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Abstract

A social planner would like a socially optimal outcome to be chosen in an environment

with externalities. The standard approach to solving the social planner's problem is to design

mechanisms with desirable incentive properties such as strategy-proofness or equilibrium

uniqueness. These mechanisms make the desired outcome a Nash equilibrium and rely on

agents' rationality to coordinate on it. I introduce mechanisms with weak incentives to o�er

a di�erent approach. These mechanisms make the desired outcome a Nash equilibrium,

but rely on agents' behavioral traits - instead of rationality - to coordinate on the desired

outcome. A mechanism with weak incentives is an indirect mechanism in which the payo�

of agent i does not depend on his report. These mechanisms shed light on the relative

importance between making the desired outcome a Nash equilibrium and o�ering incentives

to coordinate on it. As an application, I show that in large economies, if players' reports

are true on average, mechanisms with weak incentives solve the social planner's problem. I

demonstrate this result using an experimental congestion game. In the lab, a mechanism

with weak incentives realized 95% of the e�ciency achieved by a social planner with full

information. This suggest that lie-aversion, a well-established behavioral trait, can be used

to design e�ective mechanisms.
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Ever since Hurwicz (1972) introduced the concept of incentive compatibility, the accepted wisdom

has been that the minimal requirement to implement a social goal is to have a mechanism in

which the social optimum is a Nash equilibrium. In practice, however, the standard approach has

been to require stronger incentive properties because incentive compatible mechanisms potentially

have undesired Nash equilibria, or their desired Nash equilibria might not be easy to reach. This

approach has been used in kidney exchange (Roth, Sönmez and Ünver (2004)), school choice

(Abdulkadirouglu and Sönmez (2003)) and military assignments (Sönmez and Switzer (2013)).

Providing strong incentive properties has been successful in practice, but it has limited the study

of mechanisms in at least three ways: i) it is not applicable to problems that are incompatible

with these incentive properties, ii) it fails to incorporate behavioral traits as a model of human

behavior and iii) it leaves many interesting questions out of the scope. The �rst limitation is well-

understood, but it has typically been addressed by replacing one incentive property for another.

This swap is not always possible. The second limitation is more delicate. There is evidence that

mechanisms with strong incentive properties sometimes work and sometimes fail. Typically, their

success is attributed to their incentives; however, this interpretation is inconsistent with their

failures. Furthermore, there is evidence that mechanisms without strong incentives properties

sometimes succeed. These observations are consistent with the existence of behavioral traits.

Finally, once behavioral traits are acknowledged, it is possible to investigate, for example, if some

strategy-proof mechanisms are signi�cantly better than others.

This paper addresses the second limitation and shows that behavioral traits can be as e�ective

as strong incentive properties in solving social problems. Speci�cally, this paper i) introduces

mechanisms with weak incentives � the minimal incentives for the social goal to be a rational

choice, and ii) shows that these mechanism can rely on behavioral traits to solve externality prob-

lems in big economies. The objective is to achieve e�ciency in an environment with externalities:

each agent in a group must select an action, but the e�cient pro�le of actions depends on the

agents' private information. In this environment, a mechanism with weak incentives is an indirect

mechanism in which each individual selects an action and reports his private information. The
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mechanism assigns prices that re�ect the externalities produced by each action. These mecha-

nisms possess the e�cient pro�le of actions as a Nash equilibrium, but do not incentivize the

truthful revelation of private information. Hence, this class of mechanisms constitutes a natural

way to de�ne the incremental value of incentives.

The main drawback of using mechanisms with weak incentives is that they generically possess

many equilibria because best responses are thick, as all reports are associated with the same

payo� for any given action. This does not prevent them from solving the social planner's problem.

Suppose, for example, that agents have a tendency to report the truth when they cannot pro�t

from misrepresenting their private information. In this case, a mechanism with weak incentives

would be as e�ective as a mechanism with stronger incentive properties. This is indeed the

typical assumption of strategy-proof mechanisms, as they also often possess equilibria other than

truth-telling.

Of course, human beings might or might not report their private information when confronted

with weak incentives. The question is for actual human behavior: What kind of problems can

be e�ectively solved? This paper explores this question by showing that externality problems in

big economies can be e�ectively solved by mechanisms with weak incentives for a large class of

behavioral assumptions. Their e�ectiveness is con�rmed in the experimental laboratory using a

congestion problem.

Mechanisms with weak incentives are e�ective in solving externality problems in which average

truth-telling is su�cient for achieving e�ciency. For example, the e�cient provision of a public

good requires that the sum of net bene�ts is accurately signed; if some agents overstate their

values while others shade by the same amount, the result would still be e�cient.1 Analogously,

correcting a negative externality requires the calculation of the social marginal cost, which typically

is the sum of individual marginal costs of a�ected parties. In these cases, the welfare function

depends on the average private value, not on each individual value. Knowledge of the average

type at the e�cient outcome is enough to implement it. Hence, actions can be priced correctly

1The purchase (or funding) of a unit of public good by one agent has a positive externality on other agents.
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even if some agents misrepresent their private information.

To study the coordination problem, this paper uses non-equilibrium adjustment processes. These

processes characterize how agents select actions and reports, given a current pro�le of actions

and reports. This tool is commonly used in evolutionary game theory. It is shown that a concave

welfare function is su�cient for a large class of non-equilibrium adjustment processes to converge

to the e�cient Nash equilibrium in problems characterized by the average type. Both conditions,

dependence on average values and concavity of the welfare function, are common in economic

problems. This theoretical result provides reasons to believe that this class of mechanism could

be e�ective in real life. However, the true test of the e�ectiveness of a mechanism is empirical.

A tra�c congestion game is used to test the e�ectiveness of a mechanism with weak incentives

in the experimental laboratory. Tra�c congestion represents an ideal application. It is a big

problem in which a very large number of agents play each other repeatedly.2 Commuters have

heterogeneous values of commuting and time.3 The welfare function is concave and depends

on the average value of time. In principle, a social planner could ensure e�cient behavior by

introducing a congestion price equal to the social marginal cost at the e�cient level of tra�c. In

practice, however, policymakers lack the information to set such a price.4 A mechanism design

approach is still necessary.

The experimental design consists of a driving game in which 14 subjects independently decide

whether to �drive� or �not drive� on a �xed road for 30 rounds of play. At the beginning of the

2Empirical studies have found that the loss of welfare due to tra�c congestion is between $32 and $121 billion
dollars every year in the United States. According to Schrank, Eisele and Lomax (2012), the congestion �invoice�
for the cost of extra time and fuel in 498 urban areas in 2011 was (in 2011 dollars): $121 billion. On the other
hand, Litman (2014) considers that $32 is a more appropriate value, as the former report consider a value of
time �unreasonable� high. The value of time considered by the former is $16.79 per hour and $8.37 by the latter.
These studies also have a di�erent position on the e�cient level of congestion.

3The value of commuting is the utility derived from getting from A to B. The value of time is the opportunity
cost of every unit of time spent on the road.

4This lack of information is a problem that no system has been able to solve in practice. For example, both
the Congestion Charge in London and Singapore's Area Licensing Scheme, which are deemed the most successful
congestion systems in the world, use demand estimations and an objective level of congestion to set the congestion
price to be charged to drivers. Z.F. Li (1999) describes the evolution the the Singapore's Area Licensing Scheme,
which originally had a target reduction of 25% - 30%. According to the transport for London report (2003), the
London's congestion charging was originally intended to reduce tra�c by 10% - 15%.
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game, every subject was randomly and privately assigned two numbers: i) a value of commuting

and ii) a value of time. Neither the distribution nor the support of values was revealed to the

subjects. Types were chosen to ful�ll the following three functions: (i) replicate a large market,

(ii) minimize the set of agents who belong to both the Nash equilibrium without congestion pricing

and the social optimum, and (iii) allow for zero e�ciency gains with the message mechanism.

Two main treatments were considered: no price and message price. The �rst treatment represents

a situation with no congestion prices and the second uses a mechanism with weak incentives. The

message price treatment uses agents' messages about their value of time and the observed level

of tra�c to calculate congestion prices. Tra�c observations are used to measure the marginal

impact, in time, of adding an extra vehicle to the road. Messages are used to measure the cost

of the marginal increase in time.

Four additional treatments were considered to provide control and robustness to the �ndings. The

�xed price treatment provides a measure of the maximum observable e�ciency. This treatment

considers a social planner with access to all private information and imposes the optimal �xed

congestion price in all rounds. The dynamic price treatment follows the same structure of the

message price, but behaves as if all agents reported the truth all the time. The balanced treat-

ment considers budget-balanced versions of the dynamic and message treatments. The random

treatment considers random types instead of the constructed types used in other treatments.

The experimental results are promising. E�ciency is measured with respect to the observed

e�ciency achieved by the �xed price treatment, as this treatment represents the maximum possible

e�ciency a policymaker could achieve in a real situation. The observed e�ciencies are as follows:

65.90% (13.01%) for the no price treatment and 95.00% (3.44%) for the message treatment.5

The random treatment achieved an e�ciency of 91.74% (9.3%).6 However, when one of the six

sessions is omitted, the e�ciency of the random treatment becomes 95.65% (3.2%). The low

5The standard deviation is reported in brackets. The paired Wilcoxon signed-rank test was used to reject the
null hypothesis that the treatments with congestion prices achieve the same e�ciency as the treatment with no
price. In all cases the null was rejected at a con�dence level of 99%.

6This e�ciency is measured with respect to the maximum theoretical e�ciency associated with each draw of
random types. The theoretical e�ciency associated with the message price treatment is 91.46% (3.31%).
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e�ciency, 72.21%, achieved by one of the random sessions was due to the small scale of the

experiment. In the controlled sessions, types were chosen to represent a big market. In the low

e�ciency session, 4 out of 14 subjects had a market power inconsistent with a big market.

This paper is related to the literature on mechanism design, the growing literature on behavioral

implementation, and the well-established literature on congestion pricing.

The inconsistent performance of strong rational incentives provides evidence that human behavior

- not accounted for in the rational model - plays a role in the success of many mechanisms.

The most famous, but not unique, example of a mechanism that fails despite providing strong

rational incentives is the second price auction, which is strategy-proof. Kagel, Harstad and

Levin (1987) report an experiment in which bidders do not report their true value.7 Attiyeh,

Franciosi and Isaac (2000) and Kawagoe and Mori (2001) report experiments in which another

strategy-proof mechanism, a version of the Vickrey-Clarke-Groves (VCG) mechanism, achieve

rates of truth-telling as low as 10%. There are mechanisms that display the opposite behavior.

Double auctions are the most well-known example of a mechanism that is typically not incentive

compatible, but performs well most of the times. Smith (1962; 1980) shows that the double

auction mechanism consistently achieves the competitive equilibrium outcome despite agents'

manipulation possibilities. Budish and Kessler (2014) show that the mechanism for the fair

allocation of indivisible goods without money proposed by Budish (2011) performs well in practice,

despite providing opportunities for manipulation.8

The above inconsistencies have led to two di�erent views towards behavioral traits. The �rst view

considers that mechanisms should be robust to behavioral traits. Saijo, Sjostrom and Yamato

(2007) propose double implementation, both in Nash and weakly dominant strategies. Li (2015)

proposes implementation in obviously-strategy-proof strategies.9 These notions exacerbate the

7This is a prevalent phenomenon as Kawagoe and Mori (2001); Kagel and Levin (1993) report similar �ndings.
8Similarly, Che and Tercieux (2015) propose a mechanism which is neither strategy-proof, nor stable, nor

e�cient to obtain a matching that approximately obtains the three properties.
9A strategy is obviously dominant if, for any deviating strategy, starting from any earliest information set

where both diverge, the best possible outcome from the latter is no better than the worst possible outcome of
the former.
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�rst limitation mentioned above, as they are harder to provide in practice. Bierbrauer et al. (2014)

considers mechanisms that are robust to individuals with social preferences. Their characteriza-

tion depends on payo� equivalent reports, a characteristic also present in this paper. Farhi and

Gabaix (2015) implement an optimal tax scheme with behavioral agents who might not perfectly

optimize their budgets, and they show that the optimal tax scheme is simple, a characteristic

shared with this paper. These similarities are in spirit, not in the letter. However, they might

help us understand how behavioral implementation is di�erent or similar to rational implemen-

tation. de Clippel (2014) shows they are not entirely di�erent, but that their connection is still

not well understood. The second view leverages on behavioral traits to achieve social goals. This

paper belongs to this second branch. In this branch there are several papers that explore mecha-

nisms without strong incentives, but do not explicitly address how the desired Nash equilibrium

is reached. Abdulkadiro§lu, Che and Yasuda (2011) and Abdulkadiro§lu, Che and Yasuda (2015)

propose a non-truth-telling mechanism for school choice that improves upon a strategy-proof

mechanism but provide no evidence that these gains could be realized in practice or how. Feath-

erstone and Niederle (2015) shows experimentally that these non-truth-telling equilibria might

me very di�cult to reach in practice and propose a truth-telling-not-strategy-proof mechanism,

however, their experiments only suggest a potential for truth-telling-not-strategy-proof mecha-

nisms, since they do not explicitly address how their subjects reach equilibrium. There are papers

that use non-equilibrium strategies as means of implementation. Fragiadakis and Troyan (2015)

shows that focal, non-equilibrium, strategies can be used to improve e�ciency in an assignment

game. In contrast to the mentioned papers, this paper: i) deals with externalities instead of

assignment games, ii) provides a general framework for understanding equilibrium selection in

terms of behavioral traits, iii) shows explicitly that average-truth-telling is su�cient to converge

to the e�cient outcome, and iv) designs an experiment that allows one to attribute the success

of the mechanism to the aforementioned behavioral trait. Both Featherstone and Niederle (2015)

and Fragiadakis and Troyan (2015) experimental results can be interpreted as leveraging on the

agents' tendency to report the truth - a feature also present in this paper and well-established in
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the behavioral game theory literature (Gneezy (2005); Erat and Gneezy (2012); Gneezy, Rocken-

bach and Serra-Garcia (2013)).

This paper is also related to the literature on congestion abatement systems. Externalities and

externality abatement have been studied consistently at least since Pigou (1920), who proposed to

charge agents the value of the marginal externality they produce at the e�cient social allocation.

As mentioned before, this approach requires information not available to the policymaker. Many

solutions have been studied. For example, Sandholm (2002; 2005; 2010) provides a systematic

treatment of the dynamics of congestion prices in continuous time. Both Li (2002) and Yang,

Meng and Lee (2004) provide evidence that prices can also be adjusted in discrete time. Yang

and Wang (2011) study systems of tradable permits. They show that the system can achieve

full e�ciency when the market for permits is perfectly competitive. Continuing their work, Wang

et al. (2014) showed that the system of tradable permits can be guaranteed to achieve the social

optimum allocation by adjusting the quantity of permits according to the observed price in the

permits market. Nie (2012) have shown that these tradable permit systems are very sensitive

to transaction costs in the permits market. Guo and Yang (2010) show that, when demand is

�xed, it is possible to achieve budget balancedness using an appropriate combination of taxes

and subsidies. The message system can achieve budget balancedness even when demand respond

to prices. Several studies have taken congestion games to the experimental lab. Schneider and

Weimann (2004), Selten et al. (2007), and Hartman (2012) study route choice behavior with

and without congestion prices. Rapoport et al. (2004) and Rapoport et al. (2014) study entry

games with and without congestion prices. In both the experimental and theoretical literature on

congestion, it is assumed that the policymaker or mechanism knows the value of the externality

i.e. knows every agents' value of time and that this value is homogeneous. The theory and

experiment in this paper do not assume knowledge of private information nor its homogeneity in

the population.
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1 Mechanisms with weak incentives

This section introduces mechanisms with weak incentives in a general framework to highlight

the interactions between rational incentives, information, and behavioral traits in mechanisms

designed to solve the social planer's problem in an environment with externalities. The purpose of

these mechanisms is to isolate behavioral traits as an equilibrium re�nement. These mechanisms

o�er the social optimum as a Nash equilibrium, but do not incentivize agent's to coordinate on it.

Furthermore, it is assumed that agents have private information, but lack common knowledge of

the distribution of types. The informational assumption might hold in some real life applications.

Consider a set of agents N = {1, . . . , N}. Agents must select an action simultaneously and

independently from each other. Agent i selects actions from the �nite set Xi. An action pro�le

x = (x1, . . . , xN) describes an action for each agent. The set of action pro�les is denoted by

X = ΠNXi. Agent i is described entirely by his type θi ∈ Θi. Types are private information.

Let θ = (θ1, . . . , θN) and Θ = ΠNΘi. Individuals have quasilinear utility functions vi(x, θi, t) =

ui(x, θi) + t, where ui : X × Θi → R depends on everyone actions and i's private information.

Agent i knows his type θi and his set of strategies Xi, but does not know the distribution of

types.

The pro�le of actions x ∈ X is e�cient at θ if
∑

N ui(x, θi) ≥
∑

N ui(y, θi) for all y ∈ X.

The e�ciency level associated with an action pro�le x at θ is V (x, θ) =
∑

N ui(x, θi). The set

of e�cient pro�les of actions at θ is denoted by x∗(θ). A pro�le of actions x ∈ X is a Nash

equilibrium at θ if vi(xi, x−i, θi) ≥ vi(yi, x−i, θi) for all yi ∈ Xi for all i ∈ N . The set of Nash

equilibria at θ is denoted by x(θ). In many situations there is no e�cient Nash equilibrium i.e.

x(θ) ∩ x∗(θ) = ∅. Consider the following example.

Example 1. Consider a situation with two agents N = {1, 2} and actions X1 = {a1, b1} and

X2 = {a2, b2}. Each agent has two possible types: Θ1 = {θ1, θ
′
1} and Θ2 = {θ2, θ

′
2}. Suppose

payo�s are as follow:
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(θ1, θ2) a2 b2

a1 4, 3 2, 2
b1 3, 5 1, 4

(θ1, θ
′
2) a2 b2

a1 4, 3 2, 4
b1 3, 1 1, 2

(θ′1, θ2) a2 b2

a1 2, 3 4, 2
b1 3, 5 5, 4

(θ′1, θ
′
2) a2 b2

a1 2, 3 4, 4
b1 3, 1 5, 2

The e�cient pro�le of actions and Nash equilibria are as follow: x∗(θ1, θ2) = (b1, a2) and

x(θ1, θ2) = (a1, a2), x∗(θ′1, θ2) = (b1, b2) and x(θ′1, θ2) = (b1, a2), x∗(θ1, θ
′
2) = (a1, a2) and

x(θ1, θ
′
2) = (a1, b2), x∗(θ′1, θ

′
2) = (a1, b2) and x(θ′1, θ

′
2) = (b1, b2).

A social planner would like to ensure that a member of x∗(θ) is chosen by the agents for all θ ∈ Θ

by introducing a mechanism. A mechanism is a pair M, g, with M = ΠNMi and g : M → O,

whereMi is player's imessage space andO = X×RN is the outcome space. A mechanism assigns

a pro�le of actions gx(m) and transfers gt(m) for every pro�le of messages m = (m, . . . ,mN).

A message pro�le m is a Nash equilibrium at θ ∈ Θ if vi(gx(mi,m−i), θi, gt,i(mi,m−i)) ≥

vi(gx(m
′
i,m−i), θi, gt,i(m

′
i,m−i)) for all m′i ∈ Mi and i ∈ N . The set of Nash equilibria in

the mechanism M, g at θ is denoted by mg(θ). The mechanism M, g is e�cient whenever

x∗(θ) ∩ gx(mg(θ)) 6= ∅ for all θ ∈ Θ. In this case m∗g(θ) is a selection of mg(θ) such that

gx(m
∗
g(θ)) ∈ x∗(θ) for all θ ∈ Θ. A message mi is a dominant strategy for agent i at θi if

vi(gx(mi,m−i), θi, gt,i(mi,m−i)) ≥ vi(gx(m
′
i,m−i), θi, gt,i(m

′
i,m−i)) for all m

′
i ∈Mi and m−i ∈

M−i = ΠN\iMj. A mechanism M, g is budget balanced at m ∈ M if
∑

N ti(m) ≤ 0. It is

assumed that the social planner knows Θ, but not the distribution of types.

It is widely accepted that the existence of an e�cient mechanism is not su�cient to guarantee that

x∗(θ) will be chosen by the agents for all θ ∈ Θ because there might be multiple equilibria. This

problem has been addressed in many di�erent ways. For example, o�ering a unique equilibrium

guarantees that the only rational choice is the desired outcome and making truth-telling a weakly

dominant strategy makes it easier to coordinate in the truth-telling equilibrium even when there

are other equilibria. There are many other options, but all of them share one characteristic:

they limit the set of problems that can be solved and demand a level of rationality that might
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not be available in practice. This paper o�ers an alternative approach for dealing with multiple

equilibria: rely on agents' behavior to coordinate on the desired outcome. This is done by

providing a mechanism that has the desired outcome x∗(θ) as a Nash equilibrium, but does not

incentivize agents to select it. This class of mechanism posses weak incentives.

A mechanism M, g is a mechanism with weak incentives if Mi = Xi × Θi, gx(x, θ) = x and

gt(x, θ) = p : X×Θ→ RN is such that is such that vi(x, θi, pi(x, θ′i, θ̂−i)) = vi(x, θi, pi(x, θ
′′
i , θ̂−i))

for all x ∈ X, θ′i, θ
′′
i ∈ Θi and θ̂−i ∈ Θ−i. Agents select an action and send a report about their

type, but their payo� does not depend on the particular report they send. Hence, this class of

mechanisms do not incentivize the revelation of private information. As in the case of direct

mechanisms, it is possible to choose p such that (x∗(θ), θ) becomes a Nash equilibrium for all

θ ∈ Θ. For each agent, pi is a list of prices for each action in Xi. The construction of an e�cient

set of prices p relies on the celebrated Vickrey - Clarke - Groves mechanism (VCG).10

The VCG mechanism is an e�cient direct mechanism with M = Θ, gx(m) ∈ argmax
y

V (y,m)

and gt,i(m) =
∑

N\i uj(x(m),mj)− hi(m−i), where hi : Θ−i → R. Truth-telling is a dominant

strategy in the VCG mechanism. To obtain an e�cient mechanism with weak incentives, let

pi(x, θ) =
∑

N\i uj(x, θj)−hwi (x−i, θ−i) be the price associated with xi when other agents select

x−i, where hi : X−i × Θ−i → R. These prices de�ne the weak VCG mechanism (wVCG).

Both transfers and prices can be set to represent the marginal impact of the introduction of an

agent, in the case of the VCG, or the selection of an action, for the wVCG. This is achieved by

setting hi(m−i) = max
∑

N\i uj(x,mj) for all i ∈ N for VCG and selecting a default pro�le of

actions x0 ∈ X and letting hwi (x−i, θ−i) =
∑

N\i uj((x
0
i , x−i), θj) for all i ∈ N for wVCG. Unless

otherwise noted, these transfers and prices will be used in all examples. The di�erences between

the VCG and the wVCG are illustrated in the following example.

Example 2. Consider the problem from example 1. The games induced by VCG and wVCG with

default x0 = (b1, b2) when the true state of the world is (θ1, θ2) are shown below. Transfers and

prices are added to (or subtracted from) the payo� associated with each pro�le of messages.
10Vickrey (1961); Clarke (1971); Groves (1973)
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VCG

(θ1, θ2) θ2 θ′2

θ1 3 + 0, 5− 1 4− 1, 3 + 0

θ′1 1− 1, 4 + 0 2 + 0, 2− 1

wVCG

(θ1, θ2) a2, θ2 a2, θ
′
2 b2, θ2 b2, θ

′
2

a1, θ1 4− 2, 3 + 2 4 + 2, 3 + 2 2− 2, 2 + 0 2 + 2, 2 + 0

a1, θ
′
1 4− 2, 3− 2 4 + 2, 3− 2 2− 2, 2 + 0 2 + 2, 2 + 0

b1, θ1 3 + 0, 5 + 2 3 + 0, 5 + 2 1 + 0, 4 + 0 1 + 0, 4 + 0

b1, θ
′
1 3 + 0, 5− 2 3 + 0, 5− 2 1 + 0, 4 + 0 1 + 0, 4 + 0

In wVCG, there are 4 Nash equilibria

m(θ) = {(b1, θ1, a2, θ2), (a1, θ1, a2, θ
′
2), (b1, θ

′
1, a2, θ2), (b1, θ

′
1, b2, θ2)}

in VCG m(θ1, θ2) = (θ1, θ2) is the unique equilibrium in dominant strategies. Both mechanism

are e�cient.

The following propositions show some properties of mechanisms with weak incentives. All proofs

are in the appendix.

Proposition 1. There is an e�cient mechanism with weak incentives, namely the wVCG.

A mechanism with weak incentives makes the e�cient allocation a rational choice i.e. any

x ∈ x∗(θ) can be supported as a Nash equilibrium, however, agents are not incentivized to reveal

their private information. This weakening in solution concept, with respect to strategy-proofness,

allows for some new possibilities. In particular, budget balancedness is always possible to obtain.
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Proposition 2. There is a budget balanced mechanism with weak incentives for any pro�le of

actions. In particular, any e�cient pro�le of actions can be supported as a budget balanced Nash

equilibrium.

In some applications sending a report and selecting an action could be di�cult for the agents or for

the agency collecting the prices. In these cases, decisions could be preferably made sequentially.

The next proposition shows that e�ciency can also be achieved in this manner.

Proposition 3. Any e�cient pro�le of actions can be supported as a subgame perfect Nash

equilibrium of a sequential mechanism with weak incentives.

The above propositions and example show crucial di�erences between VCG and wVCG. VCG

induces the e�cient pro�le of actions by incentivizing the revelation of private information while

wVCG allows for e�ciency without incentivizing agents to select the socially desirable outcome.

The wVCG mechanism depends completely on agents' behavioral traits to coordinate on the

desired outcome. The next section develops the idea of behavioral traits as an equilibrium

re�nement.

2 Mechanisms with weak incentives in large average

economies

This section develops a model in which behavioral traits are used as an equilibrium re�nement for

a mechanism with weak incentives. In this model, agents can adjust their strategies over time,

allowing the emergence of the desired Nash equilibrium as a social convention. The model is

developed in continuous time and agents for technical convenience.

Agents have a common and �nite set of actions S = {1, . . . , S} with typical element s.11 The

common set of types Θ is �nite with typical element θ = (θ1, θ2), θj ∈ RS.12 There is a positive

11This can be done without loss of generality by letting S = ∪NXi
12This can be done without loss of generality by letting Θ = ∪NΘi
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mass of agents µθ of each type θ. The mass of agents of type θ doing s is denoted by xθs ≥ 0.

Pro�les of actions are replaced by distributions of actions x ∈ X = {x ∈ R|Θ|×|S|+ |
∑

s xθs = µθ}.

The mass of agents, of any type, doing s is denoted by xs ≥ 0. The anonymous distribution

of actions X ′ = {x ∈ R|S|+ |
∑

s xs =
∑

θ µθ} describes what actions are being taken without

specifying which type is doing them. For every x ∈ X, let x′ be such that x′s =
∑

θ xθs.

An agent with type θ doing s has utility function uθs(x) = Fs(x
′)θ1s + θ2s, where F : X ′ → RS,

F ∈ C2 is an observable externality function.13 To simplify notation, F (x′) will be denoted by

F (x). Types are scaled so that for every θ ∈ Θ there is an action sθ such that uθs(x) = 0 for all

x ∈ X. Social welfare is captured byW (x) =
∑

θ

∑
s xθsuθs =

∑
s Fs(x)xsθ̄1s(x)+

∑
s xsθ̄2s(x),

where θ̄1s(x) = 1
xs

∑
θ xθsθ1s and θ̄2s(x) = 1

xs

∑
θ xθsθ2s represent the average type doing action

s ∈ S. It is assumed that W is strictly concave. The e�cient distribution of actions x∗ is

characterized by the �rst order conditions of the Kuhn-Tucker problem:14

Fs(x
∗)θ1s + θ2s +

∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j = λθ − λθs for all θ ∈ Θ, s ∈ S

λθ ≥ 0, λθ[
∑
x∗θj − µθ] = 0 for all θ ∈ Θ

λθs ≥ 0, λθ[x
∗
θs] = 0 for all θ ∈ Θ, s ∈ S

(1)

A distribution of actions x constitutes a Nash equilibrium if vθs(x) = max
j∈S

vθj(x) whenever xθs >

0. Equivalently, x is a Nash equilibrium if there is kθ ≥ 0 such that vθs(x) = k whenever xθs > 0

and vθs(x) ≤ k whenever xθs = 0.

Pigou (1920) realized that e�ciency can be achieved in the presence of externalities if agents

internalize them through prices. In this case, a price equal to ps(x∗) =
∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j for doing

action s ∈ S would make the condition for optimality and Nash equilibrium identical. To see this

observe that the �rst order conditions imply the conditions for a Nash equilibrium with k = λθ,

13If there are no externalities, there is no need for a mechanism as each agent could select his favorite action
without hurting others. Both positive and negative externalities are considered.

14The Lagrangian function is L(x, λ) = W (x)−
∑
θ λθ(

∑
j

x∗θj − µθ) +
∑
θ

∑
s λθsxθs
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xθs > 0 implies that Fs(x∗)θ1s + θ2s +
∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j = λθ = k and xθs = 0 implies that

Fs(x
∗)θ1s + θ2s +

∑
j

∂Fj
∂xs

∑
θ

x∗θjθ1j = λθ − λθs ≤ k.

The main problem with the above approach is that the e�cient average type of action s, θ̄∗1s =

θ̄1s(x
∗), is unknown to the social planner. However, pricing an action based on reported types

and observed actions is feasible i.e. ps(x, x̃) =
∑
j

∂Fj
∂xs

∑
θ

x̃θjθ1j where x̃θj is the mass of agents

reporting being of type θ. This pricing mechanism is a mechanism with weak incentives. When

these prices are used, the e�cient distribution of actions can be supported as a Nash equilibrium.

As in the discrete case, the mechanism with weak incentives with prices ps(x, x̃) =
∑
j

∂Fj
∂xs

∑
θ

x̃θjθ1j

for all s ∈ S has multiple equilibria. In particular, for any �xed distribution of type reports x̃, there

is a Nash equilibrium x(x̃) that satis�es Fs(x(x̂))θ1s+θ2s+ps(x(x̂), x̂) = kθ whenever x(x̂)θs > 0

and Fs(x(x̂))θ1s + θ2s + ps(x(x̂), x̂) ≤ kθ whenever x(x̂)θs = 0.

To understand if agents have any chance of coordinating in the e�cient pro�le of actions

�rst assume that agents always reveal their private information truthfully. In this case, prices

ps(x) =
∑
j

∂Fj
xs

∑
θ

xθjθ1j would only depend on the current pro�le of actions and the multiplic-

ity of Nash equilibria disappears.15 In standard game theory, it is almost always assumed that

the existence of a single Nash equilibrium is su�cient for agents to coordinate on it. This sec-

tion uses a di�erent tool: evolutionary game theory. This theory replaces the strong rational

and informational assumptions in standard game theory with assumptions about non-equilibrium

behavior.16

Agents' individual actions determine a particular distribution of actions x. When x is Nash

equilibrium, it is in the best interest of all agents to follow it. Conversely, when a non-equilibrium

distribution of actions is speci�ed, there is a positive mass of agents who can gain by changing

their action. However, it is not clear when a sequence of non-equilibrium distributions of actions

15When the identity of each individual in a continuum is considered, there is still a continuum of equilibria as
agents of a particular type could distribute themselves di�erently and still respect the aggregate distribution of
types and actions.

16Aumann and Brandenburger (1995), for example, have shown that reaching a Nash equilibrium instantaneously
requires strong informational conditions.
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and their respective deviations actually lead to a Nash equilibrium. Thus characterizing non-

equilibrium behavior is essential to study the convergence properties of mechanisms with weak

incentives. This approach speci�es how actions associated with the same payo� are chosen, a

critical element in the study of mechanism with weak incentives.

Mean dynamics and Lyapunov functions are introduced to characterize non-equilibrium behavior.

A mean dynamic V : X → R|Θ|×|S| is a function that de�nes an equation of motion ẋ = V (x)

on the space of distributions of actions. V is called admissible if:

V is Lipschitz continuous

Vθs(x) ≥ 0 whenever xθs = 0∑
S

Vθs(x) = 0 for all θ ∈ Θ

V (x) = 0 implies x is a Nash equilibrium

A function L : X → R such that ∇L(x)′V (x) ≤ 0 for all x ∈ X is a Lyapunov function for V .

An admissible mean dynamic V with Lyapunov function L has important properties: (i) there is a

unique solution trajectory x : R+ → X from any initial point x ∈ X, (ii) all solution trajectories

stay in the space X, (iii) all rest points of V are Nash equilibria, and (iv) all accumulation points

of solution trajectory x are critical points of L ◦ x.17 The following proposition shows that, when

all agents report their types truthfully, agents can successfully coordinate on the e�cient Nash

equilibrium.

Proposition 4. Let vθs(x) = Fs(x)θ1s + θ2s +
∑
j

∂Fj
∂xs

∑
θ

xθjθ1j for all θ ∈ Θ and s ∈ S and V an

admissible mean dynamic such that V (x) · ∇W (x) > 0 whenever V (x) 6= 0, then every solution

trajectory of V converges to the e�cient distribution of actions x∗.

V satis�es V (x) · ∇W (x) > 0 for all x such that V (x) 66= 0 whenever, on aggregate, agents

adjust their actions by increasing their payo�s over time; this adjustment does not need to be

17These are well-known results in the theory of di�erential equations. The �rst condition implies existence of
a solution to ẋ = V (x) by the Picard�Lindelöf theorem. The second and third conditions guarantee that the
solution does not leave X. The last condition follows the intuition provided by the Nash equilibrium: agents at a
Nash equilibrium do not change their actions while agents in a non-equilibrium do. See Sandholm (2010) for an
introduction.
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optimal for any agent, in particular, the payo� for some individual agents might decrease as long

as the aggregate welfare increases.

If agents are not guaranteed to tell the truth, the pricing mechanism becomes a function of

their reports as well as their actions. In this case, prices become ps(x, x̃) =
∑
j

∂Fj
∂xs

∑
θ

x̃θjθ1j

where x is the observable distribution of actions and x̃ is the reported distribution of types. A

mean dynamic V̂ : X̂ → R|Θ|×|S×Θ| describes both the action and reporting behavior, where

X̂ = {x̂ ∈ R|Θ|×|S×Θ|
+ |

∑
s xθsθ̂ = µθ}. x̂θsθ̂ is the mass of agents of type θ taking action s and

reporting θ̂ as their type. Letting xθs =
∑

θ̂ x̂θsθ̂ and assuming that
∑

θ̂ Vθsθ̂(x̂) =
∑

θ̂ Vθsθ̂(ŷ)

for every x̂ and ŷ such that x = y, every mean dynamic V̂ induces a mean dynamic V by letting

Vθs(x) =
∑

θ̂ Vθsθ̂(x̂). Such a mean dynamic is called an average truth-telling dynamic if, in

addition, its induced V is admissible and V (x) · ∇W (x) > 0 whenever V (x) 6= 0.

Proposition 5. Let V̂ be an average truth-telling mean dynamic, then the mechanism with

weak incentives de�ned by ps(x, x̂) =
∑
j

∂Fj
∂xs

∑
θ

x̂θjθ1j converges to the e�cient x∗distribution of

actions.

In theory, agents following an average truth-telling mean dynamic would converge to the e�cient

distribution of actions. In practice, do agents converge to the e�cient distribution of actions?

The next section explores this question by using a mechanism with weak incentives to solve

an externality problem in the experimental laboratory. The experiment is framed as a tra�c

congestion problem as real tra�c involves a large number of agents who lack enough information

about each other to justify convergence to equilibrium by means of the rational model.

3 A tra�c congestion model

This sections specializes the model developed in section two to describe a tra�c congestion

problem and describe di�erent interventions a social planner could implement under di�erent

informational assumptions. These interventions are latter tested in the experimental laboratory.
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Real life tra�c congestion occurs when thousands of drivers use a road network. During congested

times, the marginal e�ect of each individual on the total congestion is very small, but the total

e�ect can be large. Drivers do not know each other, and do not coordinate routes or departure

times. These characteristics are better captured by the continuous agents model.

A continuum of agents want to commute using a single road during a single peak time of the

day. The total time spent by each agent commuting is a function of the number of agents

on the road and is characterized by a strictly increasing and strictly convex, twice di�erentiable

function t : R→ R+. There is a �nite set of types Θ, with typical element θ and mass denoted

by µθ. Every type is characterized by two values: θ1d is the value of time and θ2d is the value

of commuting. All types have an outside option with value 0, staying home. All agents choose

between commuting and staying home, S = {d, h}.

Outcomes are identi�ed by a distribution of actions x ∈ X = {x ∈ R|Θ|×|S|+ |
∑

s xθs = µθ}, where

xθd represents the mass of agents of type θ who drive. The utility received by an agent of type

θ for driving is uθ(x) = θ2d − θ1dt(
∑
θ

xθd). When there is no risk of confusion, x will be used to

denote both the total number of drivers on the road and the strategy distribution.

3.1 Congestion prices

A social planner would select a strategy distribution that maximizes welfare. The aggregate

welfare for a strategy distribution x is given by W (x) =
∑

θ

∑
s xθsuθs. The e�cient distribution

of actions is characterized by the �rst order conditions in (1). In real life, there are no social

planners, but policy makers facing informational and political constraints. In the following sections

we analyze how a policy maker could implement or approximate the social planner's solution under

di�erent informational and political constraints. Since t is observable it is assumed that policy

makers know t.
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3.1.1 Full information

Suppose a policy maker had complete information about the commuting time function t and

the mass of each type µθ, then he could calculate the optimal allocation x∗ and impose a �xed

optimal price of driving equal to P ∗ = t′(x∗)
∑
θ

θ1dx
∗
θd.

3.1.2 Unknown demand

Assume that the policy maker has no information regarding the demand for commuting but can

perfectly identify the types i.e. upon observing an agent, the policy maker can identify θ1d but

not θ2d. This is a very strong assumption, but allows the study of the gradual loss of information

from the policy maker's perspective. This lack of information prevents the policy maker from

implementing the optimal �xed congestion price P∗ = t′(x∗)
∑
θ

θ1dx
∗
θd. In this case, the following

dynamic congestion price can be implemented: PD(x) = t′(x)
∑
θ

θ1dxθd.

3.1.3 Unknown demand and unknown social cost

Suppose the policy maker has no information regarding the demand or social cost. Policy makers

can observe the total number of drivers on the road, but cannot distinguish their types. Thus

the implementation of the dynamic tax PD(x) = t′(x)
∑
θ

θ1dxθd becomes impossible. The policy

maker, however, could ask drivers to report their value of time and observe tra�c; with this

information, a mechanism with weak incentives characterized by the following prices becomes a

natural candidate:PM(x, x̂) = t′(x)
∑
θ

θ1dx̂θd.

3.1.4 Revenue neutrality

On top of informational constraints, policy makers usually face political constraints. In the case

of externality abatement, the imposition of a congestion price is usually seen as a bad alternative,

since it involves a new �tax�. Hence it is important to consider revenue neutral alternatives.
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In the context of this model, revenue neutrality is simple to achieve since any congestion price

can be replaced by a smaller price on driving and a transfer for not driving. For example, the

dynamic congestion price PD(x) = t′(x)
∑
θ

θ1dxθd can be replaced by a smaller price PBD(x) =

µ−x
µ
t′(x)

∑
θ

θ1dxθd and a transfer SBD(x) = x
µ
t′(x)

∑
θ

θ1dxθd, where µ =
∑

θ µθ. The analogous

division can be implemented for the message congestion price.

4 A mechanism with weak incentives in the laboratory.

The main objective of the experiment is to test if the message system proposed above allows

drivers to converge to the socially optimal tra�c congestion level. The previous section provides

some evidence that, under average truth-telling, the social optimum would be observed. The

empirical e�ectiveness is tested in the experimental laboratory.

The experimental design consists of a driving game in which 14 subjects independently decide

whether to �drive� or �not drive� on a �xed road for 30 rounds of play.18 At the beginning of each

game, every subject was randomly and privately assigned a type characterized by two numbers: a

value of commuting and a value of time. These values are held �xed over the 30 rounds of play.

Neither the distribution nor the support of values was revealed to the subjects. There is a �xed

set of types.

Types were chosen to ful�ll the following three functions: (i) produce at most one marginal agent,

(ii) minimize the set of agents who belong to both the Nash equilibrium without congestion pricing

and the social optimum, and (iii) allow for zero e�ciency gains with the message congestion price.

Congestion occurs when thousands of drivers use the road at the same time. However, designing

an experiment that requires thousands of subjects would be both impractical and expensive. This

large numbers problem is addressed through the experimental design. When there is a large

number of drivers, the impact of each individual on one another is small. In particular, the small

18In two out of nine session the number of drivers was 16.
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increase in travel time produced by the introduction of one single driver to a road would change

the decision of a small number of current drivers. This feature is reproduced in the experiment

by carefully selecting types. In the experiment, when an agent changes his driving decision i.e.

drives if he was not driving or the other way around, at most one other agent �nds it pro�table

to change his behavior.

The goal of a congestion price is to change the behavior of agents. An e�ective system would

not only produce the right level of tra�c congestion, but also the right set of drivers. In this

experiment, types are used to minimize the set of agents who belong to both the Nash equilibrium

without congestion pricing and the social optimum. The equilibrium without congestion pricing

consists of 10 drivers and the social optimum consists of 6. However, only two drivers belong

to both allocations. In other words, 12 out of 14 agents have to change their behavior with the

introduction of congestion pricing. This radical change in the set of drivers is a strong test for

the e�ectiveness of the system.

Inevitably the message congestion price system will produce a continuum of equilibria. The

experimental design exploits this feature by providing the social optimum and the outcome without

congestion pricing as Nash equilibria. This prevents the message price treatment from producing

arti�cial e�ciency gains.

Figures 1 and 2 contain the list of types used in the experiment and illustrate their distribution.

The congestion function t(x) = x3

12
was chosen to have commute values and time values on a

relatively equal scale.

In �gure 2, every dot represents a type. The red line represents the equilibrium time when there

is no congestion price and the blue line represents the optimal time when the optimal �xed price

is imposed. The gray lines are variations of time when a driver is added or removed. When no

congestion price is in place, all agents above the red line would �nd pro�table to drive; with the

optimal �xed congestion price in place, only those above the blue line would �nd pro�table to

drive. Only two types are above both lines. Suppose there is no congestion price and all the
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Type Value of Time Value of Commuting No Congestion Price Social Optimaum

1 2.40 70.00 x x

2 3.60 80.00 x x

3 6.00 32.00 x

4 9.00 35.00 x

5 12.00 38.00 x

6 15.00 41.00 x

7 18.00 44.00 x

8 21.00 48.00 x

9 24.00 51.00 x

10 27.00 54.00 x

11 60.96 82.65 x

12 77.02 76.35 x

13 99.00 99.50 x

14 101.00 100.99 x

Figure 1: Type allocations
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Figure 2: Experimental types

agents above the red line are driving and consider the exit of one of the current drivers. This

would reduce congestion and travel time for everyone. In particular, at the current time (the gray

line below the red) only one type would �nd pro�table to start driving (type 11) i.e. there is at

most one marginal agent.

In theory, with the above types and congestion function, the Nash equilibrium without conges-

tion pricing achieves an e�ciency level of 301.3 experimental dollars whereas the social optimum

achieves an e�ciency of 406.3 experimental dollars, an increase of 34.8%. In practice, the

e�ciency level associated with no congestion price could be lower or higher than the Nash equi-

librium e�ciency. Hence, the bene�ts, if any, of the message system have to be measured against

observed e�ciencies.

Two main treatments were considered: no price and message price. The �rst treatment represents

a situation with no congestion prices and the second uses a mechanism with weak incentives. The

message price treatment uses agents' messages about their value of time and the observed level

of tra�c to calculate congestion prices. Tra�c observations are used to measure the marginal

impact, in time, of adding an extra vehicle to the road. Messages are used to measure the cost

of the marginal increase in time.

Four additional treatments were considered to provide control and robustness to the �ndings. The

�xed price treatment provides a measure of the maximum observable e�ciency. This treatment
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considers a social planner with access to all private information and imposes the optimal �xed

congestion price in all rounds. The dynamic price treatment follows the same structure of the

message price, but behaves as if all agents reported the truth all the time. The balanced treat-

ment considers budget-balanced versions of the dynamic and message treatments. The random

treatment considers random types instead of the constructed types used in other treatments.

Each treatment was run 6 times.

Every treatment is associated with a hypothesis derived from the theory section.

1. The no congestion price treatment will achieve the theoretical e�ciency associated with no

congestion price

2. The �xed price treatment will achieve the theoretical optimal e�ciency

3. The dynamic price treatment will achieve the same e�ciency as the �xed price treatment

4. There are two hypothesis associated with the message price treatment

(a) Subjects will play an average-truth-telling mean dynamic

(b) The message treatment will achieve the same e�ciency as the �xed price treatment

5. The balanced treatments will achieve the same e�ciency as the unbalanced treatments

6. There are two hypothesis associated with the random treatment

(a) Subjects will play an average-truth-telling mean dynamic

(b) The random treatment will achieve the same level of e�ciency as the message price

treatment

To further replicate the large economy environment, every experimental subject managed ten

identical drivers. In every round, each subject decides whether to drive or not; if he decides to

drive, a driver of his type is introduced to the road (up to ten); if he decides to not drive, a driver

is removed from the road (up to zero).
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The experiment was run at the Experimental Economics Lab at the University of Maryland. There

were 130 participants, all undergraduate students at the University of Maryland. There were nine

sessions. No subject participated in more than one session. In every session, subjects participated

in six di�erent treatments. Treatments were played in random order. Participants were seated in

isolated booths. The experiment is programmed in z-Tree (Fischbacher (2007)).

At the beginning of each treatment, each subject was randomly assigned a type, i.e. a value of

commuting D and a value of time v. In addition, they were informed that in some rounds they

could face a congestion price T or a transfer S and that their experimental payo�s would depend

on the observed time t using the following formulas: D− vt
60
−T for driving and S for not driving.

In all rounds, subjects could see on screen the current values of T and S, the history of times for

all previous rounds and their private information. In addition, a table with several time scenarios

(t = 5 to t = 85 in steps of 5) with the values for driving and not driving was provided.

Subjects were informed that in some sections (treatments) they could be asked for their value

of time and were instructed to �send one of the available messages�. Subjects were informed

that messages would be used to calculate the congestion price for the next period, but the exact

mechanism was not explained because in the experimental setting, due to the small number of

participants, every message had a measurable impact on the congestion price.

Subjects were explained in detail how earnings were calculated. In every round r, subjects received

xr = (0.9764)30−r (x30 = 1,x1 = 0.5) �points� for a conditionally optimal action and 0 otherwise.

This payment scheme ful�lls two purposes. First, no Nash equilibrium is favored; remember that

for the message treatment there are many equilibria for this game. Second, it provides incentives

for agents to adjust their strategies over time. Dollar earnings were calculated by adding up all

points and multiplying this quantity by 0.107675. This constant was calculated, and explained

as such, to produce a range from $0 to $14 dollars. In addition, subjects were paid a $6 show up

fee. Subjects received an average payment of $18.28. The following section present the results

of the experiment and gives a general description of some stylized facts.
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4.1 Experimental results

The results of the experiment are presented in this section. For every treatment, three di�erent

dimensions are described: the number of drivers on the road, their types, and the e�ciency. The

analysis of the results is included in the following section.

4.1.1 Number of drivers

The main objective of a congestion price is to achieve an e�cient congestion level. In every

round, the number of drivers is measured by xs =
∑
xis , where xis is the proportion of subject

i's 10 drivers currently on the road in round s. The Nash equilibrium quantity of drivers with no

congestion price is 10. The socially optimal quantity of drivers is 6.
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Figure 3: Number of drivers with No price
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Figure 4: Number of drivers with Dynamic price
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Figure 5: Number of drivers with Balanced Dynamic price
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Figure 6: Number of drivers with Fixed price
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Figure 7: Number of drivers with Message price
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Figure 8: Number of drivers with Balanced Message price

The number of drivers of every treatment is shown in �gures 3 through 8. In every �gure, every

blue dot is the observed number of drivers in each period in each session. The blue line is the

average over sessions. The read line is the simple average of each blue dot's number of drivers

for periods equal or greater than 11.

Figure 3 shows the evolution of the number of drivers for the treatment without congestion
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pricing. In this treatment, the Nash equilibrium quantity of drivers is 10. In the experiment,

10.03 was observed.

In �gure 6, the results of the �xed congestion price are shown. This treatment represents the

theoretical best option, as it assumes the policy maker knows all the information, in this case, θ1i

and θ2i for every subject. The social optimum is associated with 6 drivers. In the experiment,

the observed number of drivers was 5.77.

In �gure 4 the results of the dynamic price are shown. In the experiment, the number of drivers

was 5.96. It can be observed that the number of drivers �uctuates less around the average and

converges faster to the average value when compared with the �xed congestion price or with the

no price treatments. In this treatment it is assumed that the policy maker knows vi for every

subject and can perfectly identify each driver on the road.

Figure 7 shows the results for the message price. The observed number of drivers was 6.92. In

this treatment, the policy maker has no information about Di and vi.

Figures 5 and 8 shown the balanced versions of the dynamic and message price treatments. It can

be observed that the e�ectiveness of the systems is not decreased by charging lower congestion

prices and distributing all the proceeds to subjects who decide not to drive. In the balanced

dynamic price treatment, the observed number of drivers is 6.14. In the balanced message price

treatment, the observed number of drivers is 7.01.

4.1.2 Identities

An e�ective system would not only produce the right level of tra�c congestion, but also the right

set of drivers. Figures 9 through 14 are analogous to �gure 2. They show the types in a Cartesian

plane where the �x-axis� is the value of time and the �y-axis� is the value of commuting. Every

blue dot represents a type. The size and the number next to each dot represent the frequency

that type was driving for periods equal to or greater than eleven. The two gray lines represent

the Nash equilibrium time without congestion price and the social optimum time. The green line
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represents the observed average time. When all subjects play a Nash equilibrium strategy, the

frequency of each blue dot is 100% for types above the green line and 0% for types below the

green line.
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Figure 9: Identities with No price
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Figure 10: Identities with Dynamic price
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Figure 11: Identities with Balanced Dynamic price
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Figure 12: Identities with Fixed price
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Figure 13: Identities with Message price
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Figure 14: Identities with Balanced Message price

In �gure 9 the types for the No price treatment are shown. It can be observed that all types

that, in equilibrium, should drive are driving, but not in 100% of the periods. On the other hand,
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some types that should not drive, in equilibrium, drive some of the periods. In particular, type 11

(value of time = 60.96, value of commuting = 82.65) fails to stop driving in 42% of the periods.

In �gure 12, the �xed congestion price has been imposed. The types who would bene�t from

driving do, but not in 100% of the periods. In particular, type 1 (value of time = 2.4, value of

commuting = 70) drives in 92% of the periods, despite having strong incentives to keep driving.

Similarly, type 12 (value of time = 77.02, value of commuting = 76.35) does not drive in 100%

of the periods and forgoes positive payo�s (and payments).

Figure 10 shows the dynamic price treatment. In this treatment, types 1 and 12 display a behavior

similar to their behavior in the treatment with the �xed congestion price: they fail to drive 100%

of the time, despite being pro�table. In the �xed congestion price treatment, this behavior had

consequences only for the subject making the suboptimal decision. However, in this treatment,

their actions had an impact on the congestion price charged to others. In particular, types 9

(value of time = 24, value of commuting = 51) and 10 (value of time = 27, value of commuting

= 54) bene�ted from this behavior. On average, when type 12 failed to drive, despite being

pro�table, types 9 and 10 entered the road.

Figure 13 shows the message price treatment. It can be observed that, conditional on observed

times and congestion prices, most types who would bene�t from driving do. However, in this

treatment type 12 drove even less than in the treatment with the dynamic price and this oppor-

tunity was seized by types 9 and 10. Balanced treatments are shown in �gures 11 and 14.

4.1.3 E�ciency

E�ciency is measured as the sum of experimental payo�s in very round. Every subject received

two numbers: a value of commuting θ2i and a value of time θ1i. E�ciency in round s is de�ned

by Es =
14∑
i=1

(θ2i − θ1i
60
ts)xi, where xi is the proportion of subject i's 10 drivers currently on the

road and ts is the observed time in round s. In every round, the time was calculated using the

function ts(xs) = x3s
12
, where xs =

∑
xi. All treatments are initialized with xi = 0 for all subjects.
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Figure 15: E�ciency with No price
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Figure 16: E�ciency with Dynamic price
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Figure 17: E�ciency with Balanced Dynamic price
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Figure 18: E�ciency with Fixed price
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Figure 19: E�ciency with Message price
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Figure 20: E�ciency with Balanced Message price

The e�ciency of every treatment is shown in �gures 15 through 20. In every �gure, every blue

dot is the observed e�ciency in each period in each session. The blue line is the average over

sessions. The read line is the simple average of each blue dot's e�ciency for periods equal or

greater than 11.
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Figure 15 shows the evolution of e�ciency of the treatment without congestion pricing. In this

treatment, the Nash equilibrium is associated with an e�ciency of 301.3 experimental dollars. In

the experiment, the observed e�ciency was 257.7.

In �gure 18, the results of the �xed congestion price are shown. This treatment represents the

theoretical maximum e�ciency that can be achieved. It assumes the policy maker knows all the

information, in this case, Di and vi for every subject. The social optimum achieves an e�ciency

of 406.6 experimental dollars. In the experiment, an e�ciency of 390.9 was observed.

In �gure 16 the results of the dynamic price are shown. In the experiment, an e�ciency of

393.0 was observed. It can be observed that the e�ciency �uctuates less around the average and

converges faster to the average value. Both characteristics are consequences of the the stability

of the game. In this treatment it is assumed that the policy maker knows vi for every subject

and can perfectly identify each driver on the road.

Figure 19 shows the results for the message price. The observed e�ciency is 371.4 experimental

dollars. This is a high level of e�ciency, considering the fact that in this treatment Di and vi are

unknown.

Figures 17 and 20 show the balanced versions of the dynamic and message price treatments. It

can be observed that e�ciency is not hurt by charging lower congestion prices and distributing

all the proceeds to subjects who decide not to drive. In the balanced dynamic price treatment,

the observed e�ciency is 395.0. In the balanced message price treatment, the observed e�ciency

is 368.8.

4.2 Analysis

This section evaluates the hypothesis derived from the theory. The main objective of the exper-

iment is to test whether the message system allows drivers to converge to the socially optimal

tra�c congestion level. Other treatments are design to put the results of the message price

treatment in context. In this section it is considered that a treatment has converged in period p

31



whenever the average absolute deviation from the mean e�ciency is less or equal to 5% for all

consecutive periods. The mean e�ciency in period p is mp = 1
30−p+1

30∑
i=p

Ei, the absolute deviation

in period w ≥ p with respect to the mean e�ciency at p is ew,p = |Ew −mp| and the average

absolute deviation is ep = 1
30−p+1

30∑
i=p

ei,p
mp

. A treatment converged in period p whenever es ≤ 5%

for all s > p. All treatments, but the no price treatment, converged on period 6. The no price

treatment converged on period 11.

Hypothesis 1. The no congestion price treatment will achieve the theoretical e�ciency associ-

ated with no congestion price

This is a standard hypothesis supported the rational model. The theoretical e�ciency associated

with no congestion price is 301.3 experimental dollars. Figure 15 shows that m11 = 257.6.

Assuming that Es = m11 + εs, where ε is i.i.d E[εs] = 0 for all periods s ≥ 11, a t-test was

used to evaluate the null hypothesis of m11 = 301.3 versus the alternative m11 6= 301.3. The

null was rejected with con�dence of 99%. In the experiment, the no congestion price achieved

a lower e�ciency than the rational model. This fact is at odds with a purely rational model of

human behavior. This deviation could have happened in the opposite direction, and after all, a

congestion price might not be needed.

Hypothesis 2. The �xed price treatment will achieve the theoretical optimal e�ciency

This is a standard hypothesis supported the rational model: a social planner would be able to

solve the congestion problem with a pigouvian price. The theoretical e�ciency associated with the

optimal congestion is 406.6 experimental dollars. Figure 18 shows that m11 = 390.92. Assuming

that Es = m11 + εs, where ε is i.i.d E[εs] = 0 for all periods s ≥ 11, a t-test was used to evaluate

the null hypothesis of m11 = 406.6 versus the alternative m11 < 406.6. The null was rejected

with con�dence of 99%.

Hypothesis 3. The dynamic price treatment will achieve the same e�ciency as the �xed price

treatment

The message treatment di�ers from the �xed price treatment in two aspects: it changes over
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time and depends on reports. The dynamic price treatment bridges these di�erences by changing

over time, but is independent of agents' reports. Congestion prices in this treatment behave as if

all subjects told the truth all the time. Figure 16 shows that e�ciency observed in the dynamic

message treatment was m11 = 393. A paired Wilcoxon signed-rank test was used to evaluate

the null hypothesis that the di�erences between the dynamic price and the �xed price e�ciencies

were symmetric around zero. This test does not require additional assumptions about error terms.

The null was not rejected (p > 10%).

The e�ciency results of the no price and �xed price treatments show that the conclusions of the

rational model are likely to fail in a real-world situation. The results from the �xed price and

dynamic price treatments are evidence that theoretical e�ciencies might not be achievable in real

life.

Hypothesis 4.b The message treatment will achieve the same e�ciency as the �xed price

treatment

Figure 19 shows that the message treatment achieved an average e�ciency m11 = 371.36. A

paired Wilcoxon signed-rank test was used to evaluate the null hypothesis that the di�erences

between the message price and the �xed price e�ciencies were symmetric around zero. The null

was not rejected (p > 10%). The e�ciency observed in this treatment is 95% of the e�ciency

achievable by a social planner with full information.

Hypothesis 5 The balanced treatments will achieve the same e�ciency as the unbalanced

treatments

Figures 17 and 20 show the results of the balanced treatments. The balanced dynamic price

treatment obtained an average e�ciency m11 = 395.03. The balanced message price treatment

obtained an average e�ciency m11 = 368.84. In both cases, the null hypothesis was that the

balanced treatments would achieve an e�ciency equal to their unbalanced versions. The null

hypothesis was not rejected in both cases (p > 10%).

Table 1 contains a summary of the mean e�ciency achieved in every treatment as a percentage
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of the mean e�ciency obtained by the �xed tax treatment. The standard deviation has been

scaled accordingly. The table in the middle contains p-values for the null hypothesis that the row

treatment and the column treatment have the same e�ciency against the alternative that the row

has a higher e�ciency. A paired Wilcoxon signed-rank test was used. The lower portion of the

table shows the results for the number of drivers on the road. Estimates of the average number

of drivers have not been scaled because units represent subjects' decisions directly. P-values are

also reported for the number of drivers. The alternative hypothesis is that the row treatment

has a lower number of drivers than the column treatment. The last column shows ep, and an

analogous measure for the number of drivers, for every treatment. All estimates are calculated

using data from periods 11 to 30.

P values

Period Treatment Measure Mean SD No Price Fixed Dynamic Message Bdynamic Bmessage Epsilon

11 No Price e�ciency 65.91% 13.01% 4.88%

11 Fixed e�ciency 100.00% 4.12% <1% <1% <1% 1.19%

11 Dynamic e�ciency 100.53% 3.26% <1% <1% <1% 1.14%

11 Message e�ciency 95.00% 3.44% <1% 1.14%

11 Bdynamic e�ciency 101.05% 2.85% <1% <1% <1% <1% 0.91%

11 Bmessage e�ciency 94.35% 4.86% <1% 1.94%

11 No Price N. of Drivers 10.030 0.323 15.44%

11 Fixed N. of Drivers 5.770 0.493 <1% <1% <1% <1% <1% 22.74%

11 Dynamic N. of Drivers 5.963 0.202 <1% <1% <1% <1% 22.31%

11 Message N. of Drivers 6.926 0.356 <1% 22.36%

11 Bdynamic N. of Drivers 6.147 0.214 <1% <1% <1% 25.84%

11 Bmessage N. of Drivers 7.015 0.606 <1% 17.06%

Table 1: Estimates for Period ≥ 11

Figures 21 and 22 show estimates for e�ciency and the number of drivers for di�erent choices of

initial period of analysis. All treatments are signi�cantly (p-values < 1% for all periods of analysis)

more e�cient than the no price treatment. Dynamic treatments and the �xed treatment achieve a

signi�cantly (p-values < 1% for all periods of analysis) higher e�ciency than message treatments.

95% con�dence interval are shown in Figures 23 and 24.
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Figure 21: E�ciency estimates by period
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Figure 22: No. of Drivers estimates by period
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Figure 23: 95% Con�dence Intervals for e�ciency estimates.
Blue: No price; Red: Message; Orange: Fixed
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Figure 24: 95% Con�dence Intervals for Number of Drivers
estimates. Blue: No price; Red: Message; Or-
ange: Fixed

4.2.1 Message Congestion Price

This section describes the observed messages and con�rms that subjects followed an average

truth-telling mean dynamic, hence the high levels of e�ciency. In principle, even assuming that

subjects would play a Nash equilibrium, e�ciency gains are not guaranteed. Figure 25 shows the

e�ciency levels of all Nash equilibria in the game induced by the message congestion price by

average message: z(x̂) =
∑
θ θ1ix̂θ
x

.
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Figure 25: Nash Equilibria E�ciency by average message

In �gure 25, when all subjects send the lowest possible value of time, the congestion price is

su�ciently low to be completely ine�ective i.e. the Nash equilibrium with no congestion price

is also a Nash equilibrium of the message congestion price system. However, as argued before,

the �nal outcome of the system does not only depend on its Nash equilibria, but also (and more

importantly) on the non-equilibrium behavior. In particular, the outcome of the system is tied to

the aggregate message, which is determined by individual messages.

Figure 26 shows the average message sent by type. Types who drive in the social optimum

are shown in blue, types who do not drive in the social optimum are shown in gray. It can be

observed that those types who drive in the social optimum send higher messages than those who

don't.19 In addition, it can be observed that some types send higher values than their true values

while other types do the opposite. Figure 27 shows the number of times a particular message

was received by the system as a proportion of the total number of messages received. It can be

observed that the lowest and highest messages are the most often used.

19The mean message sent by those types who drive in the optimal allocation is 29.64 (30.17), the mean message
for other types is 16.06 (24.21). The average message of the optimal group is greater with a con�dence level of
99% using a Welch's t-test.
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Figure 26: Average Message Sent by Type
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Figure 27: Messages Received

Individual messages are important, but they have a very limited impact on the system's outcome,

as the congestion price depends on the average message. Figures 28 and 29 show the relationship

between the average message and the real average message, as if all subjects reported their true

value of time. Figure 28 shows their evolution over time (all sessions aggregated) and �gure 29

shows all data points.

Period

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

A
ve
ra
ge
 M
es
sa
ge

0

10

20

30

40

50

60

A
ve
ra
ge
 R
ea
l M
es
sa
ge
 

Figure 28: Average Message over time

Figure 29: Real vs Sent Average Message

In the previous two �gures, two stylized facts about the average message are readily observable:

(i) the population understates its value of time, (ii) but not to the lowest possible extent. These

behavioral regularities guarantee e�ciency gains in the message treatment. Consider the uncon-

ditional distribution of messages sent G and let z∗ be the equilibrium average message when all

drivers send their true value of time. Since average sent messages are smaller than average real

messages we have that G(z∗) = 1 i.e. the highest observed average message will always be below
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the real equilibrium average message. Let f(z) be the achieved e�ciency when z is sent to the

system. Then, unless G is degenerate, E[f(z)] > f(0) i.e. the implementation of the message

system is guaranteed to generate e�ciency gains, unlike policy guesses about the value of time.20

Figures 30 and 31 shows the empirical unconditional density and distribution.

Figure 30: Density of Average Message Figure 31: Distribution of Average Message

The average message can explain that the observed e�ciency gains are positive, but not their

high level. In theory, whenever agents play an average truth-telling mean dynamic in the presence

of the message congestion price, the e�cient outcome is expected. Recall from previous sections

that a mean dynamic V̂ : X̂ → R|Θ|×|S×Θ| describes what actions and messages are sent and the

mean dynamic Vθs(x) =
∑

θ̂ xθsθ̂ describes all actions as if all agents reported the truth.

Hypothesis 4.a Subjects will play an average-truth-telling mean dynamic in the message price

treatment.

An average truth-telling mean dynamic is characterized by one inequality: 0 < V (x) · ∇W (x) =∑
ẋθ(θ2d − θ1dt(

∑
θ

xθd) − t′(x)
∑
θ

θ1dxθd) whenever V (x) 6= 0. This is the covariance between

the direction taken by agents and the direction of greatest increase on welfare. Proposition 5

shows that as long as this covariance is positive, agents are guaranteed to arrive to the social

optimum. Figures 32 and 33 show observed covariance in the message price treatment. Every

20As an example, suppose G is uniform, then the minimum e�ciency of the message system would be 1
2 + f(0)

2 .
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observation is calculated as
∑

(xt,θ − xt−1,θ)(θ2d − θ1dt(
∑
θ

xt,θd) − t′(xt)
∑
θ

θ1dxt,θd) for periods

t = 1 . . . 30. A binomial test was used to reject the hypothesis that the covariance was zero

against the alternative of being greater than zero. The null was rejected at a con�dence level

of 99%. Figures 34 and 35 show the covariance for the no price treatment. The null was not

rejected (p-value >10%).
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Figure 32: Average-truth-telling - message treatment
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Figure 33: Average-truth-telling histogram - message treat-
ment
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Figure 34: Average-truth-telling - no price treatment
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Figure 35: Average-truth-telling histogram - no price treat-
ment
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4.3 Robustness

The experimental design pursued in this paper relied on a particular selection of types. However,

it is important to test the robustness of the message price mechanism to di�erent sets of types.

Figure 36 shows the e�ciency achieved in six di�erent random treatments in which 14 subjects

received a random value of time and a random value of commuting, both sampled from a uni-

form distribution with support [1, 100]. These random treatments are otherwise identical to the

message price treatment discussed above.
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Figure 36: E�ciency of Random Treatments

Figures 37 to 48 show the experimental results of every random treatment. Figures on the left

display driving frequency by type. Those types who drive in the social optimum are depicted in

orange. Figures on the right show e�ciency over time.

Hypothesis 6.a. Subjects will play an average-truth-telling mean dynamic

Hypothesis 6.b. The random treatment will achieve the same level of e�ciency as the message

price treatment

The following table shows the average e�ciency achieved. The message price treatment achieved

an e�ciency of 91.46% (3.31%) (with respect to the theoretical optimum). A Welch's t-test was

used to test the null hypothesis that the e�ciency in each random treatment is equal to 91.46%
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against the alternative that the e�ciency in the random treatment was smaller. In all random

treatments, but the third, the null was not rejected i.e. the message congestion price performed

equally on random types as in designed types. A binomial test was used to reject the hypothesis

that the covariance was zero against the alternative of being greater than zero.

Random Mean SD Equilibrium Message price Avg-truth-telling

1 94.92% 3.74% 77.90% >10% <1%
2 97.51% 0.86% 93.75% >10% 5%
3 72.21% 2.53% 63.34% <1% 5%
4 98.96% 1.38% 91.51% >10% <1%
5 91.48% 1.37% 82.89% >10% 2.13%
6 95.38% 0.88% 67.66% >10% 2.13%

Table 2: Random Types E�ciency for Periods 11-30

Random treatments 2 and 3 highlight the importance of the careful selection of types in the main

message treatment. In random treatment 2 the Nash equilibrium e�ciency without congestion

pricing is high, reducing the potential gains of the message mechanism and hence the ability to

identify them. Random treatment 3, on the other hand, displays 4 types who are aligned and

hence poorly represent a situation with a large number of drivers.
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Figure 37: Types Random Treatment 1
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Figure 38: Types Random Treatment 2
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Figure 39: Types Random Treatment 3
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Figure 40: E�ciency Random Treatment 1
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Figure 41: E�ciency Random Treatment 2
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Figure 42: E�ciency Random Treatment 3
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Figure 43: Types Random Treatment 4
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Figure 44: Types Random Treatment 5

0 10 20 30 40 50 60 70 80 90 100 110
Value of Time

0

10

20

30

40

50

60

70

80

90

100

110

Va
lu
e 
of
 C
om
m
uƟ
ng

100.00%

100.00%

99.50%

99.50%

99.50%
94.50%

28.00%

1.00%

1.00%

0.00%

0.00%

0.00%

0.00%

0.00%

Figure 45: Types Random Treatment 6
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Figure 46: E�ciency Random Treatment 4
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Figure 47: E�ciency Random Treatment 5
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Figure 48: E�ciency Random Treatment 6
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5 Discussion

A social planner would like a socially optimal outcome x∗(θ) to be chosen in every state of the

world θ ∈ Θ. In general, this can be done in two steps: i) using a mechanism M to make x∗(θ)

a rational choice (a Nash equilibrium), and ii) providing M with nice properties that facilitate

coordination in x∗(θ). This has been the objective of mechanism design.21 However, most

mechanisms assume that agents are fully rational all the time and possess common knowledge of

types and the structure of the game induced by the mechanism. These assumptions have proven

extremely useful and powerful as they have allowed the study of very complex problems as well

as the development of many successful mechanisms, but has well identi�ed limitations.

This paper addresses one of those limitations by incorporating behavioral traits as a mechanism

designer tool and showing that it can be as e�ective as strong incentive properties in solving

social problems.

The introduction of behavioral traits to the mechanism design framework enables the study of

questions typically outside the scope of the purely rational model: Are mechanisms with the same

incentive properties equally e�ective?22 Are incentives more e�ective the stronger they are?23

Are incentives more e�ective the simpler they are?24 What considerations, other than incentives,

a�ect the e�ectiveness of a mechanism?25 When is it e�cient to provide incentives?26 Can

non-incentive compatible mechanisms be more e�ective than incentive compatible ones?27

The answers to these questions will most likely unveil an intricate relationship between rational

21Maskin (2008)
22There might be two e�cient and incentive compatible mechanisms for the same problem, of which only one

is e�ective.
23A measure of incentive strength could be the di�erence in payo� between truth-telling and the best misrep-

resentation.
24Consider, for example, truth-telling as a dominant strategy and as a Nash equilibrium, the former being

simpler.
25For example, a mechanism that converges to the e�cient Nash equilibrium under a wide class of behavioral

procedures have a better change of being e�ective than a mechanism that cannot guarantee such convergence.
26Usually, the e�ciency of a mechanism is measured by the e�ciency attained within the mechanism i.e. by

the outcome it produces, however, this measure leaves other considerations out of the analysis. For example, how
expensive is to implement and run the mechanism.

27It is possible that some e�ective mechanisms support x∗(θ) as a non-equilibrium but sensible pro�le of actions.
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incentives and behavioral traits, opening the door to new methods for solving problems in practice.

6 Appendix

Proposition 1. There is an e�cient mechanism with weak incentives, namely the wVCG.

Proof. Let x∗be an e�cient pro�le of actions and θ be the true pro�le of types. Suppose all agents

other than i select x∗j and report their true type θj. For i, the payo� associated with doing xi and

reporting θ′i is u(xi, x
∗
−i, θi)+

∑
N\i uj(xi, x

∗
−i, θj)−hwi (x−i, θ−i) which is maximized by selection

x∗i as an action and θi as a report.

Proposition 2. There is a budget balanced mechanism with weak incentives for any pro�le of

actions. In particular, any e�cient pro�le of actions can be supported as a budget balanced Nash

equilibrium.

Proof. Let x0 be any pro�le of actions and let prices be de�ned as pi(x, θ) =
∑

N\i uj(x, θj) −∑
N\i uj((x

0
i , x−i), θj), thus pi(x

0, θ) = 0 for all i ∈ N and θ ∈ Θ. In particular, let x0 =

x ∈ x∗(θ), then the e�cient pro�le of actions can be supported as a budget balanced Nash

equilibrium.

Proposition 3. Any e�cient pro�le of actions can be supported as a subgame perfect Nash

equilibrium of a sequential mechanism with weak incentives.

Proof. The timing is as follows: i) agents select an action, ii) the pro�le of actions is revealed,

and iii) agents send a report. Suppose a pro�le of actions x was chosen in the �rst stage of

the game. Suppose other agents have sent θ−i, sending report θ′i is associated with a payo�

equal to u(xi, x
∗
−i, θi) +

∑
N\i uj(xi, x

∗
−i, θj)− hwi (x−i, θ−i), hence sending θi is a best response.

Thus θ constitutes a Nash equilibrium in the second stage. Suppose agents have chosen x∗−i in

the �rst stage, the payo� associated with xi subject to selecting the Nash equilibrium θ in the
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second stage is u(xi, x
∗
−i, θi) +

∑
N\i uj(xi, x

∗
−i, θj)− hwi (x−i, θ−i), hence i maximizes his payo�

by selecting x∗i as an action. Thus (x∗, θ) is a subgame perfect Nash equilibrium.

Proposition 4. Let vθs(x) = Fs(x)θ1s + θ2s +
∑
j

∂Fj
∂xs

∑
θ

xθjθ1j for all θ ∈ Θ and s ∈ S and V an

admissible mean dynamic such that V (x) · ∇W (x) > 0 whenever V (x) 6= 0, then every solution

trajectory of V converges to the e�cient distribution of actions x∗.

Proof. Let x : R+ → X be a solution trajectory of V , then all of its accumulation points are

critical points of W ◦ x. Since W is concave it has a unique maximizer x∗ and ∇W (x) = 0

only when x = x∗. x∗ is also the unique Nash equilibrium. Since V (x) · ∇W (x) > 0 whenever

V (x) 6= 0, then x∗ becomes the only accumulation point of W ◦ x (since it is a monotone

function).

Proposition 5. Let V̂ be an average truth-telling mean dynamic, then the mechanism with

weak incentives de�ned by ps(x, x̂) =
∑
j

∂Fj
∂xs

∑
θ

x̂θjθ1j converges to the e�cient x∗distribution of

actions.

Proof. The induced mean dynamic V satis�es all the assumptions of the previous theorem, hence

x will converge to x∗. Thus actions will converge to the e�cient outcome and strategies will

converge to any x̂∗such that x∗θs =
∑

θ̂ x̂
∗
θsθ̂

.
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INSTRUCTIONS 
Thank you for participating in today’s experiment.  This is an experiment in the economics of 
decision-making. Various research foundations have provided funds for this research. The 
instructions are simple. If you follow them carefully and make good decisions, you will earn 
money.  

The entire experiment should be complete within ninety minutes. You will be paid a $3 show-
up for showing up on time. In addition, you will be paid $3 if you complete the session. You may 
collect the show-up fee at any moment if you decide to terminate your participation. If you 
complete the session, you will be privately paid both fees at the end. In addition, you will be 
paid a performance fee depending on your decisions. The mechanics for this payment are 
detailed below. All quantities in the experiment are measured in experimental units (EU). The 
connection between experimental units and real dollars is explained below. 

This experiment is organized in 6 sections. Every section is divided into 30 rounds. In each 
round, you and other participants will decide whether to “drive” or “not drive” on a fixed road. 
The length of your commute will depend on the number of drivers on the road. At the 
beginning of each section, you will be assigned two numbers. These numbers are your private 
information.  

1. Your value of commuting 

2. The value of your time  

In every section, you may or may not face a tax to use the road. In addition, a subsidy could be 
offered not to drive. You will be informed whether or not a tax will be charged or a subsidy 
offered before you make your decision every round. In some sections, you will be able to affect 
the value of the tax or subsidy by sending a message regarding the value of your time.  

At the end of every round you will be informed of the following elements: 

i. The time spent on the road 

ii. Your payoff (in experimental units) 

Your payoff will depend on your decisions, your values, the time spent on the road and the tax. 

Not driving guarantees a payoff (in experimental units) of S, where S is the value (possibly 0) of 
the subsidy offered not to drive. 



2 
 

Driving has a payoff (in experimental units) equal to 𝑈𝑈 − 𝑉𝑉
60
𝑡𝑡 − 𝑇𝑇, where U is your value of 

commuting, V is your value of time, T is a tax (possibly 0) to use the road and 𝑡𝑡 is the time spent 
on the road. 

Performance fee 
All six sections have the same performance fee structure. In every round you will be faced with 
two decisions: to drive or not to drive.  

Depending on your values, the time, the tax and the subsidy, driving could be better, equal or 
worse than not driving. Your payment in each round will only depend on the optimality of your 
decision. If you select the option with the higher payoff in round 𝑟𝑟, you will earn 𝑥𝑥𝑟𝑟 =
(0.9764)30−𝑟𝑟 experimental units; otherwise you will earn $0. 

Your performance fee will be then calculated as the sum of your profit in every round 
multiplied by a factor of  0.107675 . 

Example 
Suppose that your value of commute U is equal to 20 and your value of time 𝑉𝑉 is equal to 2. In 
round 1 the time spent on the road is 10, there is a tax of 3 and a subsidy not to drive of 1. 
Then: 

Not driving payoff: 1 

Driving payoff: 20 − 2
60
∗ 10 − 3 = 16.666 

In this case, the better option is to drive. If you decide not to drive you will earn 0 EU. If you 
decide to drive you will earn 𝑥𝑥𝑟𝑟 = (0.9764)30−1 = 0.5 . 

Questions 
If you have any questions right now, please share it with all. 

If you have any question during the experiment, please quietly raise your hand and one of the 
experimenters will come to you to answer your question. It is important that you do not talk 
with any of the other participants. 
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