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Abstract

Overall, the causal relationship between proactive policing (in the sense of more time of police
presence) and the incidence of crime is not yet well established. In this work, we use a unique
experimental data set tailored to identify the causal impact of police patrolling on crime. Using this
data, set we exploit an identification strategy based on a random utility model of crime location
choice. The model allows us to identify agents’ utilities from observable data. We were able to
estimate own-and cross-elasticities of crime to patrolling time and we were able to evaluate alter-
native patrolling strategies (i.e, interventions or policy scenarios). To the extent of our knowledge,
both the identification of elasticities and the counterfactual analysis are novel features in this
literature. Our estimates show that 1% more time patrolling reduces crime an average of 0.19%.
Cross-price elasticities show little support to negative spillover effects of police patrolling. We
also evaluate four different patrolling time allocation strategies without increasing the total police
time available. Our results show that allocating police time according to crime incidence and the
elasticities of each quadrant, could potentially reduce violent crime by 4.13% and property crime by 6%.

Keywords— Crime prediction, Crime location, Discrete choice model, Logistic regression, Two-stage least
squares, Counterfactual analysis, Elasticity estimation

1 Introduction

Crime prediction is now ubiquitous in crime pre-
vention and police resource planning. Studies on
crime prediction and identification of risky spatial
regions—the so-called “hot spots”—already exist in

a vast quantity: [Shoaib et al. (2018), Guangyin

et al.| (2020)), Moreno, Quintero, Riascos, Nonato,

and Sanchez| (2021), [Hu, F., C., and H./ (2018), Jin|
et al.| (2019), [Kupilik and Witmer| (2018)), Moreno,

Dulce, Riascos, Castano, and Rodriguez (2020),

G. O. Mohler, Short, Brantingham, Schoenberg,

and Tita (2011)), |G. Mohler| (2014]), Reinhart and

Greenhouse| (2017)), |Stec and Klabjan| (2018), to
name a few. However, identifying and quantita-
tively characterizing the causal drivers of crime is
a harsh scientific problem: The optimal allocation
of police resources is guided by police deployment
strategies (e.g., prediction models), which at the
same time determine what crime incidents are re-
ported or how crime is displaced from one sector
to another in the city. In fact, one can hardly
take a stance on the causal relationship between

police presence in a particular spot and crime in-
cidents. On the one hand, the police presence at a
particular spot tends to reduce crime, but at the
same time crime incidents call for police presence
at specific sectors of a city. Untangling this casual
relationship is an instance of what
has called the fundamental problem of causal in-
ference: What would have happened had the po-
lice not made presence at a particular sector of the
city?

The gold standard to address this causal prob-
lem is the use of experimental data specially tai-
lored toward this goal (i.e., a randomized con-
trolled trial, or RCT). Running RCTs to evaluate
the effect of patrols, time exposure or, other inter-
vention strategies in different regions of the city
is difficult due to ethical concerns and high costs.
Nevertheless, there are already several experimen-
tal or quasi-experimental studies addressing this
issue and especially for US cities.

The evidence on the effects of proactive policing
is mixed (see [National Academies of Sciences and|

(2018)) for a comprehensive study for the




US). Braga, Welsh, and Schnell| (2015)) used meta-
analytic techniques to assess the impact of disor-
der policing on crime. They identified 30 random-
ized experimental and quasi-experimental tests of
disorder policing suggesting that policing disorder
strategies are associated with an overall statisti-
cally significant modest crime reduction. |Telep,
Weisburd, Gill, Vitter, and Teichman| (2014) con-
ducted a systematic review and a meta-analysis
examining the extent to which there is crime dis-
placement or a diffusion of crime in medium-sized
or large geographic areas. They reviewed 19 pub-
lications covering 20 quasi-experimental studies.
They found no significant overall evidence of dis-
placement or a diffusion of benefits. |Ratcliffe,
Taniguchi, Groff, and Wood| (2011) reported the
results of a randomized controlled trial of police
effectiveness across 60 violent crime hot spots in
Philadelphia. Their results suggested a signifi-
cant reduction in the level of violent crime for
the treated area after 12 weeks. Moreover, they
showed that targeted areas in the top 40% of pre-
treatment violent crime counts (i.e., the most crit-
ical regions) had significantly less violent crime
during the operational period. Targeted areas out-
performed the control sites by 23%, resulting in
a total net effect (once displacement was consid-
ered) of 53 violent crimes prevented. Novak, Fox,
Carr, and Spade| (2016) examined the effectiveness
of foot patrol in violent micro-places in Kansas
City. They studied the effects of deployed foot
patrol in hot spots for a period of 90 days. They
employed a quasi-experimental design comparing
four treatment to four control areas, estimating
panel-specific autoregressive models for 30 weeks
prior to and 40 weeks after the treatment. Their
results reveal statistically significant short-run re-
ductions in violent crime in the micro-places re-
ceiving foot patrol treatment, while no such re-
ductions were observed in the control areas. At
the same time they found no evidence of crime
displacement to spatially contiguous areas. In a
recent study, [Fitzpatricka, Gorra, and Neill (2020))
conducted a controlled field experiment of police
placed-based interventions on violent crime. Their
study spans a 12-month period of intervention in
0.5% of the city of Pittsburgh’s area. They found
statistically significant reductions in serious vio-
lent crime counts within treatment hot spots as
compared to control hot spots, with an overall re-
duction of 25.3% in violent crimes such as homi-
cides, rape, robbery, and aggravated assault. Only
foot patrols, not car patrols, had statistically sig-
nificant crime reductions in hot spots. They found

no evidence of crime displacement, but a weakly
statistically significant spillover of crime preven-
tion benefits to adjacent areas.

Finally we highlight Blattman, Green, Ortega,
and Tobodn| (2021)), a placed-based police and city
services intervention at scale for Bogota D.C.,
Colombia. The authors randomly assigned 1,919
streets to an 8-month treatment of doubled po-
lice patrols, greater municipal services, both, or
neither. They studied the direct and spillover ef-
fects of such targeted state services. They found
that increasing state presence has modest direct
impacts, even when focusing on the highest-crime
hot spots and with crime displaced nearby. Con-
fidence intervals suggest they can rule out total
reductions in crime of more than 2%.

In this study, we used the Blattman et al.
(2021)) data set and propose a different identifi-
cation strategyEI We used a discrete choice model
of spatial selection of crime to study the impact
of police time exposure to different sectors of the
city. Discrete choice modeling of crime phenom-
ena has not been fully exploited in the literature.
The pioneer applications of spatial discrete choice
modeling of crime are Bernasco and Nieubeerta
(2005), Xue and Brown|(n.d.) and Bernasco| (n.d.|).
In [Bernasco and Nieubeerta, (2005), the authors
studied the selection of crime (burglary) locations
in the city of The Hague, Netherlands. They eval-
uate several interesting hypotheses about crime:
Are more valuable properties more attractive to
burglars? Do higher mobility, neighborhood eth-
nicity, distance to burglar’s home, distance to city
center, etc., have a causal effect on crime? They
used sociodemographic data of 290 burglars who
committed 548 burglaries in the city during the
period 1996-2001. They estimated a random util-
ity model with burglars’ and burglaries’ charac-
teristics by means of a conditional logit model.
Their results support and quantify some of the
working hypothesis but there is no real causal
identification of the effect of police patrolling on
crime. In fact, they provide very indirect evi-
dence suggesting that “the likelihood of a neigh-
borhood being selected for burglary is positively in-
fluenced by its supposed lack of guardianship as
indicated by ethnic heterogeneity, by its physi-
cal accessibility as measured by the percentage of
single-family dwellings, and by the number of po-
tential objects in the neighborhood”|Bernasco and
Nieubeerta) (2005). Given that the the ii.d. hy-
pothesis used in [Bernasco and Nieubeertal (2005))

1We are deeply in debt and thankful to the authors for
allowing us to use their data set for this study.



for maximum likelihood estimation is controversial
due to spatial correlation, Bernasco| (n.d.) stud-
ied the role of spatial resolution and alternative
modeling strategies. The authors did not address
the problem of identifying the causal effects of po-
lice patrolling on crime. Finally [Xue and Brown
(n.d.) used a spatial choice model coupled with
clustering techniques to estimate a mixture model
of crime. Their model focuses on crime prediction
and does not address the causal problem that we
address in this paper.

To summarize, our contribution is fivefold: (1)
We use a unique large data set of experimen-
tal data that allows for the identification of the
causal effect of police patrolling on crime. (2)
As opposed to the original experimental study of
Blattman et al. (2021), we used a different iden-
tification strategy that is based on random utility
selection of spatial locations for crime. (3) Given
the high dimensional nature of our feature space,
we used double selection techniques for a more
agnostic data-driven model specification and ro-
bustness check of our results. (4) Provided, our
estimates of the structural parameters that deter-
mine the crime location choice of the offenders,
we computed the police own- and cross-elasticity
of crime for each of the quadrants (i.e., we com-
puted where police patrolling is more effective).
(5) Based on the same structural parameters and
the computed elasticities, we evaluated different
police patrol counterfactual strategies without in-
creasing the total police time available. In particu-
lar, we tested what would have happened had the
police patrol time been allocated: (a) uniformly
across quadrants, (b) proportional to the incidence
of crimes, (c) such that the more insecure and elas-
tic quadrants receive either a 10, 20, 30, 40, 50, 60,
70, 80, 90, or 100% increase, and (d) recursively
increasing 1% of patrol time for the most insecure
and elastic quadrant. From these counterfactual
exercises we further contribute in the understand-
ing of which police patrol deployments are more
effective. We found that increasing police time to
the more elastic and insecure quadrants resulted in
significant reductions of crime occurrences across
Bogota.

2 The model

Our model follows closely the standard logistic dis-
crete choice model, except for our estimation strat-
egy that recognizes the possibility of endogenous

explanatory variablesEHﬂ

Consider N potential criminal offenders with
symmetric preferences, each of them deciding be-
tween J+1 locations in the city to commit a crime.
Each potential offender bases her location choice
on her perceived utility of committing a crime in
each of the J + 1 locations. The associated utility
u;j, of agent ¢, of selecting location j, is given by

(1)

where P; is a measure of the police presence in
location j, X; is a vector of K observed charac-
teristics of the location, &; is the constant term
and might be thought as the mean utility associ-
ated to unobserved characteristics of location j, «
and [ are coefficients that have to be estimated
and ;5 is the idiosyncratic error term.

It follows that the probability that potential of-
fender ¢ selects location j is given by

U5 = OéPj + Xjﬁ +€j + Eij

P(i chooses j)

6 +Ez] >60+5107 ’
0j+eij >05+¢€iy)

= P(EU — 810 (5 — 50) s
gij —€is = —(0; = 0J)) (2)
where 0; = aP; + X;8 + §;. We denote this

probability as s;;(Pj, X;,&;; o, B).

Assuming e;;, ;5 are i.i.d. extreme value type I
distributed, €;; —¢;; follows a logistic distribution
and, by equation [1} location choice probabilities

?Details on the standard discrete choice model can be
found in [Train| (2009). There are many models for ca-
sual analysis, mainly a different approach based on ca-
sual graphs |Pearl (2009). However, we have chosen our
approach based on simplicity (discrete choice theory is well
founded on random utility theory McFadden|(2001))), inter-
pretability (we recover agents utility for crime, patrolling
time own- and cross-elasticities,), statistical inference (we
know how to estimate unbiased casual effects) and finally,
the ability to do interventions or policy scenarios (utili-
ties are considered a structural characteristic of agents and
therefore invariant under the different policy scenarios con-
sidered). We do not argue against the benefits of a different
approach, we just believe it is valuable to learn how far this
simple approach can take us in understanding the causal
relationship between policy patrolling and crime.

3Regarding our empirical strategy, there are many op-
tions. First, identification is guaranteed because we use a
randomized control trial experiment Blattman et al.|(2021)).
For estimation, we impose additional structure motivated
by utility theory, mainly the fact that criminals make ra-
tional choices based on the perceived benefits (utility) of
committing a crime. In turn, this utility is partially deter-
mined by observable covariates that we discuss below.



have a closed-form expression given by

exp(d;)
1+ 375, exp(dr)

where option j = 0 is assumed to be the outside
option and, thus, dp is normalized to zeroﬂ This
outside option in this particular context can be
interpreted as the choice of not committing a crime
at all, or committing a crime but not at any of the
street segments of our data setE|

From equation it follows that the share of
committed crimes at location j is

sij(Pj7Xj7£j;a7ﬂ): (3)

S;(Pj, X;,&550,8) = /Sij(Pjanagj;OZaﬁ)(b(i)di

7

= Sij(Pj,ijfj;avﬂ)
_ eXP(éj) ) (4)
1+ 37, exp(dy)

This equivalence between S;(P;, X;,&;;«, ) and
si;(Pj, Xj, &, f) is a result of the symmetric
preferences assumption: s;;(P;, X;,&;; o, 3) does
not depend on individual characteristics.

Now, from equation we can derive the own-
and cross-elasticities of crime with respect to po-
lice presence P; (or any observed characteristic
zr; € X;), which captures the percentage change
in crime when police presence is increased by 1%.
In particular, the derivatives with respect to P;
are given by

if j=1¢

aSj . Osz(l — Sj)

0P, | —aS;Se

and thus, the police own- and cross-elasticities of
crime are

if j=¢
ifj £ 0

4The final logistic specification may be questionable
since it implies the well-known assumption of independence
of irrelevant alternatives (ITA): the relative odds of choos-
ing location 7 over j is the same no matter what other
alternatives are available. To test for the validity of this
assumption, we follow Hausman and McFadden| (1984)’s
specification test; the results are reported in Appendix @

5It can include some other choices such as committing
a crime different to those we have in our data set such
as a cybernetic crime, or committing a crime at another
(nearby) city or town.

_ 8Sj P, - {Oz(l - Sj)Pj (6)

Es p=—— =
51, Fe aPZ Sj 7C¥Sgpg

3 Empirical strategy

3.1 Main specification

To estimate the structural parameters 0 = («, 3)
from equation we note that:

0; = 1log(S;) —1log(So) = aP; + X;8+&;, (7)

and thus equation @ represents our ideal spec-
ification. In this equation, the definitions of the
variables are the same as those mentioned in sec-
tion In particularly, P; is a measure of police
presence at location j and X is the set of mea-
sured characteristics (including an all-ones vector)
for the same location. &; in this case represents the
error term.

On the other hand, S; for j € {1,---,J} is
defined as the proportion of crimes committed at
location j. That is,

C.

5=+ ®)
where Cj is the number of crimes committed at lo-
cation j and NN is the number of potential offend-
ers. Sy, on the contrary, is not directly observed
since it captures the choice of the outside optionﬁ
However, we exploit the fact that

J
> o§i=1
j=0

Therefore, Sy is given by

(9)

(10)

Now that we know all the components from
equation 7 we can easily estimate it by OLS.
However, the OLS estimation faces one problem:
P; is endogenous. In particular, under the (hope-
fully not far from real) assumption that the police
force is assigned according to the amount of com-
mitted crimes in each of the locations, there exists
simultaneity between d; and ij Thus, OLS esti-
mates from equation are plausibly biased and
inconsistent.

6We thank an anonymous referee for asking us to clar-
ify the meaning of the outside option and what it means
to choose. In particular, note that aggregate crimes can
change under different exposures to police presence.

75]- is not directly a measure of crimes but it is an in-
creasing function of them. So if there exists simultaneity
between C; and Pj, there exists simultaneity between §;
and P;.



3.2 Dealing
Two-Stage
(TSLS)

In 2016, Blattman et al.[(2021) along with the Na-
tional Police of Colombia and the Mayor’s Office
of Bogoté, designed and implemented a multi-arm
security experiment at the level of street segments.
Two different types of intervention were randomly
delivered: 1) an increased police patrol time, and
2) an improvement of the delivery of city ser-
vices (street ligthing and cleanup) Blattman et al.
(2021)). In particular, starting in January 2016 and
during 8 months, 756 out of 1,919 street segments
labeled as crime hot spots - out of the 136,984
street segments of the city - received a doubled pa-
trolling time (92-167 minutes of police patrol per
day) Blattman et al.[ (2021). Also, in March 2016,
201 of the 1,919 hot spots received more inten-
sive street light repair and cleaning Blattman et
al. (2021)E| In this work, we exploited the assign-
ment to the first type of treatment to instrument
the police presence P; and identify the structural
parameters of interest. That is, we estimate equa-
tion (7) by TSLS.

Following [Imbens and Angrist (1994) and
Angrist and Imbens| (1995)), the necessary assump-
tions for the treatment assignment, Z, to be a
valid instrument are: 1) independence, 2) exclu-
sion restriction, 3) rank condition (relevance), and
4) monotonicity (no defiers). First, given that
the police patrol treatment was randomly assigned
within the hot spot street segments, Z is plausi-
bly independent of the potential outcomes (crime
shares ratios) and the potential treatment status
(police patrol time) once it is controlled for the hot
spot label status (i.e., 1{j is a crime hot spot} €
X;) Blattman et al.| (2021)). Second, since the
treatment arm that we consider in this paper only
determines police patrol time, it is plausible that
Z only affects 6; through P;. Third, according
to the findings of |[Blattman et al.| (2021) the “po-
lice complied with their new orders for the full 8
months.” Thus, rank condition is plausible and
has been already verified. Fourth, given that the
police officers were monitored via GPS every 30
seconds and police officers (and workers in gen-
eral) plausibly double their efforts in a task only
when they are ordered or incentivized to do so,
it is reasonable that the monotonicity condition
holdsﬂ Furthermore, the experimental designed

with  endogeneity:
Least Squares

8For further information about the different treatment
arms see |Blattman et al.| (2021)).
9That is, only treated segments received increased pa-

in Blattman et al| (2021 intended that the pa-
trol time of untreated streets remained the same,
which was empirically verified by the authors.
Therefore, TSLS estimates of 6 are consistent.
In particular, « is identified by @755 and it cap-
tures a weighted average of all the possible per-

unit causal responses of §; to a marginal change
in P; caused by Z |Angrist and Imbens (1995)@

3.3 Selecting location characteris-
tics - Double Selection

In general, city locations might have several char-
acteristics that can influence the presence of crime.
Also, potential criminal offenders might base their
crime-location choice not only on the individual
location characteristics, but on combinations or
interactions of them. That makes the number
of possible candidates to be included in X; vast
and, thus, ad hoc or intuition-based variable se-
lection unfeasible. Hence, to select the variables
that should be included in X; we implemented
the double selection methodology of |Belloni, Cher-
nozhukov, and Hansen| (2014)).

Following Belloni et al| (2014]), we first (sepa-
rately) ran a regularized lasso over the following
two equations

Py =X;0+ )\,

where §; and P; are the dependent and inde-
pendent variables from equation , respectively,
and X j is a vector of variables that includes
all the available and exogenous location features
and all their second degree interaction terms (i.e.,
Tp; Xxrj ¥V k,7). v and ¥ are vectors of coefficients
associated to X in each equation, while y; and ),
are the error terms.

Lasso algorithm applied to equations (L1 and
selects the relevant location features that pre-
dict the outcome variable §; and the police pres-
ence P;, respectively. Given the selected variables
from both estimations, we then estimated equa-
tion by TSLS using X; = X'JDS"; U X’JDS’P,
where ijs,a and XjDS’P are the set of Lasso-
selected location characteristics from equations

and (T2)

trol time. Control segments remained the same.
10For more technical details check [Angrist and Imbens
(1995).



4 Data

In this work, we used the data set used by
Blattman et al.| (2021) in their study. In partic-
ular, we use their data on violent, property, and
total criminal official records at the quadrant level
(i.e., an administrative and irregular subdivision
of the city used for assigning police shifts; two po-
lice officers per quadrant per shift) that occurred
in Bogotd D.C. during 2016. We also took in-
formation for the following characteristics at the
quadrant level: proportion of paved street seg-
ments, proportion of street segments in use by
industry and commerce, proportion of street seg-
ments in use by services, proportion of low in-
come street segments, proportion of middle in-
come street segments, proportion of high income
street segments, average distance from each street
segment to the nearest shopping center, average
distance from each street segment to the near-
est education center, average distance from each
street segment to the nearest park or recreational
center, average distance from each street segment
to the nearest religious center, average distance
from each street segment to the nearest health cen-
ter, average distance from each street segment to
the nearest services center (e.g., justice), average
length of street segments, the average built meters
per meter of street segment of length 100 meters
around each street segment, and the proportion of
street segments labeled as crime hot spots. Lastly,
we take information on the average minutes of po-
lice patrol time that each segment received and
the proportion of street segments assigned to in-
creased patrol time within each quadrant.
Provided with this data set, we estimated three
versions of equation : one for violent crimes,
another for property crimes, and a last one for
total crimes. To construct each crime-specific d;,
we assumed that the number of potential crim-
inal offenders is given by the estimated number
of unemployed (actively job-seeking or inactive)
people aged 12 to 60 in the period of interest. IV
is calculated using the public data of unemploy-
ment and population projections of the (Colom-
bian) National Administrative Statistics Depart-
ment (DANE from its Spanish initials)B On the
other hand, P; is given by average minutes of po-
lice patrol time (from [Blattman et al.| (2021))), Z;
is the proportion of treated street segments, and
X; is selected from the list of variables (and their
quadratic interactions) mentioned above.
Descriptive statistics of these variables at the

M Data available at https://www.dane.gov.co/.

quadrant level (1,050 spatial units) are presented
in Table Panel A reports descriptive statistics
of the reported crime within each quadrant during
2016, panel B reports descriptive statistics of the
average police patrol time in minutes within each
quadrant, and panel C reports descriptive statis-
tics of the average characteristics of the street seg-
ments within each quadrant. As can be seen, prop-
erty crimes seem to be more frequent than violent
crimes. On average there were reported 11.98 vi-
olent crimes, 24.07 property crimes, and a total
of 36.05 crimes. These types of crimes ranged be-
tween 0 to 70, 0 to 149, and 0 to 157, respec-
tively. This depicts the high heterogeneity that
exists in terms of security in Bogotd D.C. Panel
B, on the other hand, shows that on average the
patrol time received by the street segments within
each quadrant is about 46 minutes. However, this
time varies from 4.98 to 711.23. This again reflects
the high heterogeneity of the security in the city.
Lastly, panel C reports summary statistics of the
variables to be added to the vector Xj;.

Table 1: Descriptive statistics of Bogotd D.C.’s quadrants
(2016)

N Mean SD Min Max

A. Reported crimes

Violent crimes 1050 1198 861 0 70

Property crimes 1050 24.07 1792 0 149

Total crimes 1050 36.05 2145 0 157
B. Police presence

Avg. police patrol time (minutes) 1050 4646 5189 498 71123
C. Quadrant chara

Avg. dist. to ne 1050 74003 708.45

4,686.01
1,050 320.15 2,767.30
1,050 682.0:
1,050 502.66
1,050 952.91
1.050 700.01 577.79

237.79

vg. dist. to ne;
dist. to nea
g. dist. to nearest religious c
Avg. dist. to nearest health center
Avg. dist. to ne additional services center
Avg, length of street segments 1,050  64.33 263.38
Avg. built meters per meter of street segment 1,050 22728 13,601  2.66 148,750
Prop. of paved street segments 1,050 0.51 1.00
/commerce 1,050 0.00 1.00
ector 1,050 0.00 1.00
1,050 0.00 1.00
1,050 0.00 1.00
1,050 0.00 1.00
1,050 0.50

3. 3
7,499.75
5,193.83

Prop.
Prop. of hot spot street segments
Prop. of treated hot spot street segments

ables at the quadran

cot

a A the mean/SD /min/mazx
ge of a dichotomous is reported as a proportion. Distances
Average. Prop.: Proportion. SD: Standard Deviation. Min: Minimum. Max:

n be thought a

er:
Maximum. Dist.: distance

Figure[d]reports scatter plots — and their respec-
tive linear regression fit line — of the logarithm of
the reported crimes against the logarithm of the
police patrol time. This can be thought as a first
naive approximation to the estimation of the po-
lice elasticity of crimeH The figure shows that for
violent crimes and total crimes, there is no rela-
tionship between the police presence and the re-
ported crimes. OLS estimates for these two types
of crimes are -0.02 and 0.02, respectively, and are
not statistically significant. For property crimes, a

12Since both dependent and independent variables are in
logarithms, the slope of the relationship captures an elas-
ticity
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marginally significant positive relationship 0.06 is
found. This counterintuitive result suggests that,
if any, the police elasticity of crime is positive.
These results, however, might be driven by the
simultaneity that exists between crimes and po-
lice presence, and therefore, justify the need to
account for endogeneity as was discussed in sec-
tion B

Violent crimes Property crimes

OLS estimate=0.02] <OLS estimate0.06

log(Property crimes + 1)

log(Violent crimes + 1)

log(Patrol time (min) +1)

log(Patrol time (min) +1)

Total crimes

estimale0.02

log(Total crimes + 1)

log(Patrol time (min) +1)

Figure 1: Scatter plots of the logarithm of each type of
crime against the logarithm of the average patrol time
within each quadrant. Linear fit displayed by the black
dashed line. These graphs display a naive calculation of
the police elasticity of crime. OLS coefficient estimates
reported at the top-right corner of each graph. *p<0.1;
**p<0.05; ***p<0.01. Source: Own elaboration.

5 Results

5.1 « estimates

Table [2| presents the estimated « parameter of
equation from different econometric method-
ologies for the three types of crimes mentioned in
the previous section. Panel A and C display «
estimates from OLS and TSLS that control for
covariates, respectively. Panels B and D display
estimates from OLS and TSLS that control for
the selected covariates from the double selection
methodology. As can be seen, the estimates are
fairly consistent across methodologies. We find
that, on average, police presence has no effect
on violent crimes. Second, we found that police
presence has a negative impact on the utility of
committing property and total crimes, as was ex-
pected. In particular, following our TSLS + dou-
ble selection preferred methodology, we found that
an increase in 1 minute of police patrol time in lo-
cation j reduces, on average, 0.004 units of the
utility of committing a property crime in that lo-
cation. This effect is statistically significant at the
1% significance level. For total crimes, the coeffi-
cient is —0.004 and is statistically significant at the

5% significance level. However, it has to be noted
that, given the lack of effect in violent crimes, this
result is fundamentally driven by the effect found
for property crimes.

Table 2: « estimates from different econometric method-
ologies

Violent Crimes Property Crimes  Total Crimes
A.0LS
a estimate -0.001 0003 00027
(0.001) (0.001) (0.001)
N 1,026 1,040 1,047
Adj. R? 0.282 0.348 0.194
B. Double Selection
« estimate -0.001 -0.002*** -0.002***
(0.001) (0.001) (0.001)
N 1,018 1018 1018
Adj. R? 0.316 0.404 0225
C. TSLS
« estimate -0.002 -0.005*** -0.003**
(0.001) (0.002) (0.001)
N 1,026 1,040 1,047
Adj. R? 0277 0338 0.189

D. TSLS + Double Selection
a estimate -0.004***

(0.002)

-0.004**
(0.001)

-0.003
(0.002)

1,018
0.307

1,018
0.396

1,018
0.216

N
Adj. R?

ndard errors in

“**p<0.01. Heteroskedast
nels A to C, HC1 for
tions included a vect

anels A and C the
gments, proportion of

croge
distance from each str ment to the nearest services center
(e.g., justice), average length of street segments, the average built meters per meter of
st of length 100 meters around each street segment, and the proportion
o str labeled as crime hot spots. For panels B and D double-sclection-

selected covariates were included. These are discussed in section 3.2

These results contrast with those found by
Blattman et al| (2021). In particular, they found
that doubling the police patrol time has no impact
on property and overall crimes. Also, in their ba-
sic TSLS specification, using as dependent variable
the level of crime, they found no effect of police pa-
trol time on overall crimes unless they interact it
with the baseline crime. These differences between
their and our results might be driven either by: 1)
differences in the definition of the dependent vari-
able, given that they used the levels of crime while
we used a log-ratios of crime shares that depend on
the definition of N; 2) differences in the statistical
power, given that they only estimated the impact
for hot spot street segments, while we estimated
it for all quadrants in the city, or 3) differences in
the unit of analysis, given that they estimated the
impact for street segments, where the crime re-
ports might be low, and we estimated the impact
for quadrants, where crime reports are greater by
definition. It has also to be noted that they use
inverse probability weighting in their estimations
to correct for endogenous exposure to spillovers,
as well as randomization inference to correct for
fuzzy clustering Blattman et al| (2021). Our re-
sults, however, are fairly robust to specifications
and strongly suggest a negative impact of police




patrol time on crime.

It is to be noted that when TSLS estimates
are invalid, OLS estimates provide suggestive in-
formation of the true impact of police presence
on crime. In particular, note that, given the si-
multaneity that exists between crime and police
presence, OLS estimates are downward biasedﬁ
Therefore, panels A and B of Table [2| report a
lower bound of the real impact of police presence
on the utility - and thus on the occurrence - of
committing a crime. Also, note that in this work
we assumed that the number of potential criminals
is given by the number of unemployed people aged
12 to 60, which results in a conservative share of
crimes in each of the city locations. Thus, we are
confident that the reported TSLS estimates, which
are relatively close to the OLS estimates, are in-
formative enough and general conclusions can be
obtained from them.

5.2 Selected variables

Table [3] shows the estimated dependence of util-
ity on observables before any variable selection.
Some results are quite intuitive. For instance, the
coefficients on the average distance to a shopping
center, education center or nearest health center
are negative. These might reflect the fact that
close to these places there is usually more mobil-
ity and human interaction. In contrast, the coeffi-
cient on the average distance to a religious center
is positive suggesting the relevance of other deter-
minants of crime associated with religious beliefs
and respect of certain norms. As expected, violent
crimes depend negatively on middle- and high- in-
come street segments, while property crimes de-
pend positively on these same features.

Now, when double selection is used to select the
most predictive variables of §; for property crimes
(i-e., utility of crime) only two variables are cho-
sen: average distance to the nearest shopping cen-
ter and average distance to the nearest shopping
center interacted with proportion of paved seg-
ments (see Table . However, neither is statis-
tically significant. Moreover, in the case of violent
crimes or total crimes, none are selected. These re-
sults highlight the importance of pursuing a data-
driven specification appropriate for our problem.

In contrast, double selection of the variables
that predict our measure of police patrolling se-

13Note that if the impact of police on crime is negative
and the impact of crime on police is positive, OLS estimates
that ignore the simultaneity just combine both effects into
one. That is, a positive and a negative effect are averaged,
yielding a less negative (or even a positive) result.

Table 3: TSLS 3 estimates for covariates in their base form

Violent Crimes  Property Crimes  Total Crimes
(2) 3,

Avg. dist. to nearest shopping center -0.00004 00005 00003
(0.00005) (0.00005) (0.00004)
Avg. dist. to nearest education center -0.001°*" -0.0001 -0.0002"
(0.0001) (0.0001) (0.0001)
Avg. dist. to nearest park/recreational center 0.0001 0.0001 0.0001
(0.0001) (0.0001) (0.0001)
Avg, dist. to nearest religious center 00002+ 0.0002°* 00003+

(0.0001) (0.0001) (0.0001)
-0.0001°*
(0.00001)
-0.00004
(0.00005)
0,005

(0.002)

-0.00001
(0.00004)
-0.00001
(0.00005) (0.0001)
0,003 -0.002
(0.001) (0.002)
0.00001° 0.00000 0.00000*
(0.00000) (0.00000) (0.00000)

Prop. of paved segments 0.609 0801 1.319
(0.716) (0.790) (0.841)

ents zoned for industry /commerce 0.149 0416 0205
(0.178) (0.165)
ents zoned for service sector -1.140% 0.077 -0.130
(t (0.192)

-0.0001°
(0.00005)
-0.0001

Avg, dist. to nearest health center
Avg, dist. to nearest additional services center center
Avg. length of street segments

Avg. built meters per meter of street segment

Prop. of stree

Prop. of street scy

0.087
(0.114)

Prop. of high income street segments 0.719" 0403
(0.120)

Prop. of middle income street segments 0171 04237 0.228°"
(0.076) (0.080) (0.071)

Prop. of hot spot street segments -0.129 1.287 0.953
(0.615) (0.937) (0.832)

Constant 11608 11163 11.089
(0.759) (0.528) (0.873)

N 1026 1,040 1,047

Adjusted R? 0.277 0.338 0.189

Not “**p<0.01. Heteroskedasticity robu dard errors in parentheses (HC3). Param-

covariates in their base form reg: of their selection by the double sclection

ter a " for
methodology. Avg.: Average. Prop.: Proportion. dist.: dista

Table 4: TSLS [ estimates for double-selection selected
covariates that predict J;

Violent Crimes  Property Crimes  Total Crimes
(1 2) 3

Avg. dist. to nearest shopping center - -0.001
(0.001)

Avg. dist. to nearest shopping centerx -0.0001

Prop. of paved segments (0.001)

N 1,018 1,018 1,018

Adj. R? 0.307 0.396 0.216

Notes: *p<0.1; **p<0.05; ***p<0.01. Hoteroskedasticity robust standard errors in parentheses (HCI)

Double-selection selected variables that explain P; excluded since there were 89 sclected variables and
their interpretation would be cumbersome. Avg.: Average. Prop.: Proportion. Dist.: distance

lects 89 wvariables: one linear variable and 88
quadratic variables. These selected variables are
reported in Table f] The selection of that great
amount of variables suggests that police patrolling
is assigned strategically. It does not only depend
on crime incidence, but also on many other com-
plex features such as those quadratic terms re-
ported in Table [f] This result further motivates
future work to determine not only which quadratic
terms, but which more complex features (third-,
fourth-, etc. degree variables), might determine
police patrol deployment and crime.

5.3 Police elasticity of crime

Our most important results from a public policy
perspective are the estimation of the own- and
cross-elasticities of crime to patrolling time at dif-
ferent locations, which captures the percentage
change in crime that results from a 1% increase in
the police patrol time that a location receives. To
the extent of our knowledge the estimation of these
statistics in a properly identified structural model
of crime location is new in the literature. Given
the estimated parameters from our preferred TSLS
+ double selection methodology, we follow equa-
tion @ to calculate own- and cross-elasticities.
The first panel of Figure[2reports the own- elas-



Table 5: Double-selection selected covariates that predict
P.
J

ticity distribution across all locations. For violent
crimes the elasticity is, on average, —0.11. That
is, a 10% increase in patrolling time in a quad-
rant reduces crime, on average across all quad-
rants, by 1.1% in that quadrant. The effect on
property crime is twice as large, which seems con-
sistent with intuition. In contrast to the results re-
ported [Blattman et al.| (2021]) our results do show
a significant and public policy relevant causal ef-
fect impact of police patrolling intensity on crime
reduction.

The second panel of Figure [2]is also interesting.
By construction, it implies that crime location are
substitutes in response to police patrolling (pos-
itive average police cross-elasticity). Hence, our
model is biased in favor of a hypothesis that has
been at the center of the discussion in the crim-
inology literature: crime is displaced rather than
reduced in respond to police presence. Our results
are probably a biased estimate of this hypothesis
and suggest that, if anything, crime displacement
is negligible (not only on average).

6 Policy scenarios

A great advantage of using structural models of
social phenomena is the ability, conditional to the
prior that the model is an accurate description of
reality, to study alternative policy scenarios (do-
ing, in the language of computer scientists, causal
theory, see [Pearl (2019)). The question we now
want to answer is: What would have been the
number of crimes had police patrols pursued four

Violent Crimes Property Crimes
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Figure 2: Distribution of the own and police cross-elasticity
of crime across quadrants for Bogota. Elasticities sepa-
rately displayed for violent crimes, property crimes, and
total crimes. Vertical dashed lines represent mean elastic-
ities. Mean and standard deviation of elasticities reported
in each graph. Source: Own elaboration.

different Strategiesﬂ (1) uniform time (each seg-
ment receives 33.82 minutes of patrol time inde-
pendently of any characteristic)Et (2) time spent
proportional to historic crime rates per segment,
(3) Police patrol time set to a minimum for all
the quadrants and the residual time (i.e., the dif-
ference between the observed time and the mini-
mum time) is reassigned such that quadrants that
report both the highest levels of crime and the
highest police elasticity of crime receive their ini-
tial police patrol time plus an 2% increase, where
x € {0, 10720730,40,50,60,70,80,90,100}@ and

14Note that we did not study optimal patrolling routes.
We focused on the impact of policy presence measured as
the time spent at quadrants which is the only effect we
can study due to our experimental data and identification
strategy. For a review study on the patrol routing prob-
lem see |Dewinter, Vandeviver, Vander Beken, and Witlox:
(2020).

1933.82 is the total observed patrol time divided by the
number of quadrants.

16This additional time is indirectly reduced in quadrants
that are both less insecure and less elastic, such that the
total patrolling time across the city remains constant.



(4) police patrol time set to a minimum for all
the quadrants and the residual time is reassigned
using a recursive algorithm such that a 1% in-
crease of additional patrol time is given to the
quadrant, with the highest level of elasticities and
crime. Then the new elasticities and crime are re-
calculated and the process repeated until no resid-
ual time is left over. For a detailed explanation
of these last two reassignment methodologies, see
Appendix [B] An important characteristic of all
policy scenarios is that, by construction, the eco-
nomic costs of all of them is roughly the same as
the baseline (see Table 6] Base scenario), the cur-
rent police patrolling strategy. Since the outcome
is measured in terms of their average effect on
crime, then our policy scenarios measure efficiency
gains, due to a better police-time reassignment, on
the citym

Panel A of Table [6] shows the average observed
crimes and the in-sample fit of the model in terms
of the average predicted crimes, respectively. As
can be seen, our model underestimates by ap-
proximately three events the average occurrence
of crimes, and thus, can be regarded as a conser-
vative and good enough representation of reality.

Panel B of Table [6] shows what would have hap-
pened had the police been deployed under the four
different policy scenarios. In the first place, the
uniform-policing time distribution, which is the
uninformed decision, results in more crime occur-
rences (compared to the predicted number of ac-
tual crimes). In the second place, proportional
time results in basically the same levels of crime as
those predicted by the model in the base scenario.
We argue, this is probably the strategy most fre-
quently used by the police in the city of Bogota to
allocate patrolling time.

The third policy scenario has a couple of lessons.
First, provided that there are limited time re-
sources (i.e., the total available time used by all
police officers patrolling the city), there exists a
trade-off between the number of quadrants that
can benefit from an increase in police patrolling
time and the magnitude of the increase itself.
That is, the greater the percentage increase in
time, the fewer quadrants receive such increase.
Second, given this trade-off, it is better to increase
by small percentages the police patrol time of most
of the quadrants than increasing by a great per-
centage the police patrol time of just a few quad-
rants. Specifically, it seems that an effective way

17We thank an anonymous referee for asking us to clarify
our measure of costs and benefits of policy scenarios. This
motivated some of the exercises we did.
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to reduce crime, compared to both the base sce-
nario and the other percentage increases, is to re-
assign patrolling time from 30% to 40% of the
quadrants that are less insecure and less elastic
(i.e., that are the least affected by police patrol
time) and reassign it to the other 60% - 70% of
the quadrants such that they receive 20% more
police patrol time. These results are depicted in
Figure 3] which better displays the existing trade-
off and the optimal reallocation strategy to reduce
each type of crime.

Finally, the fourth allocation strategy results in
the lowest levels of crimes. This shows that there
is room for much improvement in police patrolling
allocation. For the sake of illustration, take the
predicted base scenario as the base case. Switch-
ing from this scenario to the fourth policy scenario
results in an average reduction of 0.43 in violent
crimes per quadrant (out of 10.39) and of 1.29 (out
of 21.33) of property crimes per quadrant. Since
we have 1,050 quadrants in the city, this implies a
reduction of 451 violent crimes and 1, 354 property
crimes for the whole city for the period of study
(1 year). That is, informing the decision of po-
lice patrol deployment has important impacts on
the security of the city without incurring in addi-
tional cos ts. Therefore, the results suggest that
the gains from optimal strategies, such as those
based in machine learning techniques, may be sub-
stantial and highly cost-effective.

7 Conclusions and Discussion

In this paper we used a unique experimental data
set Blattman et al.| (2021) at the scale of a big
urban center, Bogota, the capital city of Colom-
bia with more than seven million people. This
randomized controlled trial was specially tailored
toward the identification of the casual effect of po-
lice patrolling on crime. Using this data set, we
proposed an estimation strategy based on a ran-
dom utility model of crime location choice, an un-
derexploited model in the criminology literature.
The model added sufficient structure to allow for
the identification of agents’ fundamental parame-
ters, such as their perceived utility of committing
a crime. Once preferences were identified from
observable data, we computed the own- and cross-
elasticities of crime to time patrolling and we were
able to evaluate alternative patrolling strategies.
To the extent of our knowledge, both exercises are
novel features in this literature, and are very rele-
vant from a public policy perspective.

In this regard, our estimations showed an av-



Table 6: Counterfactual analysis of different types of
police patrol assignments
Violent Crimes Property Crimes Total Crimes
Benefited Q. Predicted # Benefited Q. Predicted # Benefited Q. Predicted #
N % Mean (SD) N % Mean (SD) N % Mean (SD)
A. Base scenario
Observed 1231 24.61 36.92
(8.51) (17.89) (21.18)
Predicted 10.39 21.33 32.90
(4.12) (9.90) (9.44)
B. Counterfactual scenarios
Uniform 544 53.43 10.68 544 53.43 22.64 544 53.43 34.37
(4.12) (11.12) (10.22)
Proportional time 514 50.49 10.40 511 50.19 21.73 516 50.68 33.39
(4.15) (11.03) (11.03)
Reassignment 3
0% increase (Base case) 0 0.00 10.39 0 0.00 21.33 0 0.00 32.90
(4.12) (9.90) (9.44)
10% increase 809 79.47 10.36 776 76.23 21.23 742 72.89 32.89
(4.06) (9.70) (9.37)
20 % increase 664 65.23 10.36 621 61.00 21.20 585 57.47 3293
(4.06) (9.63) (9.47)
30 % increase 565 55.50 10.36 514 50.49 21.20 475 46.66 33.01
(4.05) (9.64) (9.64)
40 % increase 475 46.66 10.38 427 41.94 21.25 400 39.29 33.08
(4.09) (9.71) (9:81)
50% increase 421 41.36 10.38 359 35.27 21.29 339 33.30 33.15
(4.09) (9.75) (9.99)
60 % increase 371 36.44 10.39 313 30.75 21.35 293 2878 33.22
(4.12) (9.85) (10.12)
T0% increase 329 32.32 10.41 217 2721 21.40 259 25.44 33.29
(4.16) (9.94) (10.20)
80 % increase 294 28.88 10.44 252 24.75 21.44 232 2279 33.41
(4.21) (10.01) (10.51)
90 % increase 2712 26.72 10.44 221 21.71 21.53 214 21.02 33.46
(4.23) (10.13) (10.64)
100% increase 245 24.07 10.45 200 19.65 21.60 192 18.86 33.56
(4.26) (10.24) (10.83)
Reassignment 4 513 50.39 9.96 538 52.84 20.04 636 6247 32.00
(2.80) (5.97) (5.43)

olumns are reported. The first one reports the number

Notes: For each type of crime in each counterfactual scenario, t
b io (benefited quadrants from now on). The second

of quadrants that receive more police patrol time than in the
ome reports the pe ge of benefited quadrants. These two mainly useful to assess reassignment 3, for the rest
are just informative of how many quadrants are better off in terms of time provided the new reassignment. The third column
reports the mean and standard deviation in parentheses of the predicted mumber of crimes that result from each police patrol
(first row corresponds to the observed number of crim
(i.e., no reallocation). Panel ri
2 atrol time, proportional police ent 3 (see Appendix
(sce Appendix|B]. Re ment 3 corresponds to the predicted number of when the police patrol time i
such that it is mcreased 2% for quadrants that report both the highest police elasticity of crime and the highest share of crimes,
where  is set to be cither 0, 10, 10, 50, 60, 70, 80, 90, or 100. Thus, for the third r ment. methodolog
row reports a different p . The first row c onds to a 0% iner
prediction reported in Pa ws of the third reassignment report the
Reassignment 4, on the othe sponds to the predicted number of crimes when the pa
following a recursive algorithm of 1% increments in time for quadrants that report both the highest police elasticity of crime and
the highest share of crimes. The step-by-step of the third and fourth methodologies of redistribution are explained in Appendix

tes depicted i
trol time i
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Figure 3: Relationship between the predicted average num-
ber of crimes and the percentage increase in police patrol
time that receive the most elastic and insecure quadrants.
Each of the graphs presents the results of implementing
the first reassignment methodology explained in Appendix
Black lines with dots report the predicted number of
crimes. Red lines with triangles report the percentage of
quadrants that received the x percentage increase in po-
lice patrol time. Vertical gray dotted lines indicate which
percentage increase results in the minimum of predicted
crimes. It seems that it is more effective to increase the
police patrol time by a 10-20% for about 70% of the quad-
rants than increase it by 100% for < 20% of the quadrants.
Source: Own elaboration.

erage location own-elasticity of total crime to po-
lice patrolling (measured in minutes of presence
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at a particular quadrant) of —0.19. That is, 1%
more patrolling time reduces crime an average of
0.19%. This is in sharp contrast to the estima-
tion of Blattman et al|(2021) that hardly reports
any statistical significance of the effects of police
patrolling on crime. Also, cross-elasticities show
little support to spillover negative effects of po-
lice patrolling, another highly contested effect and
discussed in the literature.

Taking advantage of our estimation of a struc-
tural model, we evaluated four different patrolling
strategies: random, proportional (naive), a one-
time time reassignment (reassignment 3), and a
dynamic reassignment (reassignment 4) see [6] for
details. Results show that allocating police time
according to crime incidence and the elasticities of
each quadrant (e.g., reassignment 4), could poten-
tially reduce violent crime by 4.13% percent and
property crime by 6%.

Our results show the value of using even simple
models to allocate police in the city. These sug-
gests that there is considerable space to improve
the efficiency of police patrolling using state-of-
the-art machine learning prediction models. We
believe this is a promising extension of our paper
and we leave it for future work.
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Figure 4: Haussman-McFadden (1984) (Hausman & Mc-
Fadden) [1984)) specification test of the independence of ir-
relevant alternatives (ITA) assumption. « estimated 1,018
times excluding in each iteration one different quadrant.
Given that parameter estimates remain stable, ITA assump-
tion seems to hold. Mean (SD) displayed for each graph.
Source: Own elaboration.
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In this appendix we explain the reassignment
strategies 3 and 4. The average predicted num-
ber of violent, property, and total crimes that re-
sult from these two reassignment strategies are dis-
played in Panel B of Table [6}

B.1 Reassignment 3

The third reassignment strategy considered tries
to reallocate police patrol time from the quadrants
that are both the less elastic and report less crimes
toward the quadrants that are more elastic and
report more crimes. In particularly, from the time
that is taken away from the former, we increase
by % the time that was originally received by the
latter. In this case, we try different values of = €
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} for each type
of crimes. This reassignment strategy is explained
step by step below:

1. Obtain the minimum observed patrol time re-
ceived by a quadrant:

Pmm:min{Pl,PQ,...,PJ} (13)

where P; is the observed police time in quad-
rant j in our data set.

Set a baseline (BL) police patrol time for each
of the J quadrants of the sample as follows:

C
wi S
J % J

BL,c
Pj

= Il’lil’l{Pj7 Pmin X

p(14)

in

where w; is the number of street segments
covered by quadrant j, wp, is the num-
ber of street segments covered by the quad-
rant that reported the minimum patrol time,
S5 is the share of crimes of type ¢ €
{Violent, Property, Overall} that occurred
in quadrant j, and Sf, ;,, is the share of crimes
of type ¢ that occurred in the quadrant that
reported the minimum patrol time. That is,
we set the baseline police patrol time as the
minimum between the original police patrol
time and the minimum police patrol time that
is proportional to the number of street seg-
ments and the occurrence of crime at each
quadrant. This guarantees that the total pa-
trol time assigned is less than or equal to the
total patrol time observed. Note that P]-BL’C
is indexed by ¢, which means that we imple-
mented this algorithm three different times
for each of the three types of crime.



3. Obtain the residual (RES) time between the
observed patrol time and the baseline time
that will be reassigned, which is given by

PRES.c _ i (P]‘ _ PJBLc) .

j=1

(15)

Distribute PRF9¢ across the first K, quad-
rants that report both the highest police elas-
ticity of crime (given the baseline time as-
signed) and S, such that each of the K,
quadrants receive an increase of 2% in the po-
lice patrol time that they originally received,
while the remaining J — K, quadrants receive

PP™¢. That is,

RED,c _
Pj = {
(16)

where PjR’ED’C denotes the redistributed po-
lice patrol time. Note that K, is indexed by
z. It means that the number of quadrants
that receive a % increase, K,, depends on
that increase, since P*¥5:¢_ the available time
to be redistributed, is fixed. The greater the
percentage increase x, the less quadrants are
benefited by the redistribution. Therefore, a
trade-off exists in this algorithm between the
intensive and extensive margins of police pres-
ence across quadrants.

(14 2%)P;
BL,c
Pj

if j e {1,2,...,K.}

As was noted above, this algorithm was imple-
mented 30 times, one for each = € {10, 20, 30, 40,
50, 60, 70, 80, 90, 100}, for each of the three types
of crimes that we consider in our work—violent,
property, and total crimes. For each crime, we se-
lect the % increase which results in the lowest
level of crimes, and we compare it to the original
scenario. Results of this algorithm are presented
and discussed in Section [6]

B.2 Reassignment 4

The fourth reassignment strategy has the same
spirit as the third one. However, in this case, we
do not impose a uniform x percentage increase on
the police patrol time across all the K, quadrants
that can receive it. Instead, we perform a recursive
algorithm which iteratively assigns a 1% increase
in police patrol time in the quadrant that reports
both the highest elasticity and share of crime, and
then recompute the elasticities and shares of crime

if j e {Ke+1,Ko+2,...

I
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for the whole sample. The algorithm iterates un-
til PRES:c ig fully redistributed. That is, steps
1 to 3 are the same as those from the previous
methodology. The methodology step by step goes
as follows:

1. Obtain the minimum observed patrol time re-

ceived by a quadrant:

Pmin:min{PhPQw"uPJ} (17)

where P; is the observed police time in quad-
rant j in our data set.

Set a baseline (BL) police patrol time for each
of the J quadrants of the sample as follows:

C
w; S
i i

BL .
P; “ = min{Pj, Pin X

b (18)

in

JB. Calculate the residual time to be redis-
tributed as
J
S,c __ BL,c
PRE _Z(Pj—Pj ) (19)
j=1

. Rank the quadrants according to both
their estimated police elasticity of crime,

Eg. psr.c, and their predicted share of crime,
it
C

<.
Increase by 1% the baseline police patrol time
of the quadrant that is ranked first (i.e., the

one with both the highest elasticity and share
of crime) in the previous step. That is,

(Lo PPEe it

PRED.c _ J € argmax;crq J}{EscyplBL,c X 5%,
J - E . pBL.c xS}
WAL

PJBL’C otherwise.

(20)
. ate ' suc a
6. Update PEES:c such that

PRES,(: — PRES,C . (]_,O]_)P],BL’C (21)

Reestimate Eg. psr.c and S5 with the new
it

distribution of police patrol times.

Repeat steps 5) through 8) until PEFS¢ =0,
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