ0 that we use in our numerical examples.

Solution for optimal effort policies in the HJB: The optimization on the RHS of the HJB (19)
can be rewritten as

max
a∈[a,ā],e∈[0,ē]

af ′(δ) + e− (1/2)a2 (θa + γrδ(θ2
aσ

2
δ + θ2

aeσ
2
A + 2θaeθaσδσAρ))︸ ︷︷ ︸

Â

− (1/2)e2 (θe + γrδ(θ2
aeσ

2
δ + θ2

eσ
2
A + 2θaeθeσAσδρ))︸ ︷︷ ︸

D̂

−ae (θae + γrδ(θaθaeσ
2
δ + θeθaeσ

2
A + (θaθe + θ2

ae)σδσAρ))︸ ︷︷ ︸
B̂

 .

We’ve made parametric assumptions on the coefficients such that the objective function is concave in the
controls (a, e). Since the constraints are linear this renders the Kuhn-Tucker conditions necessary and
sufficient for optimality. Since the constraints on e never bind we consider only the constraints on a, namely
a ≥ 0 and a ≤ ā. We denote by λ1 and λ2 the respective multipliers. We first calculate the unconstrained
optimum by taking the FOC with respect to a and e to obtain

a∗ =
f ′(δ)D̂ − B̂
ÂD̂ − B̂2

, e∗ =
Â− f ′(δ)B̂
ÂD̂ − B̂2

. (30)

Three cases are possible:

1. When 0 < a∗ < ā we claim the tuple (a∗, e∗, 0, 0) satisfies the Kuhn-Tucker conditions: Stationarity
is satisfied by construction, feasibility is satisfied by assumption, complimentary slackness is satisfied
(since both multipliers are zero), and positivity is satisfied (again since both multipliers are zero).

2. When a∗ ≤ 0 we claim the the tuple (0, ê, λ1, 0) satisfies the Kuhn-Tucker conditions (where ê = 1/D

and λ1 = D̂f ′(δ)−B̂
D̂

): Stationarity is satisfied by construction, feasibility is satisfied (since a = 0),

complimentary slackness is satisfied (since a = 0), and it is straight forward to check that positivity
of λ1 is satisfied, and λ2 is zero.
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3. When a∗ ≥ ā we claim the tuple (ā, ê, 0, λ2) satisfies the Kuhn-Tucker conditions (where ê = 1−āB̂
D̂

and λ2 = ā(ÂD̂−B̂2)−(f ′(δ)D̂−B̂)

D̂
): Stationarity is satisfied by construction, feasibility is satisfied (since

a = ā), complimentary slackness is satisfied (since a = ā), and it is straight forward to check that
positivity of λ2 is satisfied, and λ1 is zero.

Proof of Proposition 1

We will show that the optimal level of short-term effort in the case when ρ = θae = 0 is given by
e∗ = 1

D̂
, where in this case D̂ = θe(1 + γrδθeσ

2
A). Therefore, the optimal level of short-term effort would be

independent of the coupon payment C, thereby proving our proposition.

Consider the case in which the constraints on a do not bind. First, notice that ρ = θae = 0 implies
B̂ = 0. Second, substituting B̂ = 0 in (30) yields e∗ = 1

D̂
, as expected. A similar argument shows that

e∗ = 1
D̂

for the case in which the constraints on a bind.

Proof of Proposition 2.

Suppose that f(δ) solves (26), which using our condensed notation for Â, B̂ and D̂ can be rewritten as:

rf(δ) =

{
au(δ)f ′(δ) + eu(δ)− a2u(δ)Â

2 − e2u(δ)D̂
2 − au(δ)eu(δ)B̂

+δψ − (1− τ)C −+φδf
′
(δ) + 1

2σ
2
δδ

2f
′′
(δ)

}
(31)

subject to

f(δNOB ) = 0, f ′(δNOB ) = 0, lim
δ→∞

f ′(δ)→ ψ

r − φ
.

Recall that au(δ) and eu(δ) satisfy:

au(δ), eu(δ) ∈ argmax
a,e

{
a(δ)f ′u(δ) + e(δ)− a2(δ)Â

2
− e2(δ)D̂

2
− a(δ)e(δ)B̂

}
which implies that

eu(δ) ∈ argmax
e

{
au(δ)f ′(δ) + e(δ)− a2

u(δ)Â

2
− e2(δ)D̂

2
− au(δ)e(δ)B̂

}
Therefore f(δ) satisfies

rf(δ) = max
e∈[0,ē]

{
au(δ)f ′(δ) + e− a2u(δ)Â

2 − e2D̂
2 − au(δ)B̂

+δψ − (1− τ)C −+φδf
′
(δ) + 1

2σ
2
δδ

2f
′′
(δ)

}
(32)

and δNOB = δNUB satisfies the boundary conditions by assumption. Therefore f(δ) satisfies (28). The proof
of the converse is essentially identical.

Characterization of the first-best value. We consider the case in which θae = 0 (the general
case is essentially the same, but the notation is more cumbersome and is available upon request). From
the equation rq = max

(a,e)

{
(ψ + e)− 1

2

(
θaa

2 + θee
2
)

+ (φ+ a)q
}

and first-order conditions q = θaa
FB and

1 = θee
FB , we have a quadratic equation in q: 1

2θa
q2 − (r − φ)q + (ψ + 1

2θe
) = 0. The larger positive

root, q = θa(r − φ) + θa

√
(r − φ)2 − 2

θa
(ψ + 1

2θe
), is the required solution. For q to be real, we need

(r − φ)2 > 2
θa

(ψ + 1
2θe

).

Appendix for Section 4.4.

Lemma 1. Let τB ≡ inf {t|δt ≤ δB} and at and et be the interior solution on [δB ,∞) given θ. For
θ ∈ {ψ, φ, ρ, σδ, σA, γ, θa, θe, C, τ}, denote fE,θ(δ) as the value function for that parameter value. Then

∂fE,θ(δ)

∂θ
=Eδ

[∫ τB

0

e−rt

(
∂(δt(ψ+et)−(1−τ)C−g(at,et;δt))

∂θ + ∂(φ+at)
∂θ δtf

′

E,θ(δt) + 1
2
∂σ2

δ

∂θ δ
2
t f

′′

E,θ(δt)

− 1
2
∂
∂θ

(
γrδ2

t

(
(βPt )2σ2

δ + 2ρσδσAβ
P
t β

T
t + (βTt )2σ2

A

)) )
dt

]
with βPt = θaat + θaeet and βTt = θeet + θaeat.
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Proof. Given any default threshold δB , the investor’s payoff fE(δ; δB) solves the ODE

rfE(δ; δB) =δ(ψ + e)− (1− τ)C − g(a, e; δ) + (φ+ a)δf
′

E(δ; δB) +
1

2
σ2
δδ

2f
′′

E(δ; δB)

− γrδ2

2

(
(βP )2σ2

δ + 2ρσδσAβ
PβT + (βT )2σ2

A

)
(33)

with boundary condition fE(δB ; δB) = 0. Here a and e are the optimal choices and βP = θaa + θaee and
βT = θee + θaea. Denote δB(θ) as the optimal default threshold under θ, then by definition fE,θ(δ) =
fE,θ(δ; δB(θ)). Differentiating both sides of (33) with respect to θ and evaluate at δB = δB(θ), then together

with the Envelope theorem,
∂fE,θ(δ)

∂θ =
∂fE,θ(δ;δB)

∂θ |δB=δB(θ), we get

r
∂fE,θ(δ)

∂θ
=
∂

∂θ
(δ(ψ + e)− (1− τ)C − g(a, e; δ)) +

∂(φ+ a)

∂θ
δf

′

E,θ(δ) +
1

2

∂σ2
δ

∂θ
δ2f

′′

E,θ(δ)

− 1

2

∂

∂θ

(
γrδ2 ·

(
(βP )2σ2

δ + 2ρσδσAβ
PβT + (βT )2σ2

A

))
+ (φ+ a)δ

∂

∂δ

[
∂fE,θ(δ)

∂θ

]
+

1

2
σ2
δδ

2 ∂
2

∂δ2

[
∂fE,θ(δ)

∂θ

]
+
∂a

∂θ
· FOC(a) +

∂e

∂θ
· FOC(e)

with boundary condition
∂fE,θ(δ)

∂θ = 0 evaluated at the optimal default threshold. Note that FOC(a) and
FOC(e) are the derivative of the right-hand side of the HJB-equation with respect to the efforts. The objects
are zero under the optimal choice of a and e. The lemma then follows from the Feynman-Kac formula.

From this lemma, we obtain the following partial derivatives:

• Drift terms: ∂fE(δ)
∂ψ = Eδ

[∫ τB
0

e−rtδtdt
]
> 0, ∂fE(δ)

∂φ = Eδ
[∫ τB

0
e−rtδtf

′

E(δt)dt
]
> 0

• Agency: ∂fE(δ)
∂γ = Eδ

[∫ τB
0

e−rt
(
− r2δ

2
t · ((βPt )2σ2

δ + 2ρσδσAβ
P
t β

T
t + (βTt )2σ2

A)
)
dt
]
< 0 if ρ ≥ 0

• Coupon and tax rate: ∂fE(δ)
∂C = Eδ

[∫ τB
0

e−rt(−(1− τ))dt
]
< 0, ∂fE(δ)

∂τ = Eδ
[∫ τB

0
e−rtCdt

]
> 0

• Volatilities and correlation: ∂fE(δ)
∂σA

= Eδ
[∫ τB

0
e−rt

(
−γrδ2

t

) (
ρσδβ

P
t β

T
t + (βTt )2σA

)
dt
]
< 0 if ρ ≥ 0 and

ambiguous otherwise, ∂fE(δ)
∂σδ

= Eδ
[∫ τB

0
e−rt

(
σδδ

2
t f

′′

E − γr
(
(βPt )2σδ + ρσAβ

P
t β

T
t

))
dt
]
, and ∂fE(δ)

∂ρ =

Eδ
[∫ τB

0
e−rt

(
−γrσδσAβPt βTt

)
dt
]
< 0

• Effort costs: ∂fE(δ)
∂θa

= Eδ
[∫ τB

0
e−rt(−1)

(
1
2a

2
t δt + γrδ2

t (βPt σ
2
δ + ρσδσAβ

T
t )at

)
dt
]
< 0 if ρ ≥ 0 and

ambiguous otherwise, ∂fE(δ)
∂θe

= Eδ
[∫ τB

0
e−rt(−1)

(
1
2e

2
t δt + γrδ2

t (ρσδσAβ
P
t + βTt σ

2
A)et

)
dt
]
< 0 if ρ ≥ 0

and ambiguous otherwise, and

∂fE(δ)

∂θae
= Eδ

[∫ τB

0

e−rt(−1)
(
atetδt + γrδ2

t

(
βPt σ

2
δet + ρσδσA(βTt et + βPt at) + βTt σ

2
Aat
))
dt

]
< 0

if ρ ≥ 0 and ambiguous otherwise.

Lemma 2. Let δBi be the optimal default boundary under parameter θi. If θ2 > θ1 implies fE,θ2(δ) >
fE,θ1(δ) for all δ, then δB2 < δB1.

Proof. Suppose not, δB2 ≥ δB1. First, fE,θ2(δB2) = 0 > fE,θ2(δB1) by the optimality of and value-matching
at δB2. Second, fE,θ2(δB1) > fE,θ1(δB1) by the hypothesis. Therefore, fE,θ1(δB1) < 0 and the choice of δB1

violates limited liability.
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