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Abstract

Highly productive U.S. cities are characterized by high housing prices, low housing stock
growth, and restrictive land-use regulations (e.g., San Francisco). While new residents would
benefit from housing stock growth due to higher incomes or shorter commutes, existing
residents justify strict local land-use regulations on the grounds of congestion and other
costs of further development. This paper assesses the welfare implications of these local
regulations for income, congestion, and urban sprawl within a general equilibrium model
with endogenous regulation. In the model, households choose from locations that vary
exogenously by productivity and endogenously according to local externalities of congestion
and sharing. Existing residents address these externalities by voting for regulations that limit
local housing density. In equilibrium, these regulations bind and house prices compensate
for differences across locations. Relative to the planner’s optimum, the decentralized model
generates spatial misallocation whereby high-productivity locations are settled at too-low
densities. The model admits a straightforward calibration based on observed population
density, expenditure shares on consumption and local services, and local incomes. Welfare
and GDP would be 1.4% and 2.1% higher, respectively, under the planner’s allocation.
Abolishing zoning regulations entirely would increase GDP by 6%, but lower welfare by
5.9% due to greater congestion.

∗Email: devinbunten@ucla.edu. This research was supported by Award Number T32AG033533 from the
National Institute on Aging. The content is solely the responsibility of the author and does not necessarily
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1 Introduction

Neighborhoods within productive, high-rent regions like the San Francisco Bay Area have
very strict controls on housing development and very limited new housing construction.
The Bay Area—home to Silicon Valley—is incredibly productive, with a GDP per capita
of over $92,000, higher than all countries except tiny Luxembourg and oil-rich Norway and
Qatar. Even for workers in non-tech sectors, wages in the region are higher than elsewhere
in the US: median earnings for those with just a high school diploma are 12% higher in
the Bay Area. Despite these high wages the region of 6.1 million people permitted just
20,046 new housing units in 2014, consistent with a growth rate of 0.8% annually. Of these,
many were located in areas with few existing neighbors, either on former industrial land
or previously undeveloped locations at the periphery.1 The evidence suggests that locally-
determined regulatory constraints are a substantial impediment to development (Glaeser and
Gyourko, 2002, 2003; Glaeser et al., 2006). Existing residents justify these constraints by
appealing to the costs of new development, including increased vehicle traffic and other types
of congestion, and claim that they see few, if any, of the benefits from new development.2

Instead, these benefits accrue to new potential residents, or to society at large.

While residents may pass local regulations to deal with local externalities of congestion, in
aggregate the implications stretch beyond local borders: regions with highly-regulated mu-
nicipalities experience less-elastic housing supply (Glaeser et al., 2006; Saiz, 2010). Land-use
regulations in high-productivity cities constrain the expected supply response to sustained
high rents, and these regulations are the result of local endogenous political processes.3 Un-
derstanding the welfare effects of zoning regulations involves quantifying both the aggregate
housing supply costs as well as the benefits that lead households to pass zoning regulations.

This paper builds a spatial equilibrium model of housing and endogenous regulation to assess
the welfare implications of locally-determined zoning. To motivate households’ preference for
zoning, I introduce local externalities of agglomeration (e.g., residents can share fixed-cost
infrastructure or a diversity of restaurants) and congestion (e.g., traffic or limited on-street
parking) into a standard Rosen/Roback-style model of heterogeneous locations. In line with
the externalities under study, I identify these locations with neighborhoods.4 Existing resi-
dents feel the effects of these externalities from new development, but do not see the benefits

1In San Francisco, Mission Bay and the Dogpatch are exemplars of redevelopment on former
industrial land (http://sf.curbed.com/archives/2014/05/29/mapping_25_projects_transforming_
mission_bay_and_dogpatch.php).

2For example, the group Livable Boulder supports a ballot initiative that they argue will “ensure that
City levels of service are not diminished by new development”, due to concerns about “huge buildings,
blocked views of the mountains, more congestion, proposals to change the unique character of many Boulder
neighborhoods” (http://livableboulder.org/).

3That regulations are determined locally—at the level of a neighborhood, city district, or municipality—is
argued by Hills and Schleicher (2011, 2014); Schleicher (2013); and Monkkonen and Quigley (2008).

4Neighborhood productivity differences within and across cities arise from differential access to employ-
ment opportunities, transportation networks, or productive amenities.
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of higher local output. They thus use local political processes to address these externalities
by establishing zoning laws that limit development. The trade-off between agglomeration
(i.e., sharing of fixed costs and services) and congestion ensures that households prefer a
positive but limited number of co-residents. I use the model to identify the wedges between
the zoning equilibrium and the planner’s optimal allocation of households to locations. Com-
pared to the utilitarian planner’s allocation, high-productivity locations are developed less
intensively, low-productivity locations are developed more intensively, and too many (low-
productivity) locations are opened in a decentralized equilibrium.

The key model components—fixed costs, congestion, and endogenous regulation at the local
level–are grounded in empirical evidence. The fixed costs of infrastructure and local ser-
vices can explain the sharp edge of development visible in metropolitan areas, in contrast
with the predictions of the standard monocentric city model of a smooth gradient approach-
ing zero density at the fringe.5 Local congestion resulting from fixed quantities of street
parking, limited space for children’s play, and concerns about sunshine, shadows, and wind
permeate anti-development discourse.6 Finally, zoning laws in most cities tend to be the
result of neighborhood- or municipality-level political processes (Hills and Schleicher, 2014;
Monkkonen and Quigley, 2008), rather than broad metropolitan outcomes.7

I model a large set of locations analogous to the neighborhoods or municipalities of the
national economy. Opening a location to settlement necessitates payment of a fixed cost (e.g.,
of extending a sewer line) that can be shared more broadly with more residents. Balancing
this incentive to share fixed costs, households in a location receive disutility from the addition
of further co-residents. These forces of agglomeration and congestion, respectively, constitute
the endogenous amenities provided by a location. In light of these forces, local residents
choose zoning laws to restrict the maximum number of housing units that can be built by
a competitive construction sector. Distributions of house prices, zoning laws, and location
choices are jointly determined in equilibrium. Households are ex ante homogeneous and
fully mobile, and so house prices adjust to ensure that households are indifferent between all
occupied locations. In particular, productive locations have binding zoning restrictions that
cause house prices to become significantly higher than the marginal cost of construction, an
empirical finding documented in Glaeser and Gyourko (2002, 2003); Glaeser et al. (2005b,a);
Cheshire and Hilber (2008) and Koster et al. (2012).

I next analyze the welfare implications of local zoning laws by comparing the equilibrium
allocation with the optimal allocation chosen by a constrained planner.8 When choosing

5For a graphic example, see Figure 4 in the appendix.
6A recent example from a zoning debate in Santa Monica is http://smdp.com/

santa-monica-beach-town-dingbat-city/147819.
7Relatedly, Aura and Davidoff (2008) argue that housing and land demand elasticities imply that any

particular municipality would be unable to increase supply sufficiently to move down housing demand curves
to lower prices. The converse of this finding is that municipal (or neighborhood) governments have limited
ability to act as monopolists and raise prices by simply restricting supply.

8The planner is constrained in that they maximize welfare subject to a spatial equilibrium constraint:
identical households must receive identical utility, regardless of location.
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the intensity of development within a location, the planner considers the local forces of
agglomeration and congestion as well as the value of placing the marginal household in a
location of higher or lower productivity. When passing zoning laws, households only consider
the local amenity forces and thus restrict development too heavily in productive locations.
This underdevelopment induces sprawl : the opening of too many unproductive locations,
consistent with e.g. Fischel (1999). I further show that the planner’s allocation can be
implemented through a zoning reform where residents choose all zoning laws at the national
level.

The model enables a straightforward calibration. I calibrate the utility function to the
consumption share on non-local goods, excluding housing and local services. For the local
sharing parameter, I calibrate to the share of spending on local services. The congestion
cost curvature is chosen to match the average population density of urban census tracts.9

For location productivity, I use Census tract income data, adjusted for average household
observable characteristics (Hsieh and Moretti, 2015). I calibrate construction-sector produc-
tivity to match the ratio of price to construction costs in high-price locations like New York
and San Francisco where the effects of zoning laws have been well-studied (cf. Glaeser et al.,
2005b).

The model provides a unified framework for addressing the full array of costs and benefits
to reforming local zoning policy by implementing the optimal allocation. Avent (2011) and
Hsieh and Moretti (2015) argue that these local growth patterns have been quite costly for na-
tional growth, while incumbent residents argue that new development would itself be costly.
My main exercise is to quantify these costs while accounting for the changes to endogenous
amenities resulting from the planner’s allocation. The planner’s allocation raises welfare
and GDP by 1.4% and 2.1%, respectively. The more intensive development of productive
locations necessary to increase GDP would also increase the congestion disamenity received
by the residents of these regions. The median resident experiences an increase in density
of 3.6%; increases as great of 10–15% are experienced by the most productive locations.
More intensive development reduces the total number of locations opened to development
by 3%. The planner’s allocation thus features less sprawl, with less fixed-cost expenditure
and commensurately higher consumption.

A second exercise offers a quantitative assessment of an alternative policy: zoning abolition,
wherein developers are free to build housing without constraint.10 This policy results in
over-building in high-productivity areas as construction firms do not internalize congestion
effects. Model GDP increases by 6%, but increased congestion causes welfare to decline by
5.9%. The extra productivity comes arises because productive regions like San Francisco see

9While the parameter governs the shape of the congestion cost function, in equilibrium it has a first-order
effect on the optimal zoning laws and thus on average density. The approach is similar to the tradition of
using wage shares to calibrate labor and capital exponents in a production function: in equilibrium, these
shape parameters have first-order effects on levels.

10This is the option implicitly studied by Hsieh and Moretti, who find that output would increase by
13.5%.
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population inflows of 50% or more. The policy implication is that zoning should be relaxed
in productive locations, but not abolished.

Treating zoning as endogenous enables the inference of welfare losses from zoning in the
absence of detailed data on the wedges between housing prices and marginal costs of con-
struction at the location level. Were such data available, the wedges could be treated as
exogenous and the welfare costs of zoning would be the costs of moving the wedges from
their observed to their optimal level. In principle, observed density could be used to proxy
for underlying regulations. The relationship between productivity and zoned density, how-
ever, is confounded in the data by factors like exogenous amenities—which make land more
expensive and increase density—and long-lived investments, both in building stock and in
infrastructure such as subway networks. Instead of attempting to account for these myriad
forces, I model zoning as an equilibrium object, infer the unobserved wedge from the model,
and calculate the loss in welfare accordingly. The key qualitative prediction of this model is
that, in high-productivity areas, density does not rise fast enough relative to productivity.

Endogenous zoning has a further benefits: it offers predictions on the likely outcomes of
different housing policy and zoning reform. First, policies which ignore the endogeneity of
zoning may be unable to meet their stated goals. The federal government provides large
housing subsidies throughout the income distribution, and increased may appear to offer
an outlet for reducing the burden of high costs in expensive cities. Within the specified
model, a housing subsidy would increase household willingness to pay in expensive areas.
However, endogenous zoning driven by existing residents will not respond to these subsidies
by creating more supply, and so the policy will not have the intended effect of making housing
more affordable, nor will it stimulate additional supply in zoning-constrained locations.

Second, the model provides guidance for the outcomes of direct zoning reforms. Can a sin-
gle location allow more development—increasing housing supply—and hope to bring down
prices? Consider an infinitesimal neighborhood in the model that relaxes its zoning restric-
tion and allows more development. The outside option—the value of locating elsewhere—will
be unaffected, as a single location is insufficient to move the price gradient. Instead, house
prices in the neighborhood will decline only to the extent that additional development makes
congestion worse. This echoes the complaints of homeowners who fear new development will
hurt their house values.11

Finally, could a successful upzoning, where a set of productive locations increase the zoned
capacity or even abolish zoning restrictions, harm landowners in less productive locales?
Suppose that an entire productive region—perhaps a city, or a state—chooses to allow more
intensive development. Many new households will flow in, abandoning the less productive
locations they once occupied. For the least-productive locations, the initial population out-
flows will make the fixed costs too burdensome, and all households will choose to leave. If

11For example, This claim is offered by an advocate for a moratorium on develop-
ment in the Mission District of San Francisco here: https://medium.com/@danancona/

putting-market-fundamentalism-on-hold-432ecf1aab3c.
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profits from development of a location are tied to that location, perhaps via homeownership,
then residents of less productive locations may lose out from this policy reform.

1.1 Related Literature

This paper draws on work that has established a strong relationship between zoning and
the elasticity of housing supply (Fischel, 1999; Mayer and Somerville, 2000; Glaeser and
Gyourko, 2002; Glaeser et al., 2005b,a; Saiz, 2010; Koster et al., 2012; Turner et al., 2014).12

This literature has shown that zoning laws restrict the supply response to high house prices,
and that cities that do zone restrictively have systematically higher housing prices. Following
this literature, zoning laws in this paper shape local amenities (cf. Turner et al., 2014) and
regional housing supply (cf. Fischel, 1999; Mayer and Somerville, 2000).

Several authors in diverse contexts have modeled zoning as an endogenous outcome of polit-
ical processes (Hamilton, 1975; Fischel, 1987; Monkkonen and Quigley, 2008; Fischel, 2009;
Hilber and Robert-Nicoud, 2013; Ortalo-Magné and Prat, 2014; Hills and Schleicher, 2011;
Schleicher, 2013; Hills and Schleicher, 2014; Fischel, 2015). I implement the findings of
(e.g.) Fischel (2009) and Hills and Schleicher (2011) that zoning laws are actively deter-
mined by highly-engaged utility-maximizing households at the local level—municipalities,
neighborhoods, or even direct neighbors.13 In some contexts, zoning enables households to
implement the planner’s allocation, usually by resolving problems of free-riding on local ex-
penditure. I complement this literature by embedding a set of heterogeneous locations into a
general equilibrium model, so that zoning is locally optimal but has aggregate external costs.
Incorporating the endogeneity of local zoning enables a welfare calculation in the absence of
detailed local data and also reflects the consensus of the literature (cf. Fischel, 2009, Hills
and Schleicher, 2011, and Hills and Schleicher, 2014).

My work builds on Hsieh and Moretti (2015), who also link strict zoning and changes in ag-
gregate output. They study the productivity effects of wage dispersion across metropolitan
areas in a Rosen-Roback model, and attribute the increase in this dispersion (and resulting
loss in output) to a decrease in the elasticity of housing supply. From this basis, I introduce
local externalities and calculate welfare losses from zoning relative to the planner’s optimum,
in addition to output losses from spatial misallocation. My paper differs in terms of the eco-
nomic interpretation of zoning: here, it is an endogenous limit on neighborhood development
instead of a change in the elasticity of metropolitan housing supply. As noted, this endo-
geneity serves two purposes: it enables me to infer the costs of welfare in the absence of
location-specific data on marginal costs and housing prices and it allows me to study the
likely local outcomes of different policy reforms.

This paper is related to others that study the conditions under which zoning laws and

12Gyourko and Molloy (2014) present an in-depth review of the economics of housing regulation.
13Lawsuits seeking to halt development in the name of various ills are increasingly common (Ganong and

Shoag, 2013).
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other local goverment interventions may be theoretically optimal (Stull, 1974; Hamilton,
1975; Henderson, 1991; Hochman et al., 1995; Rossi-Hansberg, 2004; Calabrese et al., 2007;
Chen and Lai, 2008; Allen et al., 2015). These papers focus on a variety of externalities to
motivate zoning, including nuisance, production, and free-riding interactions that I abstract
from. Of course, the optimal zoning scheme depends upon the nature of the externalities
under consideration. Similarly to some of these papers, I characterize the zoning regime
consistent with maximizing welfare given the externalities studied. This paper also addresses
the optimal distribution of population between communities who share local public goods
(Flatters et al., 1974; Arnott and Stiglitz, 1979; Hochman et al., 1995). Like Hochman et al.
(1995), I find that jurisdictions that are well-positioned to deal with one externality may not
be optimal in the presence of other inter-location effects.

More broadly, this paper relates to others that study the spatial determinants of aggregate
productivity and welfare (Albouy, 2012; Desmet and Rossi-Hansberg, 2013; Allen and Arko-
lakis, 2014; Behrens et al., 2014; Eeckhout and Guner, 2015; Fajgelbaum et al., 2015; Hsieh
and Moretti, 2015). I also account for the joint spatial distributions of household location
choices, incomes, and housing prices while incorporating the effects of zoning regulations.
As such, it relates to Glaeser et al. (2005a), Van Nieuwerburgh and Weill (2010), Gyourko
et al. (2013), and Diamond (2015), among others.

The rest of the paper is organized as follows. Section 2 presents the model and the analytic
results. Section 3 calibrates a quantitative version of the model to match features of the
data. Section 4 quantitatively analyzes the welfare costs of local zoning and the no-zoning
counterfactual relative to the planner’s optimal allocation. Section 5 concludes.

2 Model

This section describes the model. I begin by outlining the environment. I then study the
determination of equilibrium in three steps. First, I study the local equilibrium that results
from the actions of households and firms, who take as given the local zoning rules as well
as the endogenous outside option and level of profit. Second, I study the local zoning choice
of initial residents. The zoning law restricts the level of housing production available to
construction firms. Third, I study the economy-wide general spatial equilibrium in which
the aggregate variables are determined: the endogenous outside-option level of utility and
aggregate profits of construction firms.

Environment The spatial environment consists of a mass of locations of measure 1 with
productivity indexed by x ∈ [0, 1]. These locations represent the set of potential neighbor-
hoods in the entire economy. The neighborhood with x = 1 is the most productive in the
country, e.g. downtown San Francisco. Locations with x less than but close to 1 include less-
productive locations in the same area—for instance, Oakland, a train ride from downtown
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San Francisco. A similar x could also correspond to the best locations in less-productive
regions, like downtown Denver. Locations with x close to zero would be at the far fringes of
metro areas: either a short commute to an unproductive job or a very long commute to a
better job.

Production takes place at each location according to a linear production function. Produc-
tivity is given y(x) with y(0) = y, y′(x) > 0, and y(1) = ȳ. Each location begins empty
and available for settlement by a measure 1 of households, whose preferences are described
below. Opening a location to urban settlement requires a fixed cost F . The set of locations
that are open in equilibrium is an endogenous outcome.14

I now turn to the description of agents and their maximization problems.

2.1 Local Equilibrium

2.1.1 Household and Construction Firm Problems

The economy consists of three types of agents. First, there is a measure 1 of households who
choose location and consumption to maximize utility, taking as given location-specific rents,
population, and the endogenous outside option (i.e., the maximum attainable utility from
making the optimal choice of location).

Second, there is a representative construction firm that chooses the housing production level
to maximize at each location profits, taking as given rents and the local zoning law. I
represent a zoning law as a maximum allowable number of housing units.15

Third, some locations begin with a measure 0 of initial residents. The initial residents choose
local zoning laws and consumption to maximize utility, while taking as given a pre-fixed
initial rent.16 Initial residents have rational expectations about the equilibrium choices that
households and firms will make given the zoning law. In locations with no initial residents,
construction firms maximize profits without constraint.

14As a technical matter, it is possible that fixed and construction costs are sufficiently large that there
is no feasible distribution of households under which total output is sufficient to cover these costs. In that
case the economy can be thought of as agricultural : no fixed costs are paid, and each location is occupied
by a solitary household who produces yA < y. In the urban equilibrium, fewer locations will be opened. A
final case is that the endogenous outside option of the urban economy is equal to the utility earned from
agricultural, in which case some locations would remain agricultural. Restricting yA to be sufficiently small
effectively rules out this equilibrium.

15As each household consumes a single housing unit, the choice of zoning law restricts both the number
of housing units and the number of households.

16The initial rent can be thought of as the fixed mortgage payment of an existing homeowner, which does
not fluctuate based on local rental conditions. It can also be though of directly as rent control, where the
price cannot be raised on existing tenants. Rent control is a common policy tool in expensive rental markets
like San Francisco.
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I proceed by defining the problems of the household and the construction firm and then
the neighborhood equilibrium given zoning laws. Then I define the problem of the initial
residents and their equilibrium choices of zoning law.

Household Problem A household in location x has preferences summarized by the utility
function

u(c(x))− v(n(x)).

The function u(·) represents preferences over consumption, c(x). The function v(·) repre-
sents a congestion externality that depends on the neighborhood population, n(x). Utility
from consumption is twice continuously differentiable and strictly concave: u′(c) > 0 and
u′′(c) < 0. The congestion externality v(·) is bounded below, increasing, twice continuously
differentiable, and convex: v′(n) > 0 and v′′(n) ≥ 0. Without loss of generality, I assume
that v(0) = 0.

The household faces budget constraint

c(x) = y(x) + Π− F

n(x)
− p(x),

where y(x) and p(x) represent the location-specific income and house price. Consumption
is given c(x). Households own a diversified portfolio of construction firms in all locations,
and Π is the location-independent transfer of construction sector profits from the national
economy. The fixed cost F is shared equally among all residents.

Households take as given local prices p(x), total profits Π, and their endogenous outside
option ū. Households are freely mobile and choose location x and consumption c(x) to
maximize utility subject to the budget constraint.

Construction Firm Problem Construction firms choose the development intensity nf (x)
to maximize profits at each location subject to a local zoning constraint n̄(x). There is no
pre-existing housing stock in any location. Taking the price p(x) as given, the firm problem
in location x is

max
nf (x)

Π(x) = p(x)nf (x)−
(
nf (x)

Z

)2

subject to zoning constraint
nf (x) ≤ n̄ (x) .

It is natural to think that construction costs within a location are convex due to the costs
associated with building taller and denser structures. Construction firms earn positive profits
from locations with positive construction. Profits are aggregated across all locations and
redistributed equally to all households.17

17The cost function is equivalent to a housing production function that is Cobb-Douglas in building
materials and land, with a coefficient of 1/2 on each term. Under this alternative production function,
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2.1.2 Local Spatial Equilibrium

Consider a fixed n̄(x), a fixed ū, and a fixed Π. I define a local spatial equilibrium for location
x to be a house price p∗(x) and local population n∗(x) such that households and firms solve
their respective problems with households consuming their budget, the local housing market
clears, and spatial equilibrium must hold. That is:

(1) u

(
y(x) + Π− F

n∗(x)
− p∗(x)

)
− v (n∗(x)) ≤ ū,

with equality if n∗(x) > 0. Housing market clearing implies nf (x) = n∗(x). Using this,
the firm’s problem yields a complementary slackness condition which states that either the
zoning constraint binds or price is equal to the marginal cost of construction:

(2)
(
p∗(x)− 2n∗(x)/Z2

)
[n̄(x)− n∗(x)] = 0.

The firm must also abide by the zoning constraint:

(3) n∗(x) ≤ n̄(x).

A local spatial equilibrium in location x is a pair {n∗(x), p∗(x)} satisfying Equations (1), (2),
and (3).

Housing Equilibrium Selection The existence of a fixed cost creates complementarities
in household location decisions: if some households go to a location, the fixed cost can
be shared more broadly and the location becomes more attractive to other households.
This complementarity implies that there can be multiple equilibria. Finally, the congestion
externality implies that eventually an additional household will lower the utility of existing
households as the congestion costs outweigh the sharing benefits. I show that there are up
to three pairs of equilibrium population n∗(x) and price p∗(x) that may satisfy the definition
of an equilibrium. Figure 1 characterizes graphically the set of potential equilibria. The
optimal location curve, labeled OL(n, x), shows the set of (n, p) points consistent with the
household’s maximizing choices, and is defined as follows:

(4) OL (n, x) =

{
y(x) + Π− F

n
− u−1 (v (n) + ū) if n > 0

[0,∞] if n = 0.

The curve labeled MC (n) corresponds to the marginal cost of construction and is indepen-
dent of location:

(5) MC (n) = 2 n/Z2.

the profit redistribution outlined here corresponds to an assumption that each household owns a diversified
portfolio of land. This share is within the range of estimates provided by Albouy and Ehrlich (2012).
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Proposition 1. The portion of the OL (n, x) curve with n(x) > 0 is strictly concave, hump-
shaped, and intersects the MC (n) curve twice, not at all, or once at a point of tangency.

Proof. See appendix.

MC(n)

OL(n, x)

nL(x) nH(x)
0 n

p(x)

Figure 1: Marginal cost (MC(n)) and indifference (OL(n, x)) curves. Note that the OL(n, x) curve
includes the entire vertical axis above 0. The set of points potentially consistent with equilibrium,
for which OL(n, x) > MC(n), is the closed interval (nL(x), nH(x)) and the point 0.

If the zoning constraint lies to the right of nH(x)—the upper intersection of MC(n) and
OL(n, x)—then both nH(x) and nL(x) are consistent with equilibrium. If the zoning con-
straint lies within the interval (nL(x), nH(x)) then both nL(x)—the lower intersection—and
n̄(x) are consistent with equilibrium. If the zoning constraint lies to the left of nL(x), then
the origin is the sole equilibrium. There is always an equilibrium at the origin: households
and firms may expect a p∗(x) = 0 and n∗(x) = 0 and see these expectations fulfilled.

If there are multiple equilibria, I select the one with the largest population.18 This equi-
librium selection has two virtues. First, it abstracts from coordination failures where both

18Note that this supremum is taken over a closed and bounded set. By continuity of the utility and
construction cost functions, the supremum of the set of points consistent with equilibrium is, itself, a member
of this set.
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households and firms expect the location to be empty, and so it remains empty. Second,
it is stable in the sense of economic geography models, i.e. a small deviation of population
does not induce population movements that lead the location to a different equilibrium (cf.
Krugman, 1991). This rules out nL(x) as an equilibrium population as it is would be unsta-
ble.19 Concretely, both households and construction firms expect that all locations will be
settled at the highest-population equilibrium.

The equilibrium population n∗(x) and price p∗(x) consistent with this selection criterion for
a given zoning law n̄(x) are

(6) {n∗(x), p∗(x)} =


{0, 0} if MC (n) > OL (n, x)∀ n ∈ (0, n̄(x)]
{n̄(x), OL (n, x)} if n̄(x) ∈ [nL(x), nH(x)]
{nH(x),MC (n)} if n̄(x) > nH(x).

In the first case, there is no intensity of development n(x) that abides by the zoning constraint
and that delivers utility of at least ū. This could happen because n̄(x) < nL(x) or because
OL (n, x) < MC (n) for every n(x) > 0. In the second case, the zoning constraint binds and
the equilibrium price is consistent with household spatial equilibrium. In the third case, the
zoning constraint does not bind and the equilibrium price is consistent with both household
spatial equilibrium and (unconstrained) profit maximization.

2.1.3 Locally Optimal Zoning Choice

This section describes the determination of zoning laws within a location.

I assume that some location have a measure 0 of initial residents who choose the zoning
regulation, while some locations have no initial resident and are thus unregulated. The set
inhabited locations will be endogenized later. Formally, they can choose the zoning constraint
n̄(x); as Equation (6) makes clear, the choice of zoning law affects the local equilibrium.

For the subset of locations with no initial residents, the zoning law is effectively infinite:
n̄(x) = ∞. The equilibrium population in such locations is given by Equation (6): it will
be {nH(x),MC (n)} if the OL(n, x) and MC(n) curves intersect and {0, 0} if the OL(n, x)
curve is strictly lower than the MC(n) curve for all positive populations.

Locations with initial residents The measure 0 of initial residents have identical pref-
erences and productivity as the households described above, but they differ in two respects.
First, the initial residents of location x face a fixed rent p0(x). I take this rent as given for
now, but will endogenize it later. Second, they choose the zoning constraint n̄(x) that limits
the maximum level of development within their location. The initial residents have rational

19See appendix for details on equilibrium stability.
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expectations about the consequences of their zoning choice. Namely, they anticipate that
a zoning constraint n̄(x) will induce the local spatial equilibrium of Equation (6). Like the
households described above, the initial residents take as given the the endogenous outside
option ū and the level aggregate profits Π.

Let θ (n̄(x); ū,Π) = n∗(x) denote the population n∗(x) from Equation (6) given a zoning
constraint n̄(x) and aggregate variables ū and Π. The initial residents solve the following
maximization problem:

max
{c0(x),n̄(x)}

u (c0(x))− v (θ (n̄(x); ū,Π))

subject to

c0(x) = y(x) + Π− F

θ (n̄(x); ū,Π)
− p0(x)

We can rewrite the maximization problem in a more convenient form. Initial residents in
location x act as if they were directly choosing the local population given ū and Π, subject
to a household participation constraint.

Proposition 2. The locally optimal zoning constraint solves:

(7) max
{c0(x),n̄(x)}

u(c0(x))− v(n̄(x))

subject to the budget constraint

(8) p0(x) + c0(x) +
F

n̄(x)
= y(x) + Π

and the participation constraint

(9) u

(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)
− v (n̄(x)) ≥ ū.

Proof. See appendix.

Note that the participation constraint is a function of the marginal cost of housing, rather
than the equilibrium price. The participation constraint is satisfied if and only if n̄(x) ∈
[nL(x), nH(x)] as defined above. If the participation constraint is non-binding, Equation
(6) states that equilibrium population n∗(x) will equal the initial resident choice n̄(x). The
logic of the constraint is as follows: for n̄(x) < nL(x), the equilibrium population will be
0. However, the initial residents prefer to share the fixed cost F with a positive population,
and so they will not choose n̄(x) < nL(x). If they choose n̄(x) > nH(x), the equilibrium
population will be nH(x), and so limiting the initial resident choice to being below nH(x)
does not restrict their potential payoffs.
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In general, the participation constraint may or may not bind. If the participation constraint
does not bind, then the zoning constraint will bind in the local equilibrium: the equilibrium
house price is above the firm’s marginal cost. If the participation constraint does bind, then
the zoning constraint does not bind: the house price is equal to marginal cost.

When the participation constraint does not bind,20 the initial resident choice of zoning choice
is the n̄(x) that solves

(10) u′
(
y(x) + Π− F

n̄(x)
− p0(x)

)
F

n̄(x)2
− v′ (n̄(x)) = 0.

The first term is the marginal benefit of sharing the fixed cost F more broadly. The second
term is the marginal cost of congestion. As u is concave and v convex, the expression is
strictly decreasing and the n̄(x) that solves the equation is unique.21

When the participation constraint binds, the initial resident’s optimal zoning choice is by
definition not in the interior of the set of points consistent with the participation constraint.
By concavity of the initial resident problem, the zoning choice in these cases is given by the
endpoint of the set that offers greater utility to the initial residents:

(11) arg max
n̄(x)∈{nL(x),nH(x)}

u

(
y(x) + Π− F

n̄(x)
− p0(x)

)
− v (n̄(x)) .

2.2 General Spatial Equilibrium

Define a stable general spatial equilibrium in this economy to be an endogenous outside
option ū, a level of profit Π, a set of open locations X , local populations n∗(x), local prices
p∗(x), and zoning laws n̄(x) such that the zoning choices n̄(x) and local equilibrium outcomes
{p∗(x), n∗(x)} solve household, firm, and initial resident problems and are consistent with
the population constraint

(12)

∫ 1

0

n∗(x)dx = 1,

with the definition of profits

(13) Π =

∫ 1

0

[
p∗(x)n∗(x)−

(
n∗(x)

Z

)2
]
dx,

20The constraint states that the utility delivered by the location with house price equal to marginal cost is
greater or equal to ū. If the constraint is non-binding then Equation (6) states that the equilibrium house
price will be greater than marginal cost.

21As there is a measure 0 of initial residents, an inflow of n̄(x) households ensures that the new households
will be the majority of the community. This raises the question of whether they would seek ex post to hold
a new vote and modify the zoning law. However, the new residents would not have a strong preference to
modify the law. Given an outside option ū, households expect that rents will adjust to make them indifferent
across locations regardless of their vote. As such, households do not strictly prefer any alternative zoning
law for their location. The pre-fixed rent of the initial residents eliminates this feedback mechanism.
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with the definition of X

(14) x ∈ X ⇐⇒ n∗(x) > 0,

and with the stability condition

(15) p∗(x) = p0(x) ∀ x ∈ [0, 1] .

The stability condition imposes restrictions on the prices faced by initial residents. This
natural restriction is informed by a notion of dynamic stability and enables the static model
to approximate the steady-state of a corresponding dynamic overlapping generations model,
wherein a subset of agents inherit a fixed rent from the previous period’s equilibrium.

2.2.1 Characterization of General Equilibrium

I proceed by characterizing the triplet {ū,Π,X} as well as optimal zoning n̄(x), local popu-
lation n∗(x), and price gradient p∗(x) consistent with general equilibrium. Focusing on the
stable equilibrium described above, I consider the natural restriction that p0(x) = p(x). Two
preliminary results will be useful in characterizing the general equilibrium.

Proposition 3. The set of occupied locations X is [x, 1] for some threshold location x. For
the threshold location x, the OL(n, x) and MC(n) curves are tangent at a unique level of
population that depends on ū.

Proof. See appendix.

This tangency condition proves useful for pinning down the price and population gradients.
The intuition for tangency is as follows: from Proposition (1), the two curves cross twice,
once with tangency, or not at all. For a given location x, if they do not cross the location
must be unoccupied: no level of population can deliver utility ū. If they do cross or meet
with tangency, then n∗(x) must be strictly positive. Otherwise, there would be no initial
residents, no zoning constraint, and developers would find it optimal to build (and households
to settle) to the local equilibrium population of nH(x). Thus x must be in X for all locations
where the OL(n, x) curve meets the MC(n).

The tangency of OL(n, x) and MC(n) at the threshold location x also implies equality
between OL(n, x) and MC(n). Thus Proposition (1) offers two additional conditions that
will be used to pin down the price and population gradients. First, tangency implies

(16)
F

n∗(x)2
−
[
u−1
]′

(v (n∗(x)) + ū)× v′ (n∗(x)) = 2/Z2.

Second, equality implies

(17) p(x) = 2n(x)/Z2.

The first condition pins down the threshold population consistent as a function of ū. The
second condition pins down the price at the threshold as a function of this population.
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Lemma 1. Define n̄ to be the population that maximizes the OL (n, x) curve. Given outside
option ū, the level of population n̄ is unique and independent of location.

Proof. See Appendix.

Lemma 2. Define location x̂ (ū,Π) as follows:

x̂ (ū,Π) =

{
x s.t. OL (N (ū), x̂) = MC (N (ū)) if OL (N (ū), 1) ≥MC (N (ū))
1 otherwise.

Then x̂ (ū,Π) is unique and in the range [x, 1].

Proof. See appendix.

Proposition 4. In a stable general equilibrium, the following characterizes the local equilib-
rium populations and optimal zoning. For all locations x > x̂, n∗(x) = n̄(x) = N (ū). For
all locations x ∈ [x, x̂], the population n∗(x) and optimal zoning n̄(x) are given by the upper
intersection of the OL (n, x) and MC (n) curves. For all x ≥ x, p∗(x) is given by the value
of the OL (n, x) curve evaluated at n∗(x).

Proof. See appendix.

The OL (n, x) curve reflects the willingness to pay for a location as a function of its pop-
ulation: if a mix of congestion and sharing offers a higher level of utility, households are
willing to pay more. As p0(x) = p(x) in the stable equilibrium, initial resident utility is max-
imized where the willingness to pay is maximized: at the peak of the OL(n, x) curve. As
the productivity y(x) only shifts the OL (n, x) curve vertically, the preferred zoning choice
is independent of location. Hence for locations with x > x̂, zoning laws bind in equilibrium
at the population N (ū).

For locations x ≤ x̂, the level of population N (ū) preferred by the initial residents is incon-
sistent with local equilibrium: the price that would induce households to settle at population
N (ū) is too low to induce construction firms to build N (ū) units of housing. Vice versa, any
price high enough to induce firms to build N (ū) will be higher than households are willing to
pay, given local wages y(x). In this case, the equilibrium population adjusts downwards: the
house price falls, marginal costs fall, and so long as x ≥ x, the location settles at a smaller
equilibrium population. Because the initial resident problem is concave, the participation
constraint binds and the local equilibrium population (and optimal zoning law) is the upper
intersection of the OL (n, x) and MC (n) curves. This case is shown in Figure (2).

Characterization of aggregate variables: ū and Π. As noted, the equilibrium levels of
population n∗(x) and prices p∗(x) described in Proposition (4) are consistent with the local
equilibrium, optimal zoning, and stable equilibrium conditions for a given pair {ū,Π}. The
general equilibrium ū and Π are the pair for which the local equilibria n∗(x) and p∗(x) and
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0 n

OL(n, x)

OL(n, x)
OL (n, x ∈ (x, x̂))
OL(n, x̂)
OL ((n, x ∈ (x̂, 1))

OL(n, 1)

MC(n)

N (ū)

Figure 2: Optimal location OL(n, x) curves for threshold occupied location x, x̂, and other loca-
tions with the marginal cost MC(n) curve. The lowest curve, OL(n, x), is the threshold location
and its equilibrium population will be given by the point of tangency with the MC(n) curve. For
the next curve, the equilibrium population is given by the intersection on the right. For the top
three curves, the initial resident zoning choice and equilibrium population is given by N (ū). Note
that all of the OL(n, x) curves reach their peak at N (ū); the equilibrium population at each location
is as close to this as possible subject to ensuring that OL(n, x) ≥MC(n).

locations x and x̂ described above are consistent with the population constraint and profit
definition.

The threshold conditions from Proposition (3) implicitly define the threshold location x as
a function of ū and Π: x(ū,Π). The profit definitions states

Π =

∫
X

(
p∗(x)n∗(x)−

(
n∗(x)

Z

)2
)
dx.

Substituting the equilibrium conditions, this becomes
(18)

Π =

∫ x̂(ū,Π)

x(ū,Π)

(
nH(x)

Z

)2

dx+

(∫ 1

x̂(ū,Π)

y(x)dx+ Π− F

N (ū)
− u−1 (v(N (ū)) + ū)

)
N (ū)−

(
N (ū)

Z

)2

.

From above, nH(x) is the upper intersection of the OL(n, x) and MC(n) curves and is pinned
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down as a function of Π and ū. From the population constraint,

(19) 1 =

∫ x̂(ū,Π)

x(ū,Π)

nH(x)dx+

∫ 1

x̂(ū,Π)

N (ū) dx.

The characterization of a stable general equilibrium is completed by an outside option ū
and a profit Π that solve Equations (18) and (19). I do not yet have a formal existence
proof. However, given functional forms for u(c) and v(n), it is straightforward to solve the
equations and characterize the equilibrium numerically.

2.2.2 Qualitative Predictions

The model can be used to generate a set of empirical predictions regarding density, house
prices, and marginal costs. Regarding density, the model predicts that the equilibrium
density will be uncorrelated with local productivity for locations where zoning is binding.
For all tracts, it should be positive. For the set of urban census tracts, the correlation
between income and density is −0.02. Adjusting for skill differences, in a process to be
detailed below, moves the correlation to 0.02. After adjusting for county-level averages—
which may result from common investments in infrastructure, or exogenous amenities—the
correlation moves to 0.07. These findings are consistent with the model.

The model predicts that house prices will perfectly offset productivity differences in locations
with binding zoning. Of course, housing prices respond to many factors not included in the
model, so the data is unlikely to show a perfect fit. To test this prediction, I compute a
residual house price by regressing tract-level housing costs on the same observable charac-
teristics that I use to adjust income. Then, I correlate this measure with tract-level income,
adjusted for observable characteristics. The correlation is 0.42 for owner-occupied housing
costs, and 0.38 for rental costs. These correlations are not inconsistent with the model. In
addition to the aforementioned exogenous amenities, unmodeled forces that may affect this
relationship include the quality of the housing stock, length of ownership for homeowners,
and housing subsidies or rent-control laws.

Finally, the model predicts that marginal costs will be constant across locations with binding
zoning. Together, these last two predictions imply that house prices in the most expensive
locations will be well above marginal costs of construction. This prediction is well-supported
by the (cf. Glaeser et al., 2005a).

2.3 Optimality: The Constrained Planner’s Problem

To provide a welfare benchmark with which to contrast the zoning equilibrium this section
describes the problem of a constrained planner. The planner chooses the set X of locations
to open, allocates population n(x) among these locations, and allocates consumption c(x)
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to households in order to maximize welfare. The planner is free to transfer output across
locations. The planner faces standard population and aggregate resource constraints as well
as a spatial equilibrium constraint. This final constraint restricts the planner to choosing
allocations that deliver identical utility to each household regardless of location; in this
sense, the planner is constrained. The spatial equilibrium condition implies that the welfare
criterion to be maximized is simply ū. The set of locations to open can be simplified to the
choice of a threshold location x.22

The planner’s problem is thus given by the following:

max
{ū,c(x),n(x),x}

ū

subject to the spatial equilibrium constraint

u (c(x))− v (n(x)) = ū ∀ x ∈ [x, 1] ,

the population constraint ∫ 1

x=x

n(x)dx = 1,

and the aggregate resource constraint∫ 1

x=x

[
(y(x)− c(x))n(x)− F −

(
n(x)

Z

)2
]
dx = 0.

The population n(x) can be thought of as the intensive margin of development while x is
the extensive margin of development. Note that each opened location is subject to a spatial
equilibrium condition. Given the choice of intensive margin n(x), the location-specific spatial
equilibrium constraints ensure the planner engages in transfers of output such that household
consumption offsets the level of congestion and each household receives utility ū.

The Lagrangian associated with the problem is:

L = ū+

∫ 1

x=x

λ(x) [u (c(x))− v (n(x))− ū] dx+ µ

[
1−

∫ 1

x=x

n(x)dx

]
(20)

+ Λ

∫ 1

x=x

[
(y(x)− c(x))n(x)− F −

(
n(x)

Z

)2
]
dx.

Here, λ(x) is the Lagrange multiplier on the spatial equilibrium constraint at location x,
µ is the multiplier on the population constraint and Λ is the multiplier on the resource
constraint. Taking first order conditions for n(x) and c(x) and rearranging, the planner

22The planner will never choose to open location x1 if location x2 > x1 has not already been opened.
Hence choosing the set X from within the set of locations [0, 1] amounts choosing the lowest-productivity
location to open: x.
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weighs the following objects against one another when choosing the intensive margin of
development n(x):

(21) Λ
[
y(x)− c(x)− 2n(x)/Z2

]
− Λn(x)

v′(n(x))

u′(c(x))
− µ = 0

The first term is the shadow resource value of the marginal household, the second term is
the shadow cost of congestion, in terms of resources, and the third term is the shadow cost
of having one fewer household to allocate elsewhere. The marginal household in a location
adds output—net of consumption and the construction cost—but also increases congestion
for the n(x) households already there.

To recall, the first order condition for the choice of local zoning was

F

n(x)
− n(x)

v′(n(x))

u′(c(x))
= 0.

Both the planner and the initial residents consider the role of the congestion externality.
While the initial residents weigh this externality against the value of sharing the local fixed
cost more broadly, the planner weighs it against the resource value of allocating a marginal
household to location x and the shadow value of the binding population constraint. The
first term in Equation (21) represents the net output of allocating a marginal household
to location x. Under the flat gradient that arises from the local zoning equilibrium, the
marginal value would be higher in productive locations. The planner will thus allocate more
households to such locations. This is they key intensive-margin wedge between the optimal
solution and the allocation with local zoning.

While initial residents ignore aggregate effects, they do consider the marginal value of sharing
the fixed cost more broadly. The planner ignores this margin: the fixed cost is paid when the
location was opened and should not affect the intensive margin. This is the second wedge
between the optimal solution and the allocation with local zoning. In short, the initial
residents ignore the aggregate effects of their choice to restrict housing supply.

The planner instead considers the fixed cost F at the extensive margin. As shown in Equation
(22), the planner weighs the net output of opening the marginal location x against the shadow
value of assigning n(x) households to this location.

(22) Λ

[
n(x) (y(x)− c(x))−

(
n(x)

Z

)2

− F

]
− n(x)µ = 0.

Recall that in the local zoning allocation outlined previously, the location in which the
OL(n, x) and MC(n) are tangent becomes the threshold. Restating, this condition was met
where

F

n∗(x)2
−
[
u−1
]′

(v (n∗(x)) + ū)× v′ (n∗(x)) = 2/Z2.
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This location arises through the general spatial equilibrium, rather than through being chosen
directly by any agent. In choosing the optimal threshold, the planner weighs the value and
costs of opening a marginal location. The differential outcomes for the threshold x highlight
an additional externality generated by the initial resident choice of local zoning: restrictive
zoning ensures that too many locations are opened in equilibrium, necessitating the payment
of fixed costs to open locations that would not be paid under the optimal allocation.

2.3.1 Decentralization: Socially Optimal Zoning

The planner’s allocation can be decentralized through the adoption of an alternative zoning
regime. In this decentralization, the full measure 1 of households votes on the set X of
locations to open and the gradient of zoning laws n̄(x) for each location x in X . In so doing,
households have rational expectations over the spatial equilibrium induced by the choices
they make. Households therefore choose zoning laws n̄(x) and the set of opened locations X
to maximize the endogenous outside option ū. Households choose these laws subject to the
population constraint and to the local and general spatial equilibria conditions.

Proposition 5. The utility-maximizing choices for the set of opened locations X and the
set of zoning laws n̄(x) are identical to those chosen by the planner. The equilibrium price
gradient and aggregate profits implement the planner’s choice of consumption. This set of
instruments allows households to fully implement the planner’s allocation.

Proof. See appendix.

Intuitively, households have the option of choosing the same zoning as the planner and will
do so. Prices will adjust such that households are indifferent across all locations. With
identical population across locations as the planner’s allocation, total output and aggregate
construction and fixed costs are also identical. By resource balance, aggregate consumption
must also be identical. By spatial equilibrium, consumption must make households indiffer-
ent between locations, and therefore equilibrium consumption is identical to the planner’s
allocation. The zoning laws and set of opened locations chosen by households in this prob-
lem can therefore be described as socially optimal zoning, as opposed to the locally optimal
zoning described previously.

The profits paid to households are a crucial mechanism for ensuring that this spatial equi-
librium will also be consistent with construction firm behavior. Note that household spatial
equilibrium pins down relative prices, but not levels. Because profits are distributed to house-
holds regardless of location, an increase of ε in the absolute level of prices at each location
leads to an increase in household profits by ε. This increase leaves household consumption
identical. This mechanism ensures that there exists a price gradient consistent with local
equilibrium from the firm perspective.
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3 Calibration

3.1 Data

Four key model components must be calibrated to data: the magnitude of the local fixed
cost, the shape of utility from consumption, the disutility of congestion, and the distribution
of location-specific productivity. This section describes the moments in the data that the
calibration seeks to match. In matching the moments, I take the set of urban U.S. Census
tracts to be the empirical counterpart of model locations.

For the utility of consumption, I consider u(c) = c. Linear utility follows related papers
(Van Nieuwerburgh and Weill, 2010; Davis and Dingel, 2014).23

For the disutility of congestion, I consider v(n) = γnη. To calibrate γ, I match the fraction
of income spent on consumption goods as measured in the Consumer Expenditure Survey
of the Bureau of Labor Statistics. As γ controls the relative utility weights of consumption
and congestion, a higher γ will induce households to open more locations and spend more
on housing and fixed costs rather than consumption. To ensure the data is well-matched
to the model concept, calibrate the consumption share of income to spending on tradeable
goods. These spending shares range from 52–61% for different income deciles, and average
58% overall.

As noted previously, an alternate interpretation of the local fixed cost has residents gaining
utility from a greater diversity of monopolistically competitive local services, each of which is
subject to a fixed cost.24 Using this interpretation, I calibrate the fixed cost F to match the
share of consumer spending on local services. In particular, I use the Consumer Expenditure
Survey categories for food away from home, personal services, medical services, and fees
and admissions. These spending shares range from 7–10% for different income deciles, and
average 8.5% overall.

I calibrate the congestion shape parameter η to match the average population density of
urban census tracts, as identified by the Census Bureau for 2010. Given the functional form
assumptions, the local equilibrium population for locations with binding zoning is given by

n =

(
F

γ η

)1/(1+η)

.

As the zoning law will bind for a substantial fraction of locations, the shape parameter η
has a first-order effect on average population density.25 Intuitively, too low a congestion cost

23See appendix for robustness with log utility.
24In a local services model, expenditure will be precisely F/n(x) if the elasticity of substitution between

local service firms is 1 or if aggregated local services enter the utility function linearly, such that u(c, S) =
c + S, where S is a CES aggregator of local services. More generally, local expenditure will be F/n(x)σ,
where σ is the elasticity of substitution between local services.

25The intuition is similar in spirit to using wage shares to calibrate the labor and capital exponents in a
production function: in equilibrium, the parameters can have first-order effects on levels.
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Param Value Description Model Target Data Model
γ 1/215 Congestion weight Consumption sh. of expend 52%–61% 55%
F 0.1265 Fixed cost Local services sh. of expend 7%-10% 7.8%
η 7 Congestion curvature Ave. urban density 5,100/sq mi 5,900/sq mi

Z 2.7 Construction prod. p/MC in best locations 5.2–5.8 5.6

Table 1: The classification of tracts as urban follows the Census Bureau’s 2010 classification. The
consumption share of expenditure is taken from the Consumer Expenditure Survey for 2012, and
is equal to consumption net of spending on housing and local services. The price-to-marginal cost
ratio follows the approach of Glaeser et al. (2005a).

would cause households to live at too-high densities in productive locations, compared to
the data.26

I calibrate construction firm productivity to match the ratio of price per square foot to cost
per square foot in the most productive places: Manhattan, San Francisco, or Silicon Valley.
For this exercise, average price per square foot data is taken from Zillow, and cost data is
taken from RS Means. Both report cost data at the level of counties and, in some instances,
for sub-county regions.

The distribution of income is taken from census tract median incomes, adjusted for observ-
ables in a process that follows Hsieh and Moretti (2015). I take individual-level data from
IPUMS on income, education, race, and gender. I then run a regression using the following
equation:

yi = Xiβ + εi,

where yi is the income of individual i and Xi is the vector of observable characteristics. I
then take the estimate of β and calculate the residual income ỹ of each tract `:

ỹ` = y` −X`β,

where y` is the measured average income per worker and X` is the fraction of the tract with
the given observable characteristics.

Table (1) summarizes the calibration targets and the model fit. For three of the four pa-
rameters, the calibrated parameter is within the range from the data. The search of the
parameter space failed to find a set of values for which the density was closer to the data
while maintaining consistency with the other parameters. At the same time, it is plausible
that households have reasons beyond productivity for choosing locations.

26Note that it is not necessary to take a stand on the precise productivity of non-urban locations, whose
measured incomes may not be a good guide to those earned by new households. It is sufficient to assume
that non-urban households have lower productivity than those occupied at urban population levels.
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4 Quantitative Results

The key quantitative question this paper addresses is: what are the welfare costs of locally-
determined zoning laws? In the baseline calibration, implementing the planner’s allocation
would increase welfare by 1.4%. Consumption would increase by 2.4% and GDP by 2.1%,
but increased congestion would mitigate these gains.27 The planner would close the 3%
lowest-productivity locations, and population density at the 95th percentile location would
increase by 18%. The density at the median location would increase by 2%. These results
are summarized in Table (2), along with results from two additional counterfactuals.

The first counterfactual, labeled Market in the table, corresponds to an allocation with no
zoning, and construction firms free to build without constraint. In the language of the model,
the equilibrium for each location is the upper intersection of the OL(n, x) and MC(x) curves.
This counterfactual corresponds to that studied by Hsieh and Moretti (2015), and I find an
increase in GDP of 6%, half of the 13.5% that they report. Part of the different may be
due to the presence in this model of congestion externalities, which limit the willingness
of households to crowd into productive locations. Moreover, the estimates are of the same
order of magnitude despite using different methodologies.

While the GDP increase from zoning abolition is substantial, the increased in congestion is
as well. The median location sees an increase in population density of 15%, and the increase
is almost 50% at the 95th percentile. Accordingly, welfare declines by almost 6%, despite
the large increase in consumption. This result suggests that the productivity gains to zoning
abolition put forth by Hsieh and Moretti (2015) will not, in fact, increase welfare.

The second counterfactual, labeld Upzoning in the table, corresponds to an allocation with
no zoning in locations with the productivity greater than the 95th percentile. As census
tracts average about four thousand inhabitants, these locations are home to approximately
ten million residents. For scale, the San Francisco Bay Area is home to five million urban
residents. Under this allocation, GDP increases by 2% while welfare declines by 2%. This
contrasts with Hsieh and Moretti (2015), who find large productivity gains of 9.5% from
increasing the population of the best cities.

The median rent, also in Table (2), provides insight into the changing tradeoffs with each
reform. Three key forces determine the median rent: the productivity of the median res-
ident, the congestion faced by the median resident, and the outside option ū. Under the
decentralized version of the planner’s allocation, house prices increase by 3% for the median
household. Each location is a little more crowded—and so rents for each location fall, be-
tween 1–5%—but the median household is now in a more productive location and thus their
rent increases. The market equilibrium also sees the median household in a more productive
location, but this location is now much more crowded. Correspondingly, rents fall by 16%.
Finally, in the upzoning case, the median household is in a more productive location with

27Recall that utility is quasilinear, so the welfare and consumption figures can be compared meaningfully.
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Relative Outcome Planner Market Upzoning
Welfare 1.4% -5.9% -2.0%
GDP 2.1% 6.0% 2.0%
Consumption 2.4% 5.6% 2.1%
Median Rent 2.9% -16% -1.8%

Table 2: All results are relative to the main zoning results. The planner results give the gains from
moving to the optimal allocation. The market results give the counterfactual with no zoning laws.
The upzoning results give the counterfactual with no zoning laws in the 5% highest-productivity
locations.

the same level of congestion. However, they are slightly worse off, and so they are unwilling
to bid as much for housing, and rents fall.

Given the calibrated parameters, the main policy implication of the model is to allow zoning
laws to be chosen at a higher geographic level—preferably, the national level. This would
ensure that the productivity effects of zoning laws are internalized and would enable the
implementation of the planner’s optimal allocation.

The fundamental role of congestion in shaping preferences and outcomes points towards a
second policy implication beyond implementing the planner’s regime: introducing reforms
that could lower the cost of congestion to the neighborhood. Understanding the specific
component of congestion that drives externalities will identify the appropriate form of mit-
igation. If neighborhood congestion is driven by vehicle traffic, then perhaps rapid transit
would enable more-dense development by reducing the costs of congestion imposed by new
development. Congestion-mitigation efforts like transit can be quite costly, and within a
context of spatial equilibrium, the benefits would be felt widely. As with local zoning, the
current transit-planning regime may not take into consideration the external effects of tran-
sit.

Distributional Outcomes Abolishing zoning—whether nationally or just in the highest-
productivity locations—cannot improve welfare under this calibration. This fact is driven
in part by the curvature to the cost of congestion: increasing the intensity of development
in productive places is simply too costly in terms of welfare. A second factor that plays
an important role is the assumption that profits are shared equally among all households.
When restrictive zoning drives up house prices in productive locations, the profits earned
are redistributed across all locations. To understand the role played by this assumption, I
now introduce a second calibration wherein construction-sector profits are not returned to
households. This calibration mirrors the traditional urban economics assumption of absentee
landlords, who collect rent but do not otherwise interact with households.28

28Eeckhout and Guner (2015) performs a similar exercise and identifies absentee landlords with the con-
centrated landholdings of the 1% wealthiest households. They suppose that the planner values a fraction of
housing sector profits that is distributed to households, but not the fraction distributed to absentee landlords.

25



Relative Outcome Planner Market Upzoning
Welfare 1.5% -10% -3.2%
Welfare ex profits 7.3% 23% 3.7%
GDP 2.6% 6.3% 1.9%
Consumption 9.3% 50% 12%
Median Rent -5.3% -42% -2.1%

Table 3: All results are relative to the main zoning results, and all results ignore the welfare
derived from profits—this allows the welfare gains discounting profits from the market allocation
to exceed those from the planner’s. The planner results give the gains from moving to the optimal
allocation. The market results give the counterfactual with no zoning laws. The upzoning results
give the counterfactual with no zoning laws in the 5% highest-productivity locations.

Table (3) shows the analogous results under this model.29 Here, the gains to GDP are similar
to those before, and the losses to welfare of zoning abolition are even greater. However, the
change to welfare discounting profits—that is, the welfare of the typical households—are
positive. This exercise highlights the key role played by construction profits. Residents of
productive places don’t actually enjoy the high productivity, they simply pay higher rents.
When these profits are shared broadly, these rents are redistributed so that all households,
regardless of location, share the output of high-productivity locations. When these profits
are not shared broadly, households in less productive locations have more to gain from
zoning abolition because moving into a productive location now earns them significantly
more consumption.

4.1 Empirical Implications

The model focuses on just two of potentially many local externalities. Numerous facets of
the model lend themselves to further empirical validation. Similarly, the simple model can
be extended with greater heterogeneity, including of household productivity, of locational or
household preferences over congestion costs and fixed costs, and of locational amenities.

Within the model, existing residents choose zoning regulations to maximize their amenity
mix, trading sharing externalities against congestion. In doing so, they also maximize the
rents that new households are willing to pay: maximizing amenities and maximizing land
values are identical. However, local ownership of land (e.g., in the form of homeownership)
may break this felicitous duality as landowners may seek to restrict the supply of new housing,
a close substitute to their own asset. Empirically, it may be possible to distinguish between
these intents using evidence from surveys or by identifying preferences over regulations that
would increase supply but have a positive effect on local amenities (or vice versa).

29For these results, I have recalibrated the model so that the new model-defined moments are consistent
with the data. The consumption share is 54%, the local service share 7.7%, the construction sector markup
is 7.4%, and 88% of locations in the data are opened.
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Local variation in model parameters could be tested to examine the strength of their rela-
tionship to equilibrium outcomes. For instance, the fixed costs of development may be higher
in regions that are more arid, or prone to extreme weather, due to the costs of necessary
infrastructure. New development in the arid fringe of Los Angeles is quite dense by the stan-
dards of new development in rainier eastern cities like Atlanta.30 All else equal, do locations
with higher fixed costs see higher-density development, as the model would predict?

Similarly, some locations have seen dramatic changes to their productivity, but homeowners—
like the initial residents of the model—don’t see any immediate change in their costs. The
model predicts that locations with large positive shocks should see little new development
but great increases in house price. Instead, the model predicts that new development would
be concentrated in previously-rural locations at the fringes of newly productive regions.
Anecdotally, Palo Alto—a key center of innovation in the San Francisco area—has grown
from a population of 55,225 in 1980 to 64,403 in 2010. The city of Antioch, of similar ge-
ographic extent at the fringe of the region, grew from 43,559 residents to 102,372 over the
same period. Part of this differential can be explained by the effects of durable capital (cf.
Siodla, 2015); a careful test of this prediction could be challenging but insightful.

In Boulder, CO, a measure on the ballot in the fall of 2015 would have empowered dozens
of local neighborhood groups with an easy path to halting unwanted development, within
a city of just 100,000 residents. The outcome and voting patterns in the election could
help to test model predictions. In particular, the model assumes locations are sufficiently
small that residents can ignore the aggregate effects of their zoning decisions. Regulatory
changes at higher levels of government are more likely to affect aggregate variables, such
as the threshold occupied location. Residents who stand to benefits more from changes to
aggregate variables would be more likely to oppose the measure. Renters, the young, and
new arrivals may be more likely to benefit from aggregate changes within Boulder, relative
to long-time homeowners with substantial equity dependent on the status quo.

Similarly, the model could be extended to include differential preferences over congestion:
perhaps some households are more or less bothered by adding more neighbors. Empirically,
households with families might be more sensitive to congestion, even conditioning on dwelling
size. This extension could refine the estimates of welfare gains from adding density to
productive locations.

5 Conclusion

This paper provides a unified framework to address the local and aggregate welfare ef-
fects of local land-use regulation. It provides empirically-grounded externalities that incent

30For example, a recently-developed subdivision in Lancaster, CA was developed to approximately 5,000
people per square mile, while a similarly-new development in Powder Springs, GA is approximately half the
density.
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households to pass restrictive zoning laws that prevent new housing development at the
neighborhood level. In their endogenous choice of zoning, households rationally ignore the
aggregate implications that arise from location heterogeneity. Households thus bid up the
price of artificially scarce housing in productive locations so that prices exceed the marginal
costs of construction.

The endogeneity of zoning plays a critical role in overcoming the lack of sufficient data to
identify the wedge between house price and marginal cost at the neighborhood level. A
calibrated version of the model is used to perform a welfare calculation: how large are the
aggregate losses to welfare from local zoning relative to the planner’s optimum? The model
provides an interpretation of these welfare costs without measuring these wedges directly. In
the preferred calibration, welfare could be raise 1.4% lower by implementing the planner’s
allocation. Aggregate output would be raised 2.1%: one-third of the gains to output are
negated by the increased congestion felt by residents of productive locations.
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A Additional Figures

Figure 3: Plot of housing prices and increases in the quantity of housing units in selected
counties. In descending order, the top three counties are San Francisco, San Mateo, and
Santa Clara: Silicon Valley.
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Figure 4: A Google Earth satellite image of the built-up edge of Las Vegas. Note that the
city edge is obvious: on the left, population densities are in the upper single-digit thousands
while the right is undeveloped desert. While this desert is itself likely to fill in, the pattern of
a sharp edge will likely remain. While desert development may entail unusually large fixed
costs, similar patterns hold in regions with friendly climates.
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B Proofs

Lemma 1. Define n̄ to be the population that maximizes the OL (n, x) curve. Given outside
option ū, the level of population n̄ is unique and independent of location.

Proof. From Proposition (1), the OL (n, x) curve is strictly concave and twice continuously
differentiable. The portion of the OL (n, x) curve with n(x) > 0 is given:

OL (n, x) = y(x) + Π− F

n
− u−1 (v(n) + ū) .

The following first order condition is thus necessary and sufficient for the maximum:

(23)
F

n2
−
[
u−1
]′

(v(n) + ū) v′(n) = 0.

Call the population level that solves this n̄. Given ū, the value of n̄ is constant and inde-
pendent of location. Write as N (ū) the strictly decreasing function that gives the level of
population that solves Equation (23) as a function of ū.

Lemma 2. Define location x̂ (ū,Π) as follows:

x̂ (ū,Π) =

{
x s.t. OL (N (ū), x̂) = MC (N (ū)) if OL (N (ū), 1) ≥MC (N (ū))
1 otherwise.

Then x̂ (ū,Π) is unique and in the range [x, 1].

Proof. In the first case, the highest-productivity location has an OL(n, 1) curve with max-
imum value that exceeds the marginal cost at the corresponding level of population n̄. At
the threshold occupied location x, the OL (n, x) and MC (n) curves meet with tangency.
The marginal cost curve has positive slope, and so this tangency must occur to the left
of the maximum of the OL (n, x) curve. Evaluated at N (ū), OL (N (ū), x) is continuous
and strictly increasing in x. Therefore there exists a unique x̂ (ū,Π) ∈ [x, 1] such that
OL (N (ū), x̂ (ū,Π)) = MC (N (ū)).

In the second case, OL(N (ū), x) < MC(N (ū)) for all locations. Then x̂ (ū,Π) is uniquely
defined as 1 and is within the specified range.

Proposition 1. In a stable general equilibrium, the following characterizes the local equilib-
rium populations and optimal zoning. For all locations x > x̂, n∗(x) = n̄(x) = N (ū). For
all locations x ∈ [x, x̂], the population n∗(x) and optimal zoning n̄(x) are given by the upper
intersection of the OL (n, x) and MC (n) curves. For all x ≥ x, p∗(x) is given by the value
of the OL (n, x) curve evaluated at n∗(x).

Proof. For locations x > x̂, the OL(n, x) curve is strictly greater than the MC(n) curve, and
therefore the equilibrium population can only be given by n̄ if the initial residents choose the
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zoning law n̄(x) = n̄. I will show that this is the case. Note OL(n, x) > MC(n) implies that
the participation constraint will not bind, and so the solution to the initial resident problem
is given by the first order condition

u′
(
y(x) + Π− F

n
− p0(x)

)
F

n2
= v′ (n) .

And in stable equilibrium, p0(x) = p(x) so substituting from the household spatial equilib-
rium condition gives

u′
(
u−1 (v(n) + ū)

) F
n2

= v′ (n) .

From above, the maximum of the OL(n, x) curve is given by the n that solves

[
u−1
]′

(v(n) + ū) v′(n) =
F

n2
.

By the definition of the derivative of the inverse, these are equivalent: for locations with
non-binding participation constraints, the level of population N (ū) that gives the maximum
of the OL (n, x) curve is identical to that which maximizes initial resident utility (given the
stability condition that p0(x) = p(x)). For all locations x > x̂ (ū,Π), N (ū) is consistent
with the participation constraint and hence n∗(x) = n̄(x) = N (ū) for such locations. By
Equation (6), the equilibrium price for such locations is given by OL (N (ū), x).

Consider location x ∈ [x, x̂]. From above, with p0(x) = p(x) the unconstrained choice
of zoning that maximizes initial resident utility is the level of population that maximizes
the OL (n, x) curve. By definition, for locations with x < x̂ (ū,Π) the maximum of the
OL (n, x) curve is below the MC (n) curve and hence infeasible. By concavity of the initial
resident problem, the participation constraint will bind and the local equilibrium population
(and optimal zoning law) is given by the upper intersection of the OL (n, x) and MC (n)
curves.
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