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Abstract

This paper formulates and estimates multistage production functions for child cognitive

and noncognitive skills. Output is determined by parental environments and investments at

different stages of childhood. We estimate the elasticity of substitution between investments

in one period and stocks of skills in that period to assess the benefits of early investment

in children compared to later remediation. We establish nonparametric identification of a

general class of nonlinear factor models. A by-product of our approach is a framework for

evaluating childhood interventions that does not rely on arbitrarily scaled test scores as

outputs and recognizes the differential effects of skills in different tasks. Using the esti-

mated technology, we determine optimal targeting of interventions to children with different

parental and personal birth endowments. Substitutability decreases in later stages of the

life cycle for the production of cognitive skills. It increases in later stages of the life cycle

for the production of noncognitive skills. This finding has important implications for the

design of policies that target the disadvantaged. For some configurations of disadvantage

and outcomes, it is optimal to invest relatively more in the later stages of childhood.
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1 Introduction

A large body of research documents the importance of cognitive skills for social and economic

success.1 An emerging body of research establishes the parallel importance of noncognitive

skills.2 Understanding the factors affecting the evolution of cognitive and noncognitive skills

is important for understanding how to promote successful lives.3

This paper estimates the technology governing the formation of cognitive and noncogni-

tive skills in childhood. We establish identification of general nonlinear factor models which

enable us to determine the technology of skill formation. Our multistage technology cap-

tures different developmental phases in the life cycle of a child. We identify and estimate

substitution parameters that determine the importance of early parental investment for sub-

sequent lifetime achievement, and the costliness of later remediation if early investment is

not undertaken.

Cunha and Heckman (2007) present a theoretical framework that organizes and inter-

prets a large body of empirical evidence on child and animal development.4 Cunha and

Heckman (2008) estimate a linear dynamic factor model that exploits cross equation restric-

tions (covariance restrictions) to secure identification of a multistage technology for child

investment.5 With enough measurements relative to the number of latent skills and invest-

ments, it is possible to identify the latent state space dynamics generating the evolution of

skills.

The linear technology used by Cunha and Heckman (2008) imposes the assumption that

early and late investments are perfect substitutes. This paper identifies a more general non-

linear technology by extending linear state space and factor analysis to a nonlinear setting.

This extension allows us to identify crucial elasticity of substitution parameters governing

the trade-off between early and late investments.

Drawing on the analyses of Schennach (2004a) and Hu and Schennach (2008), we es-

tablish identification of the technology of skill formation. We relax the strong independence

assumptions for error terms in the measurement equations that are maintained in Cunha and

1See Herrnstein and Murray (1994), Murnane, Willett, and Levy (1995), and Cawley, Heckman, and
Vytlacil (2001).

2See Heckman, Stixrud, and Urzua (2006), Borghans, Duckworth, Heckman, and ter Weel (2008) and
the references they cite. See also the special issue of the Journal of Human Resources 43 (4), Fall 2008 on
noncognitive skills.

3See Cunha, Heckman, Lochner, and Masterov (2006) and Cunha and Heckman (2007).
4See Knudsen, Heckman, Cameron, and Shonkoff (2006) and Heckman (2008).
5See Shumway and Stoffer (1982) and Watson and Engle (1983) for early discussions of such models.

Amemiya and Yalcin (2001) survey the literature on nonlinear factor analysis. Our identification analysis is
new. For a recent treatment of dynamic factor and related state space models see Durbin, Harvey, Koopman,
and Shephard (2004) and the voluminous literature they cite.
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Heckman (2008) and Carneiro, Hansen, and Heckman (2003). The assumption of linearity of

the technology in inputs that is used by Cunha and Heckman (2008) and Todd and Wolpin

(2003, 2005) is not required. We allow inputs to interact in producing output. We generalize

the factor-analytic index function models used by Carneiro, Hansen, and Heckman (2003) to

allow for more general functional forms for measurement equations. We solve the problem

of defining a scale for the output of childhood investments by anchoring test scores using

the adult outcomes of the child, which have a well-defined cardinal scale. We determine

the latent variables that generate test scores by estimating how the latent variables predict

adult outcomes.6 Our approach sets the scale of test scores and latent variables in an inter-

pretable metric. Using this metric, analysts can meaningfully interpret changes in output

and conduct interpretable value-added analyses.7

The plan of this paper is as follows. Section 2 briefly summarizes the previous literature

to motivate our generalization of it. Section 3 presents our identification analysis. Section 4

discusses our estimation strategy. Section 5 discusses the data used to estimate the model

and the model estimates. Section 6 concludes.

2 A Model of Cognitive and Noncognitive Skill For-

mation

We analyze a model with multiple periods of childhood, t ∈ {1, 2, . . . , T}, T ≥ 2, followed by

J periods of adult working life, t ∈ {T + 1, T + 2, . . . , T + J}. The T childhood periods are

divided in S stages of development, s ∈ {1, . . . , S}, with S ≤ T. Adult outcomes are produced

by cognitive skills, θC,T , and noncognitive skills, θN,T .8 Denote parental investments at age

t in child skill k by Ik,t, k ∈ {C,N}.
Skills evolve in the following way. Each agent is born with initial conditions θ1 =

(θC,1, θN,1). Family environments and genetic factors may influence these initial conditions

(see Olds, 2002, and Levitt, 2003). We denote by θP = (θC,P , θN,P ) parental cognitive and

noncognitive skills, respectively. θt = (θC,t, θN,t) denotes the vector of skill stocks in period

t. Let ηt = (ηC,t, ηN,t) denote shocks and/or unobserved inputs that affect the accumulation

of skills θt. The technology of production of skill k in period t and developmental stage s

6Cawley, Heckman, and Vytlacil (1999) anchor test scores in earnings outcomes.
7Cunha and Heckman (2008) develop a class of anchoring functions invariant to affine transformations.

This paper develops a more general class of monotonic transformations and presents a new analysis of joint
identification of the anchoring equations and the technology of skill formation.

8This model generalizes Becker and Tomes (1986), who assume only one period of childhood (T = 1) and
consider one output associated with “human capital” that can be interpreted as a composite of cognitive
(C) and noncognitive (N) skills.
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depends on the stock of skills at date t, investment at t, Ik,t, parental skills, θP , shocks at

period t, ηk,t, and the production function at stage s :

θk,t+1 = fs,k (θt, Ik,t, θP , ηk,t) , (2.1)

for k ∈ {C,N}, t ∈ {1, 2, . . . , T}, and s ∈ {1, . . . , S}. We assume that fs,k is monotone

increasing in its arguments, twice continuously differentiable, and concave in Ik,t. In this

model, stocks of skill produce next period skills and affect the current period productivity

of investments. Stocks of cognitive skills can promote the formation of noncognitive skills

and vice versa because θt is an argument of (2.1).

Direct complementarity between the stock of skill l and the productivity of investment

Ik,t in producing skill k in period t arises if

∂2fs,k(·)
∂Ik,t∂θl,t

> 0, t ∈ {1, . . . , T}, l, k ∈ {C,N}.

Period t stocks of abilities and skills promote acquisition of skills by making investment more

productive. Students with greater early cognitive and noncognitive abilities are more efficient

in later learning of both cognitive and noncognitive skills. The evidence from the early

intervention literature suggests that the enriched early environments of the Abecedarian,

Perry and CPC programs promoted greater efficiency in learning in high schools and reduce

problem behaviors.9

Adult outcome j, Qj, is produced by a combination of different period T + 1 skills:

Qj = gj (θC,T+1, θN,T+1) , j ∈ {1, . . . , J}.10 (2.2)

These outcome equations capture the twin concepts that both cognitive and noncognitive

skills matter for performance in most tasks in life and have different effects in different tasks

in the labor market and in other areas of social performance. Outcomes include test scores,

wages, achievement in an occupation, hours worked, criminal activity, teenage pregnancy,

etc.

In this paper, we focus attention on a CES version of technology (2.1) where we assume

9See, e.g., Cunha, Heckman, Lochner, and Masterov (2006), Heckman, Moon, Pinto, Savelyev, and Yavitz
(2008) and Heckman, Moon, Pinto, and Yavitz (2008).

10To focus on the main contribution of this paper, we focus on investment in children. Thus we assume that
θT+1 is the adult stock of skills for the rest of life contrary to the evidence reported in Borghans, Duckworth,
Heckman, and ter Weel (2008). The technology could be extended to accommodate adult investment as in
Ben-Porath (1967) or its generalization (Heckman, Lochner, and Taber, 1998).
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that θC,t, θN,t, IC,t, IN,t, θC,P , θN,P are scalars. Output of skills at stage s is governed by

θC,t+1 =
[
γs,C,1θ

φs,C
C,t + γs,C,2θ

φs,C
N,t + γs,C,3I

φs,C
C,t + γs,C,4θ

φs,C
C,P + γs,C,5θ

φs,C
N,P

] 1
φs,C , (2.3)

θN,t+1 =
[
γs,N,1θ

φs,N
C,t + γs,N,2θ

φs,N
N,t + γs,N,3I

φs,N
N,t + γs,N,4θ

φs,N
C,P + γs,N,5θ

φs,N
N,P

] 1
φs,N , (2.4)

where γs,k,l ∈ [0, 1],
∑

l γs,k,l = 1 for k ∈ {C,N}, l ∈ {1, . . . , L}, t ∈ {1, . . . , T} and

s ∈ {1, . . . , S}. 1
1−φs,k

is the elasticity of substitution in the inputs producing θk,t+1, where

φs,k ∈ (−∞, 1] for k ∈ {C,N}. For the moment, we ignore the shocks ηt in (2.1), although

they play an important role in our empirical analysis.

A CES specification of adult outcomes in periods after T writes

Qj =
{
ρj (θC,T+1)

φQ,j + (1− ρj) (θN,T+1)
φQ,j
} 1
φQ,j , (2.5)

where ρj ∈ [0, 1], and φQ,j ∈ (−∞, 1] for j = 1, . . . , J . 1
1−φQ,j

is the elasticity of substitu-

tion across different skills in the production of outcome j. The importance of cognition in

producing output in task j is governed by share parameter ρj. The ability to compensate

cognitive deficits by noncognitive skills is governed by φQ,j.

To gain some insight into this model, consider a special case where the elasticities of

substitution are the same across technologies (2.3) and (2.4) and in all outcome functions

(2.5), so φs,C = φs,N = φQ,j = φ for all s ∈ {1, . . . , S} and j ∈ {1, . . . , J}, childhood lasts

two periods (T = 2), there are no period “0” investments, and investment is scalar. Assume

one investment good in each period that increases both cognitive and noncognitive skills,

though not necessarily by the same amount. Ik,t ≡ It, k ∈ {C,N}. Assume only one adult

outcome (“human capital”) so J = 1. In this case the adult outcome function in terms of

investments, initial endowments, and parental characteristics can be written as

Q =
[
τ1I

φ
1 + τ2I

φ
2 + τ3θ

φ
C,1 + τ4θ

φ
N,1 + τ5θ

φ
C,P + τ6θ

φ
N,P

] 1
φ

, (2.6)

where τi for i = 1, . . . , 6 depend on the parameters of equations (2.3)–(2.5).11 Cunha and

Heckman (2007) analyze the optimal timing of investment using a special version of the

technology embodied in (2.6).

Suppose that parents maximize the net present value of child wealth, that they can lend

and borrow freely at market rate r and that there is no uncertainty. Parents decide how

much to invest in period “1”, I1, and period “2”, I2, and how much to transfer in risk-free

11See Web Appendix 5 for the derivation of this expression in terms of the parameters of equations (2.3)–
(2.5).
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assets at a fixed interest rate r, given total parental resources. Assuming an interior solution,

and that the price of investment is the same in both periods, the optimal ratio of period 1

investment to period 2 investment is

log

(
I1
I2

)
=

(
1

1− φ

)[
log

(
τ1
τ2

)
− log (1 + r)

]
. (2.7)

Figure 1 plots the ratio of early to late investment as a function of τ1/τ2 for different values

of φ. Ceteris paribus, the higher τ1 relative to τ2, the higher first period investment should be

relative to second period investment. The parameters τ1 and τ2 are affected by the produc-

tivity of investments in producing skills, which are generated by the technology parameters

γs,k,3, for s ∈ {1, 2} and k ∈ {C,N}, and also depend on the relative importance of cognitive

skills, ρ, versus noncognitive skills, 1−ρ, in producing the adult outcome Q. Ceteris paribus,

if τ1
τ2
> (1 + r), the higher the CES complementarity, (i.e., the lower φ), the greater is the

ratio of early to late investment. The greater r, the smaller should be the ratio of early

to late investment. In the limit, if investments complement each other strongly, optimality

implies that they should be equal in both periods.

To see how these parameters affect the ratio of early to late investment, suppose that

early investment only produces cognitive skill, so that γ1,N,3 = 0, and late investment only

produces noncognitive skill, so that γ2,C,3 = 0. In this case, the ratio
(
τ1
τ2

)
can be expressed

in terms of the technology and outcome function parameters:(
τ1
τ2

)
=

(ργ2,C,1 + (1− ρ) γ2,N,1)

(1− ρ)

γ1,C,3

γ2,N,3

.

For a given value of ρ (the weight placed on cognition in final outcomes), the ratio of early

to late investment is higher the greater the ratio
γ1,C,3
γ2,N,3

. To investigate the role ρ plays in

determining the optimal ratio of investments, assume that γ2,C,1 ≥ γ2,N,1, so that the stock

of cognitive skill, θC,1, is at least as effective in producing next period cognitive skill, θC,2, as

in producing next period noncognitive skill, θN,2. Under this assumption, the higher ρ, that

is, the more important cognitive skills are in producing Q, the higher the equilibrium ratio

I1/I2. If, on the other hand, Q is more intensive in noncognitive skills, then I1/I2 is smaller.

This example builds intuition about the importance of the elasticity of substitution in

determining the optimal timing of lifecycle investments. However, it oversimplifies the anal-

ysis of skill formation. It is implausible that the elasticity of substitution between skills in

adult output ( 1
1−φQ

) is the same as the elasticity of substitution for inputs in production,

and that a common elasticity of substitution governs the productivity of inputs in producing

both cognitive and noncognitive skills.
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Our analysis allows for multiple adult outcomes and outputs of multiple skills. We allow

different elasticities of substitution to govern the technologies of cognitive and noncognitive

skills, for these to differ at different stages of the life cycle and for both to be different

from the elasticity of substitution for cognitive and noncognitive skills in producing adult

outcomes. We test and reject the assumption that φs,C = φs,N for s ∈ {1, . . . , S}. We do

not impose the requirement that either φs,C or φs,N equals φQ,j.

3 Identifying the Technology using Dynamic Factor

Models

Identifying and estimating technology (2.1) is challenging. Both inputs and outputs can

only be proxied. Measurement error in general nonlinear specifications of technology (2.1)

raises serious econometric challenges. Inputs may be endogenous and the unobservables in

the input equations may be correlated with unobservables in the technology equations.

This paper addresses these challenges. Specifically, we: (1) Determine how stocks of

cognitive and noncognitive skills at date t affect the stocks of skills at date t+ 1, identifying

both self productivity (the effects of θN,t on θN,t+1, and θC,t on θC,t+1) and cross productivity

(the effects of θC,t on θN,t+1 and the effects of θN,t on θC,t+1) at each stage of the life cycle.

(2) Develop a non-linear dynamic factor model where (θt, It, θP ) is proxied by vectors of

measurements which include test scores and input measures as well as outcome measures. In

our analysis, test scores and personality evaluations are indicators of latent skills. Parental

inputs are indicators of latent investment. We account for measurement error in these

measures. (3) Estimate the elasticities of substitution for the technologies governing the

production of cognitive and noncognitive skills. (4) Anchor the scale of test scores using

adult outcome measures instead of relying on test scores as measures of output. (5) Account

for endogeneity of parental investments. (6) Model parental investment decisions.

Our analysis of identification proceeds in the following way. We start with a model where

measurements are linear and separable in the latent variables, as in Cunha and Heckman

(2008). We establish identification of the joint distribution of the latent variables without

imposing conventional independence assumptions about measurement errors. With the joint

distribution of latent variables in hand, we nonparametrically identify technology (2.1) given

alternative assumptions about ηk,t. We then extend this analysis to identify nonparametric

measurement, and production models. We anchor the latent variables in adult outcomes

to make their scales interpretable. Finally, we account for endogeneity of inputs in the

technology equations and we model investment behavior.
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3.1 Identifying the Distribution of the Latent Variables

We use a general notation for all measurements to simplify the econometric analysis. Let

Za,k,t,j be the jth measurement at time t on measure of type a for factor k. We have

measurements on test scores and parental and teacher assessments of skills (a = 1), on

investment (a = 2) and on parental endowments (a = 3). Each measurement has a cognitive

and noncognitive component so k ∈ {C,N}. We initially assume that measurements are

additively separable functions of the latent factors θk,t and Ik,t:

Z1,k,t,j = µ1,k,t,j + α1,k,t,jθk,t + ε1,k,t,j (3.1)

Z2,k,t,j = µ2,k,t,j + α2,k,t,jIk,t + ε2,k,t,j, (3.2)

where E(εa,k,t,j) = 0, j ∈ {1, . . . ,Ma,k,t}, t ∈ {1, . . . , T}, k ∈ {C,N}, a ∈ {1, 2}

and where εa,k,t,j are uncorrelated across the j. Assuming parental endowments are measured

only once in period t = 1, we write

Z3,k,1,j = µ3,k,1,j + α3,k,1,jθk,P + ε3,k,1,j,
12 (3.3)

E (ε3,k,1,j) = 0, j ∈ {1, . . . ,M3,k,1}, and k ∈ {C,N}.

The αs are factor loadings. The parameters and variables are defined conditional on X

which we keep implicit. Following standard conventions in factor analysis, we set the scale

of the factors by assuming αa,k,t,1 = 1 and normalize E(θk,t) = 0 and E (Ik,t) = 0 for all

k ∈ {C,N}, t = 1, . . . , T . Separability makes the identification analysis transparent. We

consider a more general nonseparable model below. Given measurements Za,k,t,j, we can

identify the mean functions µa,k,t,j, a ∈ {1, 2, 3}, t ∈ {1, . . . , T}, k ∈ {C,N} which may

depend on the X.

12This formulation assumes that measurements a ∈ {1, 2, 3} proxy only one factor. Carneiro, Hansen, and
Heckman (2003) consider alternative specifications, but in a much less general econometric model. The key
idea in all factor approaches is one normalization of the factor loading for each factor in one measurement to
set the scale of the factor and some measurements for each measurement of type a dedicated to each factor.
It is clear that even within the framework of this paper, as long as some of each of the measurements of type
a satisfy the assumptions in this paper, one can identify the factor loadings of the remaining measurements
that do not satisfy the assumptions if, for example, the factors are mutually independent.
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3.2 Identification of the Factor Loadings and of the Joint Distri-

butions of the Latent Variables

We first establish identification of the factor loadings under the assumption that the εa,k,t,j

are uncorrelated across t and that the analyst has at least two measures of child skills and

investments in each period t, where T ≥ 2.13 Without loss of generality, we focus on α1,C,t,j

and note that similar expressions can be derived for the loadings for the remaining latent

factors.

Since Z1,C,t,1 and Z1,C,t+1,1 are observed, one can compute Cov (Z1,C,t,1, Z1,C,t+1,1) from

the data. Because of normalization α1,C,t,1 = 1 for all t, we obtain:

Cov (Z1,C,t,1, Z1,C,t+1,1) = Cov (θC,t, θC,t+1) . (3.4)

In addition, one can compute the covariance of the second measurement on cognitive skills

at period t with the first measurement on cognitive skills at period t+ 1:

Cov (Z1,C,t,2, Z1,C,t+1,1) = α1,C,t,2Cov (θC,t, θC,t+1) . (3.5)

If Cov (θC,t, θC,t+1) 6= 0, one can identify the loading α1,C,t,2 from the following ratio of

covariances:
Cov (Z1,C,t,2, Z1,C,t+1,1)

Cov (Z1,C,t,1, Z1,C,t+1,1)
= α1,C,t,2.

If there are more than two measures of cognitive skill in each period t, one can identify α1,C,t,j

for j ∈ {2, 3, . . . ,M1,C,t}, t ∈ {1, . . . , T} up to the normalization α1,C,t,1 = 1. The assumption

that the εa,k,t,j are uncorrelated across t is then no longer necessary. Replacing Z1,C,t+1,1 by

Za′,k′,t′,3 for some (a′, k′, t′) which may or may not be equal to (1, C, t), we may proceed in

the same fashion.14 Note that the same third measurement Za′,k′,t′,3 can be reused for all a, t

and k implying that in the presence of serial correlation, the total number of measurements

needed for identification of the factor loadings is 2L+ 1 if there are L factors.

Once the parameters α1,C,t,j are identified, one can rewrite (3.1), assuming α1,C,t,j 6= 0,

as:
Z1,C,t,j

α1,C,t,j

=
µ1,C,t,j

α1,C,t,j

+ θC,t +
ε1,C,t,j

α1,C,t,j

, j ∈ {1, 2, . . . ,M1,C,t}. (3.6)

13In our framework, parental skills are assumed to be constant over time. Consequently, we need only two
measures of each parental skill in one period, say the first.

14The idea is to write

Cov (Z1,C,t,2, Za′,k′,t′,3)
Cov (Z1,C,t,1, Za′,k′,t′,3)

=
α1,C,t,2αa′,k′,t′,3Cov (θC,t, θk′,t′)
α1,C,t,1αa′,k′,t′,3Cov (θC,t, θk′,t′)

=
α1,C,t,2

α1,C,t,1
= α1,C,t,2

This only requires uncorrelatedness across different j but not across t.
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In this form, it is clear that the known quantities
Z1,C,t,j

α1,C,t,j
play the role of repeated error-

contaminated measurements of θC,t. Collecting results for all t = 1, . . . , T , we can identify the

joint distribution of {θC,t}Tt=1. Proceeding in a similar fashion for all types of measurements,

a ∈ {1, 2, 3}, on abilities k ∈ {C,N}, by Schennach (2004a,b), we can identify the joint

distribution of all the latent variables. Define the matrix of latent variables by θ, where

θ =
(
{θC,t}Tt=1 , {θN,t}

T
t=1 , {IC,t}

T
t=1 , {IN,t}

T
t=1 , θC,P , θN,P

)
.

Thus, we can identify the joint distribution of θ, p(θ).

Although the availability of numerous indicators for each latent factor is helpful in im-

proving the efficiency of the estimation procedure, the identification of the model can be

secured (after the factor loadings are determined) if only two measurements of each latent

factor are available. Since in our empirical analysis we have at least two different measure-

ments for each latent factor, we can define, without loss of generality, the following two

vectors

Wi =

({
Z1,C,t,i

α1,C,t,i

}T
t=1

,

{
Z1,N,t,i

α1,N,t,i

}T
t=1

,

{
Z2,C,t,i

α2,C,t,i

}T
t=1

,

{
Z2,N,t,i

α2,N,t,i

}T
t=1

,
Z3,C,1,i

α3,C,1,i

,
Z3,N,1,i

α3,N,1,i

)′
i ∈ {1, 2}.

These vectors consist of the first and the second measurements for each factor, respectively.

The corresponding measurement errors are

ωi =

({
ε1,C,t,i

α1,C,t,i

}T
t=1

,

{
ε1,N,t,i

α1,N,t,i

}T
t=1

,

{
ε2,C,t,i

α2,C,t,i

}T
t=1

,

{
ε2,N,t,i

α2,N,t,i

}T
t=1

,
ε3,C,1,i

α3,C,1,i

,
ε3,N,1,i

α3,N,1,i

)′
,

i ∈ {1, 2}.

Identification of the distribution of θ is obtained from the following theorem. Let L

denote the total number of latent factors, in our case 4T + 2.

Theorem 1 Let W1, W2, θ, ω1, ω2 be random vectors taking values in RL and related through

W1 = θ + ω1

W2 = θ + ω2.

If (i) E [ω1|θ, ω2] = 0 and (ii) ω2 is independent from θ, then the density of θ can be expressed

11



in terms of observable quantities as:

pθ (θ) = (2π)−L
∫
e−iχ·θ exp

(∫ χ

0

E
[
iW1e

iζ·W2
]

E [eiζ·W2 ]
· dζ

)
dχ,

where i =
√
−1, provided that all the requisite expectations exist and E

[
eiζ·W2

]
is nonvanish-

ing. Note that the innermost integral is the integral of a vector-valued field along a continuous

path joining the origin and the point χ ∈ RL, while the outermost integral is over the whole

RL space. If θ does not admit a density with respect to the Lebesgue measure, pθ (θ) can be

interpreted within the context of the theory of distributions.

Proof. See Web Appendix, Part 1.15

The striking improvement in this analysis over the analysis of Cunha and Heckman (2008)

is that identification can be achieved under much weaker conditions regarding measurement

errors— far fewer independence assumptions are needed. The asymmetry in the analysis of

ω1 and ω2 generalizes previous analysis which treats these terms symmetrically. It gives the

analyst a more flexible toolkit for the analysis of factor models. For example, our analysis

allows analysts to accommodate heteroscedasticity in the distribution of ω1 that may depend

on ω2 and θ. It also allows for potential correlation of components within the vectors ω1 and

ω2, thus permitting serial correlation within a given set of measurements.

The intuition for identification in this paper, as in all factor analyses, is that the signal

is common to multiple measurements but the noise is not. In order to extract the noise from

signal, the disturbances have to satisfy some form of orthogonality with respect to the signal

and with respect to each other. These conditions are, various uncorrelatedness assumptions,

conditional mean assumptions or conditional independence assumptions. They are used in

various combinations in Theorem 1, in Theorem 2 below and in other results in this paper.

3.3 The Identification of a General Measurement Error Model

In this section, we extend the previous analysis for linear factor models to consider a mea-

surement model of the general form

Zj = aj (θ, εj) for j ∈ {1, . . . ,M}, (3.7)

where M ≥ 3 and where the indicator Zj is observed while the latent factor θ and the distur-

bance εj are not. The variables Zj, θ, and εj are assumed to be vectors of the same dimension.

15The results of Theorem 1 are sketched informally in Schennach (2004a, footnote 11).
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In our application, the vector of observed indicators and corresponding disturbances is

Zj =
(
{Z1,C,t,j}Tt=1 , {Z1,N,t,j}Tt=1 , {Z2,C,t,j}Tt=1 , {Z2,N,t,j}Tt=1 , Z3,C,1,j, Z3,N,1,j

)′
εj =

(
{ε1,C,t,j}Tt=1 , {ε1,N,t,j}Tt=1 , {ε2,C,t,j}Tt=1 , {ε2,N,t,j}Tt=1 , ε3,C,1,j, ε3,C,N,1,j

)′
while the vector of unobserved latent factors is:

θ=
(
{θC,t}Tt=1 , {θN,t}

T
t=1 , {IC,t}

T
t=1 , {IN,t}

T
t=1 , θC,P , θN,P

)′
.

The functions aj (·, ·) for j ∈ {1, . . . ,M} in Equations (3.7) are unknown. It is necessary to

normalize one of them (e.g., a1 (·, ·)) in some way to achieve identification, as established in

the following theorem.

Theorem 2 The distribution of θ in Equations (3.7) is identified under the following con-

ditions:

1. The joint density16 of θ, Z1, Z2, Z3 is bounded and so are all their marginal and condi-

tional densities.

2. Z1, Z2, Z3 are mutually independent conditional on θ.

3. pZ1|Z2 (Z1 | Z2) and pθ|Z1 (θ | Z1) form a bounded, complete family of distributions in-

dexed by Z2 and Z1, respectively.

4. Whenever θ 6= θ̃, pZ3|θ (Z3 | θ) and pZ3|θ

(
Z3 | θ̃

)
differ over a set of strictly positive

probability.

5. There exists a known functional Ψ, mapping a density to a vector, that has the property

that Ψ
[
pZ1|θ (· | θ)

]
= θ.

Proof. See Web Appendix, Part 1.17

The proof of Theorem 2 proceeds by casting the analysis of identification as a linear

algebra problem analogous to matrix diagonalization. In contrast to the standard matrix

diagonalization used in linear factor analyses, we do not work with random vectors. Instead,

16This is a density with respect to the product measure of the Lebesgue measure on RL × RL × RL and
some dominating measure µ. Hence θ, Z1, Z2 must be continuously distributed while Z3 may be continuous
or discrete.

17A vector of correctly measured variables C can trivially be added to the model by including C in the
list of conditioning variables for all densities in the statement of the theorem. Theorem 2 then implies that
pθ|C(θ|C) is identified. Since pC(C) is identified it follows that pθ,C(θ, C) = pθ|C(θ|C)pC(C) is also identified.
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we work with their densities. This approach offers the advantage that the problem remains

linear even when the random vectors are nonlinearly related.

The conditional independence requirement of Assumption 2 is weaker than the full in-

dependence assumption traditionally made in standard linear factor models as it allows for

heteroskedasticity. Assumption 3 requires θ, Z1, Z2 to be vectors of the same dimensions,

while Assumption 4 can be satisfied even if Z3 is a scalar. The minimum number of mea-

surements needed for identification is therefore 2L+ 1, which is exactly the same number of

measurements as in the linear, classical measurement error case.

Versions of Assumption 3 appear in the nonparametric instrumental variable literature

(e.g. Newey and Powell (2003), Darolles, Florens, and Renault (2002)). Intuitively, the

requirement that pZ1|Z2 (Z1|Z2) forms a bounded complete family requires that the density

of Z1 vary sufficiently as Z2 varies (and similarly for pθ|Z1 (θ|Z1)).
18

Assumption 4 is automatically satisfied, for instance, if θ is univariate and a3 (θ, ε3) is

strictly increasing in θ. However, it holds much more generally. Since a3 (θ, ε3) is nonsepa-

rable, the distribution of Z3 conditional on θ can change with θ, thus making it possible for

Assumption 4 to be satisfied even if a3 (θ, ε3) is not strictly increasing in θ.

Assumption 5 specifies how the observed Z1 is used to “anchor” the scale of the un-

observed θ. The most common choice of functional Ψ would be the mean, the mode, the

median, or any other well-defined measure of location. This specification allows for non-

classical measurement error. One way to satisfy this assumption is to normalize a1 (θ, ε1) to

be equal to θ + ε1, where ε1 has zero mean, median or mode. The zero mode assumption

is particularly plausible for surveys where respondents face many possible wrong answers

but only one correct answer. Moving the mode of the answers away from zero would there-

fore require a majority of respondents to misreport in exactly the same way— an unlikely

scenario. Many other nonseparable functions can also satisfy this assumption. With the

distribution of pθ (θ) in hand, we can identify the technology using the analysis presented

below in Section 3.4.

Note that Theorem 2 does not claim that the distributions of the errors εj or that the

functions aj (·, ·) are identified. In fact, it is always possible to alter the distribution of εj and

the dependence of the function aj (·, ·) on its second argument in ways that cancel each other

out, as noted in the literature on nonseparable models.19 However, lack of identifiability of

these features of the model does not prevent identification of the distribution of θ.

18In the case of classical measurement error, bounded completeness assumptions can be phrased in terms of
primitive conditions requiring nonvanishing characteristic functions of the distributions of the measurement
errors as in Mattner (1993). However, apart from this special case, very little is known about primitive
conditions for bounded completeness, and research is still ongoing on this topic. See d’Haultfoeuille (2006).

19See Matzkin (2003, 2007).
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Nevertheless, various normalizations ensuring that the functions aj(θ, εj) are fully iden-

tified are available. For example, if each element of εj is normalized to be uniform (or any

other known distribution), the aj(θ, εj) are fully identified. Other normalizations discussed

in Matzkin (2003, 2007) are also possible. Alternatively, one may assume that the aj(θ, εj)

are separable in εj with zero conditional mean of εj given θ.20

The conditions justifying Theorems 1 and 2 are not nested within each other. Their dif-

ferent assumptions represent different trade-offs best suited for different applications. While

Theorem 1 would suffice for the empirical analysis of this paper, the general result established

in Theorem 2 will likely be quite useful as larger sample sizes become available.

Carneiro, Hansen, and Heckman (2003) present an analysis for nonseparable measurement

equations based on a separable latent index structure, but invoke strong independence and

“identification-at-infinity” assumptions. Our approach for identifying the distribution of θ

from general nonseparable measurement equations does not require these strong assumptions.

3.4 Identification of the Technology Function

Once the density of θ is known, one can identify nonseparable technology function (2.1)

for t ∈ {1, . . . , T}; k ∈ {C,N}; and s ∈ {1, . . . ., S}. Even if (θt, It, θP ) were perfectly

observed, one could not separately identify the distribution of ηk,t and the function fs,k

because, without further normalizations, a change in the density of ηk,t can be undone by a

change in the function fs,k.

One solution to this problem is to assume that (2.1) is additively separable in ηk,t. An-

other way to avoid this ambiguity is to normalize ηk,t to have a uniform density on [0, 1].

Any of the normalizations suggested by Matzkin (2003, 2007) could be used. Assuming ηk,t

is uniform [0, 1] , we show that fs,k is nonparametrically identified, by noting that, from the

knowledge of pθ, we can calculate, for any θ̄ ∈ R,

Pr
[
θk,t+1 ≤ θ̄|θt, Ik,t, θP

]
≡ G

(
θ̄|θt, Ik,t, θP

)
.

We identify technology (2.1) using the relationship

fs,k (θt, Ik,t, θP ) = G−1 (ηk,t|θt, Ik,t, θP )

where G−1 (ηk,t | θt, Ik,t, θP ) denotes the inverse of G
(
θ̄ | θt, Ik,t, θP

)
with respect to its first

argument, i.e. the value θ̄ such that ηk,t = G
(
θ̄ | θt, Ik,t, θP

)
. By construction, this operation

20Observe that Theorem 2 covers the identifiability of the outcome (Qj) functions (2.2) even if we supple-
ment the model with errors εj , j ∈ {1, . . . , J} that satisfy the conditions of the theorem.
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produces a function fs,k that generates outcomes θk,t+1 with the appropriate distribution,

because a random variable is mapped into a uniformly distributed variable under the mapping

defined by its own cdf.

The more traditional separable technology with zero mean disturbance, θk,t+1

= fs,k (θt, Ik,t, θP ) + ηk,t, is covered by our analysis if we define

fs,k (θt, Ik,t, θP ) ≡ E [θk,t+1 | θt, Ik,t, θP ] ,

where the expectation is taken under the density pθk,t+1|θt,Ik,t,θP , which can be calculated from

pθ. The density of ηk,t conditional on all variables is identified from

pθk,t+1|θt,Ik,t,θP (ηk,t | θt, Ik,t, θP ) = pθk,t+1|θt,Ik,t,θP (ηk,t + E [θk,t+1 | θt, Ik,t, θP ] | θt, Ik,t, θP ) ,

since pθk,t+1|θt,Ik,t,θP is known once pθ is known. We now show how to anchor the scales of

θC,t+1 and θN,t+1 using measures of adult outcomes.

3.5 Anchoring Skills in an Interpretable Metric

It is common in the empirical literature on child schooling and investment to measure out-

comes by test scores. However, test scores are arbitrarily scaled. To gain a better under-

standing of the relative importance of cognitive and noncognitive skills and their interactions

and the relative importance of investments at different stages of the life cycle, it is desirable

to anchor skills in a common scale. In what follows, we continue to keep the conditioning on

the regressors implicit.

We model the effect of period T + 1 cognitive and noncognitive skills on adult outcomes

Z4,j, for j ∈ {1, . . . , J}. Suppose that there are J1 observed outcomes that are linear functions

of cognitive and noncognitive skills in period T + 1:

Z4,j = µ4,j + α4,C,jθC,T+1 + α4,N,jθN,T+1 + ε4,j, for j ∈ {1, . . . , J1}.

When adult outcomes are linear and separable functions of skills, we can define the anchoring

functions to be:

gC,j (θC,T+1) = µ4,j + α4,C,jθC,T+1 and (3.8)

gN,j (θN,T+1) = µ4,j + α4,N,jθN,T+1.

We can also anchor using nonlinear functions. One example would be an outcome pro-
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duced by a latent variable Z∗4,j, for j ∈ {1, . . . , J}:

Z∗4,j = g̃j (θC,T+1, θN,T+1)− ε4,j.

Note that we do not observe Z∗4,j, but we observe the variable Z4,j which is defined as:

Z4,j =

{
1, if g̃j (θC,T+1, θN,T+1)− ε4,j ≥ 0

0, otherwise.

In this notation

Pr (Z4,j = 1| θC,T+1, θN,T+1) = Pr [ε4,j ≤ g̃j (θC,T+1, θN,T+1)| θC,T+1, θN,T+1]

= Fε4,j [ g̃j (θC,T+1, θN,T+1)| θC,T+1, θN,T+1]

= gj (θC,T+1, θN,T+1) .

Adult outcomes such as high school graduation, criminal activity, drug use, and teenage

pregnancy may be represented in this fashion.

To establish identification of gj (θC,T+1, θN,T+1) for j ∈ {J1 + 1, . . . , J}, we include the

dummy Z4,j in the vector θ. Assuming that the dummy Z4,j is measured without error, the

corresponding element of the two repeated measurement vectors W1 and W2 are identical

and equal to Z4,j. Theorem 1 implies that the joint density of Z4,j, θC,t and θN,t is identified.

Thus, it is possible to identify Pr [Z4,j = 1 | θC,T+1, θN,T+1].

We can extract two separate “anchors”gC,j (θC,T+1) and gN,j (θN,T+1) from the function

gj (θC,T+1, θN,T+1), by integrating out the other variable, e.g.,

gC,j (θC,T+1) ≡
∫
gj (θC,T+1, θN,T+1) pθN,T+1

(θN,T+1) dθN,T+1, (3.9)

gN,j (θN,T+1) ≡
∫
gj (θC,T+1, θN,T+1) pθC,T+1

(θC,T+1) dθC,T+1,

where the marginal densities, pθj,T+1
(θN,T+1), j ∈ {C,N} are identified by applying the

preceding analysis. Both gC,j(θC,T+1) and gN,j (θN,T+1) are assumed to be strictly monotonic

in their arguments.

The “anchored” skills, denoted by θ̃j,k,t, are defined as

θ̃j,k,t = gk,j (θk,t) , k ∈ {C,N}, t ∈ {1, . . . , T}.

The anchored skills inherit the subscript j because different anchors generally scale the same

latent variables differently.
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We combine the identification of the anchoring functions with the identification of the

technology function fs,k (θt, Ik,t, θP , ηk,t) established in the previous section to prove that the

technology function expressed in terms of the anchored skills — denoted by f̃j,s,k

(
θ̃j,t, Ik,t, θP , ηk,t

)
— is also identified. To do so, redefine the technology function to be,

f̃j,s,k

(
θ̃j,C,t, θ̃j,N,t, Ik,t, θC,P , θN,P , ηk,t

)
≡ gk,j

(
fs,k

(
g−1
C,j

(
θ̃j,C,t

)
, g−1
N,j

(
θ̃j,N,t

)
, Ik,t, θC,P , θN,P , ηk,t

))
, k ∈ {C,N}

where g−1
k,j (·) denotes the inverse of the function gk,j (·). Invertibility follows from the assumed

monotonicity. It is straightforward to show that

f̃j,s,k

(
θ̃j,C,t, θ̃j,N,t, Ik,t, θC,P , θN,P , ηk,t

)
= f̃j,s,k (gC,j (θC,t) , gN,j (θN,t) , Ik,t, θC,P , θN,P , ηk,t)

= gk,j
(
fs,k

(
g−1
C,j (gC,j (θC,t)) , g

−1
N,j (gN,j (θN,t)) , Ik,t, θC,P , θN,P , ηk,t

))
= gk,j (fs,k (θC,t, θN,t, Ik,t, θC,P , θN,P , ηk,t))

= gk,j (θk,t+1) = θ̃j,k,t+1,

as desired. Hence, f̃j,s,k is the equation of motion for the anchored skills θ̃j,k,t+1 that is

consistent with the equation of motion fs,k for the original skills θk,t.

3.6 Allowing for Unobserved Heterogeneity

Thus far, we have maintained the assumption that the error term ηk,t in the technology (2.1)

is independent of all the other inputs (θt, Ik,t, θP ) as well as ηl,t, k 6= l. This implies that

variables not observed by the econometrician are not used by parents to make their decisions

regarding investments Ik,t. This is a strong assumption. The availability of data on adult

outcomes can be exploited to relax this assumption and allow for endogeneity of the inputs.

To see how this can be done, suppose that we observe at least three adult outcomes, so

that J ≥ 3. We can then write outcomes as functions of T + 1 skills as well as unobserved

heterogeneity component, π:

Z4,j = α4,C,jθC,T+1 + α4,N,jθN,T+1 + α4,π,jπ + ε4,j, for j ∈ {1, 2, . . . , J}.

We can use the analysis of section 3.2, suitably extended to allow for measurements Z4,j,

to secure identification of the factor loadings α4,C,j, α4,N,j, and α4,π,j. We can apply the
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argument of section 3.4 to secure identification of the joint distribution of (θt, It, θP , π).21

Write ηk,t = (π, νk,t). Extending our preceding analysis, we can identify a more general

version of the technology:

θk,t = fs,k (θt, Ik,t, θP , π, νk,t) .

π is permitted to be correlated with the inputs (θt, It, θP ) and νk,t is assumed to be indepen-

dent from the vector (θt, It, θP , π) as well as νl,t for l 6= k.

3.7 Adding Parental Investment

Economic theory (see, e.g., Cunha and Heckman, 2007) predicts that parental investments

in period t, It, should depend on parental skills, (θC,P , θN,P ), child’s skills at the beginning of

period t, (θC,t, θN,t), parental income, yt, child’s unobservable heterogeneity, π, and parental

wealth at period t, yt. We write

Ik,t = gk,t (θC,t, θN,t, π, θC,P , θN,P , yt) + ζk,t, k ∈ {C,N}, t ∈ {1, . . . , T} (3.10)

ζk,t ⊥⊥ θt′ for all k and t, where the ζk,t can be unobserved state variables (such as wealth or

unobserved inputs in the technology for the formation of skills) or investment shocks. Our

identification analysis covers this case. To see how identification is secured, substitute (3.10)

into equation (3.1) to obtain:

Z2,k,t,j = µ2,k,t,j + α2,k,t,jgk,t (θC,t, θN,t, π, θC,P , θN,P , yt) + α2,k,t,jζk,t + ε2,k,t,j (3.11)

for j ∈ {1, . . . ,M2,k,t}, t ∈ {1, . . . , T}, and k ∈ {C,N}. From measurements on child skills,

parental skills, child adult outcomes, and family income, we can obtain the joint distribution

of (θC,t, θN,t, π, θC,P , θN,P , yt). We can use repeated measurements on investment in the same

fashion that we use other measurements to obtain the joint distribution of the ζk,t, k ∈ {C,N}
and t ∈ {1, . . . , T}. The restrictions on the factor loadings required for identification are the

same as those required for the case of unobserved heterogeneity that we previously analyzed.

Our analysis of identification of production functions with missing inputs is more general

than that of Olley and Pakes (1996), who also consider use of proxies to measure unobserved

inputs. They assume that the researcher has access to perfect proxies to measure unobserved

inputs, whereas we allow for imperfectly measured proxies, i.e., measurement error.

21See Section 2 of the Web Appendix for the formal analysis of identification. We have not systematically
investigated identification for a general nonseparable model for Z4,j with π as an argument of the function.
A parametric approach appears to require at least one outcome that depends on π and not other factors.
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4 Estimation

Technology (3.1) and the associated measurement systems are nonparametrically identified.

However, we use parametric maximum likelihood to estimate the model and do not estimate

under the most general conditions. We do this for two reasons. First, a fully nonparametric

approach is too data hungry to apply to samples of the size that we have at our disposal,

because the convergence rates of nonparametric estimators are quite slow. Second, solving a

high-dimensional dynamic factor model is a computationally demanding task that can only

be made manageable by invoking parametric assumptions. Nonetheless, the analysis of this

paper shows that in principle the parametric structure used to secure the estimates reported

below is not strictly required to identify the technology.

We now develop the likelihood function for our model. Let p (θ) denote the density

of θ. Although we do not directly observe θ, we observe measurements on it, Z, with

realization z. Let z1,k,t,j,h denote measurement j associated with the skill factor θk,t for

person h ∈ {1, . . . , H} in period t. Let z2,k,t,j,h represent measurement j associated with

the investment factor Ik,t for person h in period t. Let z3,k,1,j,h contain the information

from measurement j on parental skill θk,P . z4,T+1,j,h represents the vector of measurements

on outcome j (e.g. schooling, earnings, and crime). Let εl,k,t,j,h denote the measurement

error associated with the measurement zl,k,t,j,h, l = 1, 2. ε3,k,1,j,h is the measurement error

associated with z3,k,1,j,h. ε4,T+1,j,h is the measurement error associated with z4,T+1,j,h. Let

pεl,k,t,j,h denote the density function of εl,k,t,j,h, l = 1, 2. The densities of the other errors

are defined in a parallel fashion. In this notation, we can write the likelihood in terms of

ingredients that we can measure or identify for the model without the investment equation
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(but with the investment factor) and without the heterogeneity term π as:

p (z) =
H∏
h=1

∫
. . .

∫
p (θ) (4.1)

×
∏

k∈{C,N}

T∏
t=1

M1,k,t∏
j=1

pε1,k,t,j,h (z1,k,t,j,h − µ1,k,t,j − α1,k,t,jθk,t) dθk,t

×
∏

k∈{C,N}

T∏
t=1

M2,k,t∏
j=1

pε2,k,t,j,h (z2,k,t,j,h − µ2,k,t,j − α2,k,t,jIk,t) dIk,t

×
∏

k∈{C,N}

M3,k,1∏
j=1

pε3,k,1,j,h (z3,k,t,j,h − µ3,k,t,j − α3,k,t,jθk,P ) dθk,P

×
M4,T+1∏
j=1

p (z4, j, h) dθC,T+1dθN,T+1,
22

where

p4,j,h (z4,T+1,j,h) = pε4,T+1,j,h
(z4,T+1,j,h − µ4,T+1,j − α4,C,T+1θC,T+1 − α4,N,T+1θN,T+1)

for j = 1, ..., J1.

and

p4,j,h (z4,T+1,j,h) = Fε4,j (µ4,T+1,j + α4,C,T+1θC,T+1 + α4,N,T+1θN,T+1)
z4,T+1,j,h

×
[
1− Fε4,j (µ4,T+1,j + α4,C,T+1θC,T+1 + α4,N,T+1θN,T+1)

]1−z4,T+1,j,h .

for j = J1 + 1, . . . ,M4,T+1

The likelihood is maximized subject to parametric versions of technology constraints (2.1)

and the normalizations on the measurements discussed in section 3.1. We assume that the

measurement error εl,k,t,j,h is classical, and independent of θ. This assumption greatly reduces

the number of terms needed to form the likelihood.23

In principle, one can estimate the parameters of the model, the parameters of the technol-

ogy, and the p (θ) by maximizing (4.1) directly. In order to do that, one can approximate p (z)

by computing the integrals numerically in a deterministic fashion. However, if the number

22See the Web Appendix for a more detailed derivation of the likelihood function and filtering equations
(see Web Appendix Section 3 and Web Appendix Section 6.4). Section 6.4 presents the full model with
heterogeneity and investment equations.

23Our analysis establishes that we can identify models with correlated measurement errors. However, the
computational cost for such a model is substantial.
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of integrals is very large, a serious practical problem arises. The number of points required

to evaluate the integrals is very large. For example, if there are three latent variables and

four time periods, so that T = 4, then dim (θ) = 12 and one has to compute an integral of

dimension twelve to obtain the function p (z) . This requires computing approximately sev-

enteen million points of evaluation for each individual h if we pick four points of evaluation

for each integral. The rate of convergence of the numerical approximation decreases with

dim (θ). In order to obtain good approximations of p (z) even in the case with three factors

and four time periods, we would need more than 4 points of evaluation for each integral.

We avoid this problem by relying on nonlinear filtering methods. They facilitate the

approximation of the likelihood by recursive methods, greatly reducing the computational

burden. Further details on how we implement nonlinear filtering are presented in Web

Appendix, Section 3.

5 Estimating the Technology of Skill Formation

We estimate the technology on a sample of 2207 firstborn white children from the Children

of the NLSY/79 (CNLSY/79) sample. Starting in 1986, the children of the NLSY/1979

female respondents, ages 0-14, have been assessed every two years. The assessments measure

cognitive ability, temperament, motor and social development, behavior problems, and self-

competence of the children as well as their home environments. Data are collected via direct

assessment and maternal report during home visits at every biannual wave. Section 4 of

the Web Appendix discusses the measurements used to proxy investment and output. Web

Appendix Tables 4-1–4-3 present summary statistics of the sample we use.24

To match the biennial data collection plan, in our empirical analysis, a period is equivalent

to two years. We have eight periods distributed over two stages of development.25 We report

estimates of a variety of specifications.

Dynamic factor models allow us to exploit the wealth of measures on investment and

outcomes available in the CNLSY data. They solve several problems in estimating skill

formation technologies. First, there are many proxies for parental investments in children’s

24While we have rich data on home inputs, the information on schooling inputs is not so rich. Consistent
with results reported in Todd and Wolpin (2005), we find that the poorly measured schooling inputs in the
CNLSY are estimated to have only weak and statistically insignificant effects on outputs. Even correcting
for measurement error, we find no evidence for important effects of schooling inputs on child outcomes. This
finding is consistent with the Coleman Report (1966), but we do not push this interpretation. We do not
report estimates of the model which include schooling inputs.

25The first period is age 0, the second period is ages 1-2, the third period covers ages 3-4, and so on until
the eighth period in which children are 13-14 years-old. The first stage of development starts at age 0 and
finishes at ages 5-6, while the second stage of development starts at ages 5-6 and finishes at ages 13-14.
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cognitive and noncognitive development. Using the dynamic factor model, we let the data

pick the best combinations of family input measures that predict the levels and growth in

test scores. Measured inputs that are not very informative on family investment decisions

will have negligible estimated factor loadings. Second, our models help us solve the problem

of missing data. Assuming that the data are missing at random, we integrate out the missing

items from the sample likelihood.

In practice, we cannot empirically distinguish investments in cognitive skills from invest-

ments in noncognitive skills. Accordingly, we assume investment in period t is the same for

both skills although it may have different effects on those skills. Thus we assume IC,t = IN,t

and define it as It.

5.1 Empirical Results

We use separable measurement system (3.1). We estimate versions of the technology (2.3)-

(2.4) augmented to include shocks:

θk,t+1 =
[
γs,k,1θ

φs,k
C,t + γs,k,2θ

φs,k
N,t + γs,k,3I

φs,k
t + γs,k,4θ

φs,k
C,P + γs,k,5θ

φs,k
N,P

] 1
φs,k eηk,t+1 , (5.1)

where γs,k,l ≥ 0 and
∑5

l=1 γs,k,l = 1, k ∈ {C,N}, t ∈ {1, 2}, s ∈ {1, 2}. We assume that

the innovations are normally distributed: ηk,t ∼ N
(
0, δ2

η,s

)
. We further assume that the ηk,t

are serially independent over all t and are independent of η`,t for k 6= `. We assume that

measurements Za,k,t,j proxy the natural logarithms of the factors. For example, for a = 1,

Z1,k,t,j = µ1,k,t,j + α1,k,t,j ln θk,t + ε1,k,t,j

j ∈ {1, . . . ,Ma,k,t}, t ∈ {1, . . . , T}, k ∈ {C,N}.

We use the factors (and not their logarithms) as arguments of the technology.26 This keeps

the latent factors non-negative, as is required for the definition of technology (5.1). Collect

the ε terms for period t into a vector εt. We assume that εt ∼ N (0,Λt), where Λt is a

diagonal matrix. We impose the condition that εt is independent from εt′ for t 6= t′ and all

ηk,t+1. Define the tth row of θ as θrt where r stands for row. Thus

ln θrt = (ln θC,t, ln θN,t, ln It, ln θC,P , ln θN,P , lnπ) .

26The modification to likelihood (4.1) from using logs is straightforward and for the sake of brevity we do
not show the explicit expression. We use five regressors (X) for every measurement equation: a constant,
the age of the child at the assessment date, the child’s gender, a dummy variable if the mother was less than
20 years-old at the time of the first birth, and a cohort dummy (one if the child was born after 1987 and
zero otherwise).
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Identification of this model follows as a consequence of Theorems 1 and 2 and results in

Matzkin (2003, 2007). We estimate the model under different assumptions about the distri-

bution of the factors. Under the first specification, ln θt is normally distributed with mean

zero and variance-covariance matrix Σt. Under the second specification, ln θrt is distributed

as a mixture of T normals. Let φ (x;µt,τ ,Σt,τ ) denote the density of a normal random vari-

able with mean µt,τ and variance-covariance matrix Σt,τ . The mixture of normals writes the

density of ln θrt as

p (ln θrt ) =
T∑
τ=1

ωτφ (ln θrt ;µt,τ ,Σt,τ )

subject to:
∑T

τ=1 ωτ = 1 and
∑T

τ=1 ωτµt,τ = 0.

We report anchored results in the text. We use the anchoring procedures described in

detail in Section 6 of the Web Appendix. The anchored results allow us to compare the

productivity of investments and stocks of different skills at different stages of the life cycle

on the anchored outcome. In this paper, we mainly use completed years of education by

age 19, a continuous variable, as an anchor. We explore the sensitivity of the estimates to

alternative anchors for a one stage model in Web Appendix 7.

5.2 Empirical Estimates

This section presents results from an extensive empirical analysis estimating the multistage

technology of skill formation accounting for measurement error, non-normality of the factors,

endogeneity of inputs and family investment decisions. The plan of development of this

section is as follows. We first present baseline two stage models that anchor outcomes in

terms of their effects on schooling attainment, that correct for measurement errors, and

that assume that the factors are normally distributed. These models do not account for

endogeneity of inputs through unobserved heterogeneity components or family investment

decisions. The baseline model is already far more general than what is presented in previous

research on the formation of child skills that uses unanchored test scores as outcome measures

and does not account for measurement error (see, e.g., Fryer and Levitt, 2004).

We present evidence on the first order empirical importance of measurement error. When

we do not correct for it, the estimated technology suggests that there is no effect of early

investment on child outcomes. Controlling for endogeneity of family inputs by accounting

for unobserved heterogeneity (π), and accounting explicitly for family investment decisions

has substantial effects on estimated parameters.

The following empirical regularities emerge across all models that account for measure-

ment error. Self productivity of skills is greater in the second stage than in the first stage.
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Noncognitive skills are cross productive for cognitive skills in the first stage of production.

The cross productivity effect is weaker and less precisely determined in the second stage.

There is no evidence for a cross productivity effect of cognitive skills on noncognitive skills

at either stage. The estimated elasticity of substitution for inputs in cognitive skill is sub-

stantially lower in the second stage of a child’s life cycle than in the first stage. For non-

cognitive skills, the ordering is reversed for models that control for unobserved heterogeneity

(π). These estimates suggest that it is easier to redress endowment deficits that determine

cognition in the first stage of a child’s lifecycle than in the second stage. For socioemotional

(noncognitive) skills, the opposite is true. For cognitive skills, the productivity parameter

associated with parental investment (γ1,C,3) is greater in the first stage than in the second

stage (γ2,C,3). For noncognitive skills, the pattern of estimates for the productivity parame-

ter across models is less clear cut, but there are not dramatic differences across the stages.

For both outputs, the parameter associated with the effect of parental noncognitive skills on

output is smaller at the second stage than the first stage.

Web Appendix 7 discusses the sensitivity of estimates of a one-stage two-skill model to

alternative anchors and to allowing for nonnormality of the factors. For these and other

estimated models which are not reported, allowing for nonnormality has only minor effects

on the estimates. Anchoring affects the estimates.27 Below, we report anchored estimates.

To facilitate computation, we use years of schooling attained as the anchor in all of the

models reported in this section of the paper.28

5.2.1 The Baseline Specification

Table 1 presents evidence on our baseline two stage model of skill formation. Outcomes are

anchored in years of schooling attained. Factors are assumed to be normally distributed

and we ignore heterogeneity (π). The estimates show that for both skills, self productivity

increases in the second stage. Noncognitive skills foster cognitive skills in the first stage but

not in the second stage. Cognitive skills have no cross-productivity effect on noncognitive

skills at either stage.29 The productivity parameter for investment is greater in the first

period than the second period for either skill. The difference in the parameter is dramatic

for cognitive skills. The variability in the shocks is greater in the second period than in the

first period. The elasticity of substitution for cognitive skills is much greater in the first

period than in the second period. The opposite is found for cognitive skills.

27Cunha and Heckman (2008) show the sensitivity of the estimates to alternative anchors for a linear
model specification.

28The normalizations for the factors are presented in Web Appendix 8.
29Zero values of coefficients in this and other tables arise from the optimizer attaining a boundary of zero

in the parameter space.
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For cognitive skill production, the parental cognitive skill parameter increases in the

second stage. The opposite is true for parental noncognitive skills. In producing noncognitive

skills, parental cognitive skills play no role at either stage. Parental noncognitive skills play

a strong role in stage 1 and a weaker role in stage 2.

5.2.2 The Magnitude of Measurement Error

Using our factor model, we can investigate the extent of measurement error on each measure

of skill and investment in our data. To fix ideas, keep the conditioning on the regressors

implicit and, without loss of generality, consider the measurements on cognitive skills in

period t. For linear measurement equations

V ar (Z1,C,t,j) = α2
1,C,t,jV ar (ln θC,t) + V ar (ε1,C,t,j) .

The fractions of the variance of Z1,C,t,j due to measurement error, sε1,C,t,j, and true signal,

sθ1,C,t,j are, respectively,

sε1,C,t,j =
V ar (ε1,C,t,j)

α2
1,C,t,jV ar (ln θC,t) + V ar (ε1,C,t,j)

(noise)

and

sθ1,C,t,j =
α2

1,C,t,jV ar (ln θC,t)

α2
1,C,t,jV ar (ln θC,t) + V ar (ε1,C,t,j)

(signal).

For each measure of skill and investment used in the estimation, we construct sε1,C,t,j and

sθ1,C,t,j which are reported in Table 2A. Note that early proxies tend to have a higher fraction

of observed variance due to measurement error. For example, the measure that contains

the lowest true signal ratio is the MSD (Motor and Social Developments Score) at year of

birth, in which less than 5% of the observed variance is signal. The proxy with the highest

signal ratio is the PIAT Reading Recognition Scores at ages 5-6, for which almost 96% of

the observed variance is due to the variance of the true signal. Overall, about 54% of the

observed variance is associated with the cognitive skill factors θC,t.

Table 2A also shows show the same ratios for measures of child noncognitive skills. The

measures of noncognitive skills tend to be lower in informational content than their cognitive

counterparts. Overall, less than 40% of the observed variance is due to the variance associated

with the factors for noncognitive skills. The poorest measure for noncognitive skills is the

“Sociability” measure at ages 1-2, in which less than 1% of the observed variance is signal.

The richest is the “BPI Headstrong” score, in which almost 62% of the observed variance is

26



due to the variance of the signal.

Table 2A also presents the signal-noise ratio of measures of parental cognitive and noncog-

nitive skills. Overall, measures of maternal cognitive skills tend to have higher information

content than measures of noncognitive skills. While the poorest measurement on cognitive

skills has a signal ratio of almost 35%, the richest measurements on noncognitive skills are

slightly above 40%.

Analogous estimates of signal and noise for our investment measures are reported in

Table 2B. Investment measures are much noisier than either measure of skill. The measures

for investments at earlier stages tend to be noisier than the measures at later stages. It is

interesting to note that the measure “Number of Books” has a high signal-noise ratio at

early years, but not in later years. At earlier years, the “How Often Mom Reads to the

Child” has about the same informational content as “Number of Books.” In later years,

measures such as “Trips to the Museum” and “Attendance of Musical Performances” have

higher signal-noise ratios.

These estimates suggest that it is likely to be empirically important to control for mea-

surement error in estimating technologies of skill formation. A general pattern is that at

early ages measures of skill tend to be riddled with measurement error. The general pattern

is reversed for measurement error in investments.

5.2.3 The Effect of Ignoring Measurement Error on the Estimated Technology

We now demonstrate the impact of neglecting measurement error on estimates of the tech-

nology. To make the most convincing case for the importance of measurement error, we use

the least error prone proxies as determined in our estimates of Table 2.30

Not accounting for measurement error has substantial effects on the estimated technology.

Comparing the estimates in Table 3 with those in Table 1, the estimated first stage invest-

ment effects are much less precisely estimated in a model that ignores measurement errors

than in a model that corrects for them. In the second stage, the estimated investment effects

are generally stronger. Unlike all of the specifications that control for measurement error, we

estimate strong cross productivity effects of cognitive skills on noncognitive skill production.

As in Table 1, there are cross productivity effects of noncognitive skills on cognitive skills

30At birth we use Cognitive Skill: weight at birth, Noncognitive Skill: Temperament/Difficulty Scale,
Parental Investment: Number of books. At ages 1–2 we use Cognitive Skill: Body Parts, Noncognitive Skill:
Temperament/Difficulty Scale, Parental Investment: Number of books. At ages 3–4 we use Cognitive Skill:
PPVT, Noncognitive Skill: BPI Headstrong, Parental Investment: How often mother reads to the child. At
ages 5–6 to ages 13–14 we use Cognitive Skill: Reading Recognition, Noncognitive Skill: BPI Headstrong,
Parental Investment: How often child is taken to musical performances. Maternal Skills are time invariant:
For Maternal Cognitive Skill: ASVAB Arithmetic Reasoning, For Maternal Noncognitive Skill: Self-Esteem
Item: I am a failure.
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at both stages although the estimated productivity parameters are somewhat smaller. The

estimated elasticities of substitution for cognitive skills at both stages are comparable across

the two specifications. The elasticities of substitution for noncognitive skills are substantially

lower at both stages in the specification that does not control for measurement error. The

error variances of the shocks are substantially larger. Parental cognitive skills are estimated

to have substantial effects on child cognitive skills but not their noncognitive skills. This

contrasts with the estimates reported in Table 1 that show strong effects of parental noncog-

nitive skills on child cognitive skills in both stages, and on noncognitive skills in the first

stage.

5.2.4 Controlling for Unobserved Heterogeneity in the Estimated Technology

We next consider the effect of controlling for unobserved heterogeneity for the specification

with estimates reported in Table 1. Doing so allows for endogeneity of the inputs. We break

the error term for the technology into two parts: a time-invariant unobserved heterogeneity

factor π that is correlated with the vector (θt, It, θP ) and an i.i.d. error term νi,t that is

assumed to be uncorrelated with all other variables.

Table 4 shows that correcting for heterogeneity, the estimated coefficients for parental

investments have higher impact on cognitive skills at the first stage. The coefficient on

parental investment in the first stage is γ1,C,3
∼= 0.17, while in the second stage γ2,C,3

∼= 0.06.

The elasticity of substitution in the first stage is well above one, σ1,C = 1
1−0.33

∼= 1.5, and

in the second stage it is well below one, σ2,C
∼= 1

1+0.8
∼= 0.55. These results suggest that

early investments are important in producing cognitive skills. Consistent with the estimates

reported in Table 1, noncognitive skills increase cognitive skills in the first stage, but not in

the second stage. Parental cognitive and noncognitive skills affect the accumulation of child

cognitive skills.

Panel B of Table 4 presents estimates of the technology of noncognitive skills. Note that,

contrary to the estimates reported for the technology for cognitive skills, the elasticity of

substitution increases from the first stage to the second stage. At the early stage, σ1,N
∼= 0.54

while at the late stage, σ2,N
∼= 0.77. The impact of parental investments is slightly larger

at late stages as well (γ1,N,3
∼= 0.05 vs. γ2,N,3

∼= 0.07). While parental noncognitive skills

affect the accumulation of a child’s noncognitive skills early and late, parental cognitive skills

only affect the accumulation of a child’s noncognitive skills at early stages. The estimates

in Table 1 show no effect of parental cognitive skills on either stage of the production of

cognitive skills.
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5.2.5 Adjoining an Investment Equation

Table 5 reports estimates of our model when we adjoin investment parameters of the equa-

tions (3.10) to the model just discussed and identify gt along with all of the other parameters

estimated in the model reported in Table 4.31 Estimates of the parameters of gt are presented

in Web Appendix, Part 8. We also report estimates of the anchoring equation and other

outcome equations in that appendix.32 When we introduce an equation for investment, the

impact of early investments on the production of cognitive skills is reduced from γ1,C,3
∼= 0.17

(see Table 4, Panel A) to γ1,C,3
∼= 0.12 (see Table 5, Panel A). At the same time, the estimated

first stage elasticity of substitution for cognitive skills increases from σ1,C = 1
1−φ1,C

∼= 1.5 to

σ1,C = 1
1−φ1,C

∼= 2. Note that the impact of late investments in producing cognitive skills

falls in value, reducing slightly from γ2,C,3
∼= 0.06 to γ2,C,3

∼= 0.05 (compare Table 4, Panel

A with Table 5, Panel A). The same is true for our estimate of the elasticity of substitution

for cognitive skill technology, which falls slightly from σ2,C = 1
1−φ2,C

∼= 0.55 (Table 4, Panel

A) to σ2,C = 1
1−φ2,C

∼= 0.51 (see Table 5, Panel A).

Comparable changes in the estimates occur in our estimates of the technology for pro-

ducing noncognitive skills. The impact of early investments is reduced from γ1,N,3
∼= 0.05

(see Table 4, Panel B) to γ1,C,3
∼= 0.02 (in Table 5, Panel B). The elasticity of substitution in

noncognitive skills barely moves, changing from σ2,N = 1
1−φ2,N

∼= 0.54 to σ2,N = 1
1−φ2,N

∼= 0.55

(in Table 5, Panel B). The estimated impact of late investments in producing noncognitive

skills is estimated to be somewhat smaller, falling from γ2,C,3
∼= 0.07 to γ2,C,3

∼= 0.05. Com-

pare Table 4, Panel B with Table 5, Panel B. When we include an equation for investments,

the estimated elasticity of substitution increases for noncognitive skills in late stages, from

σ2,N = 1
1−φ2,N

∼= 0.55 (in Table 4, Panel B) to σ2,N = 1
1−φ2,N

∼= 0.68 (in Table 5, Panel B).

5.2.6 A Model Based Only on Cognitive Skills

Most of the empirical literature on skill production focuses on cognitive skills as the output

of family investment. (See, e.g., Todd and Wolpin, 2005, 2007, and the references they cite.)

It is of interest to estimate a more traditional model that ignores noncognitive skills. Table 6

reports estimates of a version of the model in Table 5 where noncognitive skills are excluded.

The estimated self-productivity effect increases from the first stage to the second stage,

in accord with the estimates found for all other specifications. However, the estimated first

period elasticity of substitution is much smaller than the corresponding parameter in Table

31We assume that gt is linear and separable in its arguments, although this is not a necessary assumption
in our identification, but certainly helps to save on computation time. Notice that under our assumption
that IC,t = IN,t = It, gk,t = gt.

32We also report the covariance matrix for the initial conditions of the model in that appendix.
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5. The estimated second period elasticity is slightly higher. The estimated productivity

parameters for investment are substantially higher in both stages of the model reported in

Table 6, as are the productivity parameters for parental cognitive skills. The simulations

discussed in the next subsection suggest dramatically different policies towards disadvantaged

families from a model that ignores noncognitive skills compared to a model that does not.

5.3 Interpreting the Estimates

The major findings from our analysis of models with two skills that control for measure-

ment error and endogeneity of inputs are: (a) Self-productivity becomes stronger as children

become older, for both cognitive and noncognitive skill formation. (b) Complementarity

between cognitive skills and investment becomes stronger as children become older. The

elasticity of substitution for cognition is smaller in second stage production. It is more diffi-

cult to compensate for the effects of adverse environments on cognitive endowments at later

ages than it is at earlier ages.33 This pattern of the estimates helps to explain the evidence on

ineffective cognitive remediation strategies for disadvantaged adolescents reported in Cunha,

Heckman, Lochner, and Masterov (2006). (c) Complementarity between noncognitive skills

and investments becomes weaker as children become older. The elasticity of substitution

between investment and skills increases between the first stage and the second stage in the

production of noncognitive skills. It is easier at later stages of childhood to remediate early

disadvantage using investments in noncognitive skills.

We find that 34% of the variation in educational attainment in the sample is explained

by the measures of cognitive and noncognitive capabilities that we use. Sixteen percent is

due to adolescent cognitive capabilities. Twelve percent is due to adolescent noncognitive

capabilities.34 Measured parental investments account for 15% of the variation in educa-

tional attainment. These estimates suggest that the measures of cognitive and noncognitive

capabilities that we use are powerful, but not exclusive, determinants of educational attain-

ment and that other factors, besides the measures of family investment that we use, are at

work in explaining variation in educational attainment.

To examine the implications of these estimates, we analyze two social planning problems

that can be solved solely from knowledge of the technology of skill formation and without

knowledge of parental preferences and parental access to lending markets. The first problem

determines the cost of investment required to produce high school attainment for children

with different initial endowments of their own and parental capabilities. For the same dis-

33This is true even in a model that omits noncognitive skills.
34The skills are correlated so the marginal contributions of each skill do not add up to 34%. The decom-

position used to produce these estimates is discussed in Web Appendix 9.
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tribution of endowments, the second problem determines optimal allocations of investments

from a fixed budget to maximize aggregate schooling for a cohort of children and to minimize

aggregate crime. Our analysis assumes that the state has full control over family investment

decisions. For neither problem do we model parental investment responses to the policy or

parental investment. These simulations produce a measure of the investment that is needed

from whatever source to achieve the specified target.

Suppose that there are H children indexed by h ∈ {1, . . . , H}. Let (θC,1,h, θN,1,h) de-

note the initial cognitive and noncognitive skills of child h. She has parents with cognitive

and noncognitive skills denoted by θC,P,h and θN,P,h, respectively. Let πh denote additional

unobserved determinants of outcomes. Denote θ1,h = (θC,1,h, θN,1,h, θC,P,h, θN,P,h, πh) and let

F (θ1,h) denote its distribution. We draw H people from the initial distribution F (θ1,h) that

we estimate. The price of investment is assumed to be the same in each period.

The criterion adopted for the first problem assumes that the goal of society is to get the

schooling of every child to a twelfth grade level. The required investments measure the power

of initial endowments in determining inequality and the compensation through investment

that is required to eliminate their influence. Let e(θ1,h) be the minimum cost of attaining 12

years of schooling for a child with endowment θ1,h. Assuming no discounting, the problem

is formally defined by

e (θ1,h) = min [I1,h + I2,h]

subject to a schooling constraint:

S (θC,3,h, θN,3,h, πh) = 12,

where S maps end of childhood capabilities and other relevant factors (πh) into schooling

attainment, subject to the technology of capability formation constraint

θk,t+1,h = fk,t (θC,t,h, θN,t,h, θC,P,h, θN,P,h, It,h, πh) for k ∈ {C,N} and t ∈ {1, 2},

and the initial endowments of the child and her parents. We have estimated all of the

ingredient functions.35

Figures 2 (for child endowments) and 3 (for parental endowments) plot the percentage

increase in investment over that required for a child with mean parental and personal en-

dowments to attain high school graduation.36 The shading in the graphs represents different

values of investments. The lightly shaded areas of the graph correspond to higher values.

35See Web Appendix 8 for the estimates of the schooling equation.
36In graphing the investments as a function of the displayed endowments, we set the values of other

endowments at mean values.
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Eighty percent more investment is required for children with the most disadvantaged personal

endowments (Figure 2). The corresponding figure for children with the most disadvantaged

parental endowments is 95% (Figure 3). The negative percentages for children with high

initial endowments is a measure of their advantage. From the analysis of Moon (2008), in-

vestments received as a function of a child’s endowments are typically in reverse order from

what are required. Children born with advantageous endowments typically receive more

parental investment than children from less advantaged environments.

A more standard social planner’s problem maximizes aggregate human capital subject

to a budget constraint B = 2H, so that the per capita budget is 2 units of investments.

We draw H children from the initial distribution F (θ1,h), and solve the problem of how to

allocate finite resources 2H to maximize the average education of the cohort. Formally, the

social planner maximizes aggregate schooling

H∑
h=1

(I1,h + I2,h) = 2H (5.2)

subject to the aggregate budget constraint,

max S̄ =
1

H

H∑
h=1

S (θC,3,h, θN,3,h, πh) ,

the technology constraint,

θk,t+1,h = fk,t (θC,t,h, θN,t,h, θC,P,h, θN,P,h, πh) for k ∈ {C,N} and t ∈ {1, 2},

and the initial endowments of the child and her family. Again, we assume no discounting.

Solving this problem, we obtain optimal early and late investments, I1,h and I2,h, respectively,

for each child h. An analogous social planning problem is used to minimize crime.

Figures 4 (for child personal endowments) and 5 (for maternal endowments) show the

profiles of early (left hand side graph) and late (right hand side graph) investment as a

function of endowments. For the most disadvantaged, the optimal policy is to invest a lot

in the early years. The decline in investment by level of advantage is dramatic for early

investment. Second period investment profiles are much flatter and slightly favor more

advantaged children. A similar profile emerges for investments to reduce aggregate crime,

which for the sake of brevity, we do not display.

Figures 6 and 7 reveal that the ratio of optimal early-to-late investment as a function of

the child’s personal endowments declines with advantage whether the social planner seeks to
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maximize educational attainment (left hand side) or to minimize aggregate crime (right hand

side). A somewhat similar pattern emerges for the optimal ratio of early-to-late investment

as a function of maternal endowments with one interesting twist. The optimal investment

ratio is non-monotonic in the mother’s cognitive skill for each level of her noncognitive skills.

At very low or very high levels of maternal cognitive skills, it is better to invest relatively

more in the second period than if her endowment is at the mean.

The optimal ratio of early-to-late investment depends on the desired outcome, the endow-

ments of children and budget B = 2H. Figure 8 plots the density of the ratio of early-to-late

investment for education and crime.37 Crime is more intensive in noncognitive skill than

educational attainment, which depends much more strongly on cognitive skills. Because

compensation for adversity in noncognitive skills is less costly in the second period than in

the first period, while the opposite is true for cognitive skills, it is optimal to weigh first and

second period investments in the directions indicated in the figure.

These simulations suggest that the timing and level of optimal interventions for dis-

advantaged children depend on the conditions of disadvantage and the nature of desired

outcomes. Targeted strategies are likely to be effective especially for different targets that

weight cognitive and noncognitive traits differently.

5.4 Comparison with a Model with Cognitive Skill Formation

Only

We now compare the policy implications of the model formulated only for cognitive skills

with estimates reported in Table 6. We consider the problem of maximizing aggregate

educational attainment using the estimates from a model with only cognitive skills. Figures

9 and 10 compare optimal early investments from the cognitive-skill-only model (left) with

investments from the model with both skills (right). As before, less shaded regions of the

figures correspond to higher values for investment.

A model of skill formation that focuses solely on cognitive skills suggests that it is optimal

to perpetuate inequality. In contrast to the implications from the two skill model, invest-

ments are lower at the first stage of the life cycle for the most disadvantaged as measured

by initial endowments compared to the most advantaged. The cognition-only model ignores

the cross productivity of noncognitive skills on cognitive skills and the greater malleability

of noncognitive skills in the second stage. By ignoring a central feature of the human skill

37The optimal policy is not identical for each h and depends on θ1,h, which varies in the population. The
crime outcome is the number of arrests. Estimates of the coefficients of the outcome equations including
those for crime are reported in Web Appendix Section 8.
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formation process, it produces a misleading guide to public policy.38

6 Conclusion

This paper formulates and estimates a multistage model of the evolution of child cognitive

and noncognitive skills as determined by parental investments at different stages of the life

cycle of children. We estimate the elasticity of substitution between contemporaneous invest-

ment and stocks of skills inherited from previous periods to determine the substitutability

between early and late investments. We also determine the quantitative importance of early

endowments and later investments in determining schooling attainment. We account for the

proxy nature of the measures of parental inputs and of outputs and find evidence for substan-

tial measurement error which, if not accounted for, leads to badly distorted characterizations

of the technology of skill formation. We establish nonparametric identification of a wide class

of nonlinear factor models which enable us to determine the technology of skill formation.

A by-product of our approach is a framework for the evaluation of childhood interventions

that avoids reliance on arbitrarily scaled test scores. We develop a nonparametric approach

to this problem by anchoring test scores in adult outcomes with interpretable scales.

Using measures of parental investment and child outcomes from the Children of the

National Longitudinal Survey of Youth, we estimate the parameters governing the substi-

tutability between early and late investments in cognitive and noncognitive skills. In our

preferred specification, we find greater malleability and substitutability for noncognitive skills

in later stages of a child’s life cycle than for cognitive skills, consistent with evidence reported

in Cunha, Heckman, Lochner, and Masterov (2006). These estimates imply that successful

adolescent remediation strategies for disadvantaged children should focus on noncognitive

skills. Investments in the early years are important for the formation of adult cognitive

skills. Policy simulations from the model suggest that there is no tradeoff between equity

and efficiency. The optimal investment strategy to maximize aggregate schooling attainment

is to target the most disadvantaged at younger ages. Accounting for noncognitive skills is

important. A model that ignores the impact of noncognitive skills on productivity and out-

comes suggests an equity-efficiency tradeoff and that to maximize aggregate productivity

those born with the most advantage should receive relatively more investment in the early

years.

38Web Appendix 10 shows that this contrast is stronger if we assume a one stage-one cognitive skill model.
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First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Self-Productivity) g1,C,1 0.424 g2,C,1 0.852

(0.028) (0.011)

Current Period Noncognitive Skills (Cross-Productivity) g1,C,2 0.146 g2,C,2 0.007

(0.036) (0.010)

Current Period Investments g1,C,3 0.266 g2,C,3 0.032

(0.026) (0.006)

Parental Cognitive Skills g1,C,4 0.048 g2,C,4 0.102

(0.018) (0.016)

Parental Noncognitive Skills g1,C,5 0.117 g2,C,5 0.007

(0.038) (0.025)

Complementarity Parameter f1,C 0.298 f2,C -1.033

(0.117) (0.107)

Implied Elasticity of Substitution 1/(1-f1,C) 1.425 1/(1-f2,C) 0.492

Variance of Shocks hc,t d
2
1,C 0.180 d

2
2,C 0.087

(0.007) (0.003)

First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Cross-Productivity) g1,N,1 0.000 g2,N,1 0.000

(0.017) (0.007)

Current Period Noncognitive Skills (Self-Productivity) g1,N,2 0.731 g2,N,2 0.867

(0.029) (0.010)

Current Period Investments g1,N,3 0.078 g2,N,3 0.067

(0.017) (0.006)

Parental Cognitive Skills g1,N,4 0.000 g2,N,4 0.000

(0.011) (0.008)

Parental Noncognitive Skills g1,N,5 0.190 g2,N,5 0.066

(0.026) (0.014)

Complementarity Parameter f1,N -0.083 f2,N -0.150

(0.187) (0.064)

Implied Elasticity of Substitution 1/(1-f1,N) 0.923 1/(1-f2,N) 0.869

Variance of Shocks hn,t d
2
1,N 0.179 d

2
2,N 0.104

(0.011) (0.004)

Note: Standard errors in parenthesis

The Technology of Noncognitive Skill Formation

Table 1

The Technology of Cognitive Skill Formation

Using the Factor Model to Correct for Measurement Error

Linear Anchoring on Educational Attainment (Years of Schooling)

No Unobserved Heterogeneity (p), Factors Normally Distributed

Estimates of the Technology



Measurement of Child's Cognitive Skills %Signal %Noise Measurement of Child's Noncognitive Skills %Signal %Noise

Gestation Length 0.485 0.515 Difficulty at Birth 0.231 0.769

Weight at Birth 0.574 0.426 Friendliness at Birth 0.229 0.771

Motor-Social Development at Birth 0.045 0.955 Compliance at Ages 1-2 0.307 0.693

Motor-Social Development at Ages 1-2 0.330 0.670 Insecure at Ages 1-2 0.067 0.933

Body Parts at Ages 1-2 0.335 0.665 Sociability at Ages 1-2 0.084 0.916

Memory for Locations at Ages 1-2 0.169 0.831 Difficulty at Ages 1-2 0.490 0.510

Motor-Social Development at Ages 3-4 0.404 0.596 Friendliness at Ages 1-2 0.187 0.813

Picture Vocabulary at Ages 3-4 0.467 0.533 Compliance at Ages 3-4 0.146 0.854

Picture Vocabulary at Ages 5-6 0.213 0.787 Insecure at Ages 3-4 0.138 0.862

PIAT-Mathematics at Ages 5-6 0.305 0.695 Sociability at Ages 3-4 0.010 0.990

PIAT-Reading Recognition at Ages 5-6 0.961 0.039 Behavior Problem Index Antisocial at Ages 3-4 0.457 0.543

PIAT-Reading Comprehension at Ages 5-6 0.936 0.064 Behavior Problem Index Anxiety at Ages 3-4 0.448 0.552

PIAT-Mathematics at Ages 7-8 0.432 0.568 Behavior Problem Index Headstrong at Ages 3-4 0.541 0.459

PIAT-Reading Recognition at Ages 7-8 0.870 0.130 Behavior Problem Index Hyperactive at Ages 3-4 0.380 0.620

PIAT-Reading Comprehension at Ages 7-8 0.799 0.201 Behavior Problem Index Conflict at Ages 3-4 0.359 0.641

PIAT-Mathematics at Ages 9-10 0.478 0.522 Behavior Problem Index Antisocial at Ages 5-6 0.462 0.538

PIAT-Reading Recognition at Ages 9-10 0.820 0.180 Behavior Problem Index Anxiety at Ages 5-6 0.418 0.582

PIAT-Reading Comprehension at Ages 9-10 0.670 0.330 Behavior Problem Index Headstrong at Ages 5-6 0.619 0.381

PIAT-Mathematics at Ages 11-12 0.520 0.480 Behavior Problem Index Hyperactive at Ages 5-6 0.490 0.510

PIAT-Reading Recognition at Ages 11-12 0.787 0.213 Behavior Problem Index Conflict at Ages 5-6 0.299 0.701

PIAT-Reading Comprehension at Ages 11-12 0.621 0.379 Behavior Problem Index Antisocial Ages 7-8 0.439 0.561

PIAT-Mathematics at Ages 13-14 0.554 0.446 Behavior Problem Index Anxiety Ages 7-8 0.477 0.523

PIAT-Reading Recognition at Ages 13-14 0.740 0.260 Behavior Problem Index Headstrong Ages 7-8 0.606 0.394

PIAT-Reading Comprehension at Ages 13-14 0.558 0.442 Behavior Problem Index Hyperactive Ages 7-8 0.500 0.500

Measurement of Maternal Cognitive Skills Behavior Problem Index Conflict Ages 7-8 0.329 0.671

ASVAB Arithmetic Reasoning 0.730 0.270 Behavior Problem Index Antisocial Ages 9-10 0.485 0.515

ASVAB Word Knowledge 0.631 0.369 Behavior Problem Index Anxiety Ages 9-10 0.471 0.529

ASVAB Paragraph Composition 0.577 0.423 Behavior Problem Index Headstrong Ages 9-10 0.574 0.426

ASVAB Numerical Operations 0.457 0.543 Behavior Problem Index Hyperactive Ages 9-10 0.462 0.538

ASVAB Coding Speed 0.350 0.650 Behavior Problem Index Conflict Ages 9-10 0.366 0.634

ASVAB Mathematical Knowledge 0.657 0.343 Behavior Problem Index Antisocial Ages 11-12 0.495 0.505

Measurement of Maternal Noncognitive Skills Behavior Problem Index Anxiety Ages 11-12 0.498 0.502

Self-Esteem "I am a person of worth" 0.271 0.729 Behavior Problem Index Headstrong Ages 11-12 0.601 0.399

Self-Esteem " I have good qualities" 0.349 0.651 Behavior Problem Index Hyperactive Ages 11-12 0.502 0.498

Self-Esteem "I am a failure" 0.445 0.555 Behavior Problem Index Conflict Ages 11-12 0.365 0.635

Self-Esteem "I have nothing to be proud of" 0.373 0.627 Behavior Problem Index Antisocial Ages 13-14 0.475 0.525

Self-Esteem "I have a positive attitude" 0.406 0.594 Behavior Problem Index Anxiety Ages 13-14 0.544 0.456

Self-Esteem "I wish I had more self-respect" 0.339 0.661 Behavior Problem Index Headstrong Ages 13-14 0.592 0.408

Self-Esteem "I feel useless at times" 0.290 0.710 Behavior Problem Index Hyperactive Ages 13-14 0.522 0.478

Self-Esteem "I sometimes think I am no good" 0.374 0.626 Behavior Problem Index Conflict Ages 13-14 0.409 0.591

Locus of Control "I have no control" 0.047 0.953

Locus of Control "I make no plans for the future" 0.064 0.936

Locus of Control "Luck is big factor in life" 0.041 0.959

Locus of Control "Luck plays big role in my life" 0.020 0.980

Table 2A

Percentage of Total Variance in Measurements due to Signal and Noise



Measurements of Parental Investments %Signal %Noise Measurements of Parental Investments %Signal %Noise

How Often Child Goes on Outings during Year of Birth 0.251 0.749 Child Has Musical Instruments Ages 7-8 0.101 0.899

Number of Books Child Has during Year of Birth 0.471 0.529 Family Subscribes to Daily Newspapers Ages 7-8 0.084 0.916

How Often Mom Reads to Child during Year of Birth 0.383 0.617 Child Has Special Lessons Ages 7-8 0.152 0.848

Number of Soft Toys Child Has during Year of Birth 0.251 0.749 How Often Child Goes to Musical Shows Ages 7-8 0.283 0.717

Number of Push/Pull Toys Child Has during Year of Birth 0.191 0.809 How Often Child Attends Family Gatherings Ages 7-8 0.013 0.987

How Often Child Eats with Mom/Dad during Year of Birth 0.173 0.827 How Often Child is Praised Ages 7-8 0.030 0.970

How Often Mom Calls from Work during Year of Birth 0.057 0.943 How Often Child Gets Positive Encouragement Ages 7-8 0.141 0.859

How Often Child Goes on Outings at Ages 1-2 0.070 0.930 Number of Books Child Has Ages 9-10 0.081 0.919

Number of Books Child Has Ages 1-2 0.453 0.547 Mom Reads to Child Ages 9-10 0.080 0.920

How Often Mom Reads to Child Ages 1-2 0.449 0.551 Eats with Mom/Dad Ages 9-10 0.014 0.986

Number of Soft Toys Child Has Ages 1-2 0.010 0.990 How Often Child Goes to Museum Ages 9-10 0.318 0.682

Number of Push/Pull Toys Child Has Ages 1-2 0.045 0.955 Child Has Musical Instruments Ages 9-10 0.122 0.878

How Often Child Eats with Mom/Dad Ages 1-2 0.014 0.986 Family Subscribes to Daily Newspapers Ages 9-10 0.113 0.887

Mom Calls from Work Ages 1-2 0.033 0.967 Child Has Special Lessons Ages 9-10 0.149 0.851

How Often Child Goes on Outings Ages 3-4 0.067 0.933 How Often Child Goes to Musical Shows Ages 9-10 0.363 0.637

Number of Books Child Has Ages 3-4 0.230 0.770 How Often Child Attends Family Gatherings Ages 9-10 0.027 0.973

How Often Mom Reads to Child Ages 3-4 0.386 0.614 How Often Child is Praised Ages 9-10 0.059 0.941

How Often Child Eats with Mom/Dad Ages 3-4 0.018 0.982 How Often Child Gets Positive Encouragement Ages 9-10 0.115 0.885

Number of Magazines at Home Ages 3-4 0.161 0.839 Number of Books Child Has Ages 11-12 0.101 0.899

Child Has a CD player Ages 3-4 0.148 0.852 Eats with Mom/Dad Ages 11-12 0.020 0.980

How Often Child Goes on Outings Ages 5-6 0.071 0.929 How Often Child Goes to Museum Ages 11-12 0.318 0.682

Number of Books Child Has Ages 5-6 0.102 0.898 Child Has Musical Instruments Ages 11-12 0.113 0.887

How Often Mom Reads to Child Ages 5-6 0.193 0.807 Family Subscribes to Daily Newspapers Ages 11-12 0.084 0.916

How Often Child Eats with Mom/Dad Ages 5-6 0.016 0.984 Child Has Special Lessons Ages 11-12 0.121 0.879

Number of Magazines at Home Ages 5-6 0.163 0.837 How Often Child Goes to Musical Shows Ages 11-12 0.428 0.572

Child Has CD player Ages 5-6 0.129 0.871 How Often Child Attends Family Gatherings Ages 11-12 0.018 0.982

How Often Child Goes to Museum  Ages 5-6 0.247 0.753 How Often Child is Praised Ages 11-12 0.043 0.957

Child Has Musical Instruments Ages 5-6 0.112 0.888 How Often Child Gets Positive Encouragement Ages 11-12 0.057 0.943

Family Subscribes to Daily Newspapers Ages 5-6 0.139 0.861 Number of Books Child Has Ages 13-14 0.143 0.857

Child Has Special Lessons Ages 5-6 0.259 0.741 Eats with Mom/Dad Ages 13-14 0.034 0.966

How Often Child Goes to Musical Shows Ages 5-6 0.305 0.695 How Often Child Goes to Museum Ages 13-14 0.333 0.667

How Often Child Attends Family Gatherings Ages 5-6 0.021 0.979 Child Has Musical Instruments Ages 13-14 0.109 0.891

How Often Child is Praised Ages 5-6 0.006 0.994 Family Subscribes to Daily Newspapers Ages 13-14 0.088 0.912

How Often Child Gets Positive Encouragement Ages 5-6 0.087 0.913 Child Has Special Lessons Ages 13-14 0.157 0.843

Number of Books Child Has Ages 7-8 0.103 0.897 How Often Child Goes to Musical Shows Ages 13-14 0.370 0.630

How Often Mom Reads to Child Ages 7-8 0.123 0.877 How Often Child Attends Family Gatherings Ages 13-14 0.030 0.970

How Often Child Eats with Mom/Dad Ages 7-8 0.008 0.992 How Often Child is Praised Ages 13-14 0.097 0.903

How Often Child Goes to Museum Ages 7-8 0.293 0.707 How Often Child Gets Positive Encouragement Ages 13-14 0.108 0.892

Percentage of Total Variance in Measurements due to Signal and Noise

Table 2B



First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Self-Productivity) g1,C,1 0.403 g2,C,1 0.657

(0.058) (0.013)

Current Period Noncognitive Skills (Cross-Productivity) g1,C,2 0.218 g2,C,2 0.009

(0.105) (0.005)

Current Period Investments g1,C,3 0.067 g2,C,3 0.167

(0.090) (0.018)

Parental Cognitive Skills g1,C,4 0.268 g2,C,4 0.047

(0.078) (0.009)

Parental Noncognitive Skills g1,C,5 0.044 g2,C,5 0.119

(0.050) (0.150)

Complementarity Parameter f1,C 0.375 f2,C -0.827

(0.294) (0.093)

Implied Elasticity of Substitution 1/(1-f1,C) 1.601 1/(1-f2,C) 0.547

Variance of Shocks hC,t d
2
1,C 0.941 d

2
2,C 0.358

(0.048) (0.006)

First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Cross-Productivity) g1,N,1 0.193 g2,N,1 0.058

(0.095) (0.014)

Current Period Noncognitive Skills (Self-Productivity) g1,N,2 0.594 g2,N,2 0.638

(0.090) (0.020)

Current Period Investments g1,N,3 0.099 g2,N,3 0.239

(0.296) (0.031)

Parental Cognitive Skills g1,N,4 0.114 g2,N,4 0.065

(0.055) (0.015)

Parental Noncognitive Skills g1,N,5 0.000 g2,N,5 0.000

(0.821) (0.203)

Complementarity Parameter f1,N -0.723 f2,N -0.716

(0.441) (0.127)

Implied Elasticity of Substitution 1/(1-f1,N) 0.580 1/(1-f2,N) 0.583

Variance of Shocks hN,t d
2
1,N 0.767 d

2
2,N 0.597

(0.076) (0.017)

Note: Standard errors in parenthesis

Table 3

Panel A: Technology of Cognitive Skill Formation

Panel B: Technology of Noncognitive Skill Formation

Linear Anchoring on Educational Attainment (Years of Schooling)

(Model of Table 1 with No Measurement Error Corrections)

No Unobserved Heterogeneity (p), Factors Normally Distributed

Estimates of the Technology that Ignore Measurement Error



First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Self-Productivity) g1,C,1 0.359 g2,C,1 0.656

(0.022) (0.014)

Current Period Noncognitive Skills (Cross-Productivity) g1,C,2 0.045 g2,C,2 0.007

(0.020) (0.005)

Current Period Investments g1,C,3 0.174 g2,C,3 0.059

(0.014) (0.004)

Parental Cognitive Skills g1,C,4 0.041 g2,C,4 0.100

(0.013) (0.008)

Parental Noncognitive Skills g1,C,5 0.381 g2,C,5 0.178

(0.024) (0.018)

Complementarity Parameter f1,C 0.331 f2,C -0.797

(0.107) (0.077)

Implied Elasticity of Substitution 1/(1-f1,C) 1.496 1/(1-f2,C) 0.557

Variance of Shocks hC,t d
2
1,C 0.165 d

2
2,C 0.084

(0.007) (0.003)

First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Cross-Productivity) g1,N,1 0.000 g2,N,1 0.000

(0.019) (0.008)

Current Period Noncognitive Skills (Self-Productivity) g1,N,2 0.451 g2,N,2 0.662

(0.030) (0.018)

Current Period Investments g1,N,3 0.046 g2,N,3 0.066

(0.016) (0.005)

Parental Cognitive Skills g1,N,4 0.037 g2,N,4 0.000

(0.012) (0.009)

Parental Noncognitive Skills g1,N,5 0.466 g2,N,5 0.272

(0.036) (0.019)

Complementarity Parameter f1,N -0.852 f2,N -0.308

(0.199) (0.077)

Implied Elasticity of Substitution 1/(1-f1,N) 0.540 1/(1-f2,N) 0.765

Variance of Shocks hN,t d
2
1,N 0.220 d

2
2,N 0.098

(0.013) (0.003)

Note: Standard errors in parenthesis

Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)

Table 4

Linear Anchoring on Educational Attainment (Years of Schooling)

Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)

Estimated Technology Allowing for Heterogeneity

Allowing for Unobserved Heterogeneity (p), Factors Normally Distributed



First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Self-Productivity) g1,C,1 0.384 g2,C,1 0.770

(0.022) (0.018)

Current Period Noncognitive Skills (Cross-Productivity) g1,C,2 0.071 g2,C,2 0.009

(0.023) (0.005)

Current Period Investments g1,C,3 0.124 g2,C,3 0.049

(0.015) (0.011)

Parental Cognitive Skills g1,C,4 0.054 g2,C,4 0.072

(0.012) (0.008)

Parental Noncognitive Skills g1,C,5 0.368 g2,C,5 0.099

(0.026) (0.016)

Complementarity Parameter f1,C 0.480 f2,C -0.961

(0.109) (0.115)

Implied Elasticity of Substitution 1/(1-f1,C) 1.925 1/(1-f2,C) 0.510

Variance of Shocks hC,t d
2
1,C 0.151 d

2
2,C 0.090

(0.006) (0.003)

First Stage 

Parameters

Second Stage 

Parameters

Current Period Cognitive Skills (Cross-Productivity) g1,N,1 0.000 g2,N,1 0.000

(0.020) (0.009)

Current Period Noncognitive Skills (Self-Productivity) g1,N,2 0.526 g2,N,2 0.748

(0.032) (0.019)

Current Period Investments g1,N,3 0.021 g2,N,3 0.055

(0.010) (0.015)

Parental Cognitive Skills g1,N,4 0.057 g2,N,4 0.000

(0.012) (0.009)

Parental Noncognitive Skills g1,N,5 0.396 g2,N,5 0.196

(0.031) (0.021)

Complementarity Parameter f1,N -0.818 f2,N -0.483

(0.253) (0.157)

Implied Elasticity of Substitution 1/(1-f1,N) 0.550 1/(1-f2,N) 0.674

Variance of Shocks hN,t d
2
1,N 0.210 d

2
2,N 0.101

(0.012) (0.003)

Note: Standard errors in parenthesis

Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)

Table 5

Estimates of the Technology for Cognitive and Noncognitive Skill Formation

Estimated Along with Investment Equation with 

Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)

Linear Anchoring on Educational Attainment (Years of Schooling)

Allowing for Unobserved Heterogeneity (p), Factors Normally Distributed



Current Period Cognitive Skills g1,C,1 0.303 g2,C,1 0.448

0.026 0.015

Current Period Investments g1,C,3 0.319 g2,C,3 0.098

0.025 0.015

Parental Cognitive Skills g1,C,4 0.378 g2,C,4 0.454

0.022 0.017

Complementarity Parameter f1,C -0.180 f2,C -0.781

0.130 0.096

Implied Elasticity of Substitution 1/(1-f1,C) 0.847 1/(1-f2,C) 0.562

Variance of Shocks hC,t d
2
h 0.193 d

2
h 0.050

0.006 0.002

Note: Standard errors in parenthesis

Table 6

Technology of Cognitive Skill Formation

Model with Cognitive Skills Only

Linear Anchoring on Educational Attainment (Years of Schooling)

Allowing for Unobserved Heterogeneity (p), Factors Normally Distributed

Estimated Along with Investment Equation with 
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Source: Cunha and Heckman (2007).
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