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Abstract. We study dynamic markets in which participants are randomly matched to

bargain over the price of a heterogeneous good. There is a continuum of players drawn from

a finite set of types. Players exogenously enter the market over time and then exit upon

trading. At every date, the matching probabilities for each pair of types are endogenously

determined by the distribution of players in the market. A player’s bargaining power at

any stage depends on intra- and inter-temporal variations in the potential gains from trade,

the feasible agreements at future dates, and the induced distribution of bargaining partners.

We establish that an equilibrium always exists. Moreover, all equilibria that feature the

same evolution of the macroeconomic variables are payoff equivalent. However, we show

that multiple self-fulfilling expectations about the trajectory of the economy, generating

distinct equilibrium dynamics and payoffs, may coexist. We also prove the existence of

steady states in stationary environments. Our analysis extends and complements several

models of bargaining in markets.

Keywords: bargaining, decentralized, dynamic markets, random matching, heterogenous

goods, equilibrium existence, multiplicity, iterated conditional dominance, steady states.

1. Introduction

We study decentralized dynamic markets in which agents bargain over the price of a het-

erogeneous good. The surplus that pairs of market participants can generate from trade may

differ due to variations in valuations or good quality; cost of transportation between various

locations; trade laws (tariffs, trade barriers, quality standards for imports); productivity and

disutility of labor. The availability and size of the surplus may also depend on the strength

of social relationships, business connections, and exposure to various advertising platforms.
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Product features that are relevant to customers also lead to match specific values. For in-

stance, buyers of used cars care about the vehicle’s make, mileage, manufacturing year, fuel

efficiency, and so on. In the market for apartment rentals, search is typically driven by

location, the number of bedrooms, and the state of the appliances.

The distribution of bargaining opportunities that market participants face may change

over time. The stock of potential trading partners and the amount of surplus available at

any date depend on the inflows of agents into the market, the matching frequencies, as well

as the outflows of agents who complete transactions. The participants need to forecast the

evolution of the macroeconomy, as determined by the endogenous volume of trade and the

relative matching probabilities induced by inflows and outflows, and negotiations should

reflect the anticipated market conditions.

We analyze such decentralized markets in the context of an infinite horizon bargaining

game played in discrete time. The set of player types is finite, and there is a continuum

of players of each type. Players exogenously enter the game over time and leave only upon

reaching an agreement. A fraction of the players is matched to bargain in every period. The

measure of players of types i and j matched to bargain with one another at a particular date

depends on the type distribution in the market at that date. Every player is involved in at

most one match at a time. For each matched pair of types i and j, one of the two players is

chosen to make an offer to the other specifying a division of the surplus sij between the two

of them. If the offer is accepted, the two players exit the game with the shares agreed on.

If the offer is rejected, the players stay in the game for the next period. The players of any

given type have a common discount factor.

Our setting encompasses a number of models from the literature on bargaining in mar-

kets.1 The two-type case, in which pairs of players of the same type cannot generate surplus,

effectively corresponds to the influential model of Rubinstein and Wolinsky (1985). Binmore

and Herrero (1988 a,b) developed the study of the two-type case in non-stationary environ-

ments. The market of buyers and sellers with heterogenous reservation values analyzed by

Gale (1987) can be obtained by setting sij = max(0, vi−vj) for buyer-seller pairs (i, j), where

vk denotes the valuation of agent k for the good, and sij = 0 whenever i and j are either

both buyers or both sellers. The model of Manea (2011), in which a network represents the

1Osborne and Rubinstein (1990) provide a survey of the early theoretical research on bargaining in markets.
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pattern of interaction or compatibility between player types and links have identical values,

corresponds to the situation in which sij equals 1 if i and j are linked in the network and 0

otherwise.

As the opening remarks suggest, the structure of equilibria in our dynamic setting en-

tails a complex relationship between several objects of infinite dimension. A player’s payoff

at any point in time incorporates the surplus heterogeneity within and across periods, the

bargaining power of his partners, and the feasible agreements at future dates. The incen-

tives for agreements depend in turn on the distribution of player types at every stage and

the induced path of matching frequencies. Nevertheless, we establish the existence of an

equilibrium. The proof technique may be useful in other dynamic environments. We note

parenthetically that the result complements the analysis of Gale (1987). The latter paper

explores properties of equilibria abstracting away from existence issues.

We establish a payoff equivalence result for equilibria that generate the same path of

market distributions. Restrict attention to equilibria in which no (infinitesimal) player can

affect the macroeconomic variables by unilaterally changing his strategy. In such equilibria

players take the matching probabilities along the equilibrium path as given. Thus on-path

incentives in the benchmark bargaining game are equivalent to those in an alternative model

where the matching probabilities are exogenously specified. We show that the latter model

can essentially be solved using iterated conditional dominance. Hence all equilibria of the

model with exogenous matching probabilities are payoff equivalent. This conclusion gener-

alizes uniqueness results from Binmore and Herrero (1988b) and Manea (2011). We develop

a procedure to compute the unique equilibrium payoffs with any degree of accuracy.

Thus the model with exogenous matching probabilities provides a partial equilibrium

approach to predicting payoffs for a given evolution of the macroeconomy. The properties of

the unique payoffs compatible with a postulated market path play a key role in the proof of

equilibrium existence for the benchmark model. Notwithstanding, the alternative model can

also be interpreted as a free-standing depiction of situations in which players have stubborn

beliefs about the evolution of the macroeconomy.

We show that the benchmark model does not necessarily have a unique equilibrium. In-

deed, we produce an example that accommodates multiple consistent theories about relative

bargaining power, feasible agreements, and the trajectory of the economy. We interpret the
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possibility of multiple equilibria as a manifestation of market sentiment. Expectations about

future market developments play a crucial role in the dynamic of negotiations and can act

as self-fullfilling prophecies.

Rubinstein and Wolinsky (1985), Gale (1987), and Manea (2011) consider stationary bar-

gaining games in which players who reach agreement are replaced by identical, new players

in the next round. Their characterizations of equilibrium outcomes are contingent on the

economy being at a steady state. It is natural to ask how the distribution of player types

is determined in the steady state of an economy with an exogenous set of potential market

entrants. The stationary bargaining games of the aforementioned papers can be interpreted

as special instances of the model with exogenous matching probabilities. The characteriza-

tion of equilibrium behavior in the latter model can be used to understand the mechanics

of steady states. Specifically, we assume that the inflows and matching technology are time

independent, and we investigate the existence of a stationary market compatible with the

inflows.

Suppose that every player type incurs a small cost to enter the market. Then entry

decisions depend on the costs of entry and the payoffs in the bargaining game. In a steady

state, the inflows balance the endogenous equilibrium outflows of players who trade in the

game. We establish that if the matching process satisfies a mild regularity condition, then

a steady state exists for every configuration of small entry costs. An alternative existence

result shows that for any continuous matching process, one can set arbitrarily low entry fees

such that the resulting economy has a steady state in which each population has positive

size.

The rest of the paper is organized as follows. The next section defines the benchmark

model and establishes equilibrium existence. In Section 3 we introduce the model with

exogenous matching probabilities and show that it is conditional dominance solvable. We

discuss equilibrium multiplicity for the benchmark bargaining game in Section 4. The ex-

istence of steady states is addressed by Section 5. Section 6 concludes and the Appendix

contains the proofs.
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2. The Benchmark Model

We consider dynamic markets with a set N = {1, 2, . . . , n} of populations or player

types. A pair of players from populations i and j can generate a surplus sij = sji ≥ 0.

In every period t = 0, 1, . . ., an endogenously determined measure µit ≥ 0 of players i

participates in the market. It is always the case that
∑

i∈N µit > 0. Hence the market

state at time t is described by a vector of population sizes µt = (µit)i∈N ∈ [0,∞)n \ {0}

(0 denotes the vector with n zero components). For every market state µt at time t there

is a matching technology such that, for all (i, j) ∈ N × N , a measure βijt(µt) ≥ 0 of

players i has the opportunity to make an offer to one of the players j.2 3 The function βijt

is continuous on [0,∞)n \ {0}. No player is involved in more than one match (as either

proposer or responder) at a time, so

(2.1) µit ≥
∑
j∈N

βijt(µt) + βjit(µt),∀i ∈ N.

We assume that a positive measure of players is left unmatched every period, that is, for

every t and µt there exists a population i for which the inequality above is strict.

The matching technology treats all players of the same type symmetrically in the following

sense. Each player of type i is equally likely to be one of the βijt(µt) players i given the

opportunity to make an offer to players j in period t. Thus a player of type i is selected to

make an offer to one of type j with probability4

(2.2) πijt(µt) = lim
µ̃t→µt
µ̃it>0

βijt(µ̃t)

µ̃it
.

For µit > 0, the continuity of βijt implies that the limit above is well-defined and is simply

given by βijt(µt)/µit. We assume that the limit also exists for all µt ∈ [0,∞)n \ {0} with

µit = 0. It follows that the function πijt is continuous on [0,∞)n \ {0}. We do not explicitly

2We allow for the possibility that players from the same population i are matched to one another, that is,
βiit(µt) > 0.
3In our setting, the conditions βijt(µt) = 0,∀t, µt and sij = 0 are equivalent. For instance, Manea (2011)
assumes that any two players who are not linked in a network are never matched to bargain, which can be
alternatively interpreted as the inability of disconnected pairs of players to generate surplus.
4The probability that a player i is selected to receive an offer from any player j in period t can be defined
analogously, but is inconsequential to our analysis.
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model the matching process since the functions πijt constitute a sufficient statistic for our

analysis.5

A salient class of matching technologies that satisfy our continuity requirements is obtained

by assuming that every player i meets another player with a fixed probability p, and the

conditional probability of i meeting a type j is proportional to the size of population j.

Each player of type i is recognized as a proposer in half of the matched pairs (i, j). The

corresponding matching technology is described by

(2.3)

βijt(µt) =
p

2

µitµjt∑
k∈N µkt

πijt(µt) =
p

2

µjt∑
k∈N µkt

,∀i, j ∈ N, t ≥ 0, µt ∈ [0,∞)n \ {0}.

A similar definition appears in Gale (1987). While it may be helpful to interpret the results in

the context of such simple matching technologies, it should be emphasized that our analysis

applies generally.

The benchmark bargaining game is as follows. A measure λi0 ≥ 0 of players of type

i is initially present in the game. We assume that
∑

i∈N λi0 > 0 and also use the notation

µ0 = λ0. Every period t = 0, 1, . . ., players are randomly matched to bargain according to

βt(µt). A player i chosen to make an offer to some player j can either propose a division of

the surplus sij or decline to bargain with j. If i makes an offer that j accepts, then the two

players exit the game with the shares agreed upon. If i makes an offer that j rejects or i

declines to bargain with j, then the two players remain in the game for the next period. In

period t + 1, a measure λi(t+1) ≥ 0 of new players i enters the market, joining the players

from earlier stages who have not yet reached an agreement. The total stock of players i at

5We can construct a matching procedure that generates the desired matching probabilities for populations
of positive measure by adapting “the roulette method” of Alos-Ferrer (1999). Suppose that the set of
players i participating in the market at time t is transformed into the interval [0, µit) through a measure-
preserving map. Then each player of type i is identified with some ĩ ∈ [0, µit). For every i ∈ N , let
fi : [0, µit) → ∪j∈N{(i, j), (j, i)} ∪ {0} be an arbitrarily measurable function such that the Borel measures
of the pre-images of (i, j) and (j, i) for j 6= i are βijt(µt) and βjit(µt), respectively, and the measure of
the pre-image of (i, i) is 2βiit(µt). Let (xi)i∈N be a collection of independent random variables, with xi
uniformly distributed over [0, µit). For every realization (x̃i)i∈N of the random variables, for all i 6= j, the
sets of players ĩ ∈ [0, µit) and j̃ ∈ [0, µjt) satisfying

fi((̃i+ x̃i) mod µit) = (i, j) = fj((j̃ + x̃j) mod µjt)

both have measure βijt(µt) (for b > 0, we use the notation a mod b for the unique c ∈ [0, b) such that (a−c)/b
is an integer). Then there exists a measure-preserving bijection from the former set to the latter, which we
use to match players of types i and j, with players i in the role of the proposer. Similarly, we can match the
mass of 2βiit(µt) players ĩ satisfying fi((̃i+ x̃i) mod µit) = (i, i) with one another.
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the beginning of period t + 1 is denoted by µi(t+1).
6 The players of type i have a common

discount factor δi ∈ (0, 1).7

The model is flexible in terms of the amount of information each player has about other

players’ past matchings and outcomes. One possible treatment assumes perfect information,

which entails that all players observe the entire history of realized matchings and ensuing

negotiations. Alternatively, players may have partial knowledge of others’ past bargaining

encounters—e.g., each player observes only the outcomes of his own interactions; additionally,

players may be aware of the realized matches, but not of the details of each negotiation; or

players learn only about the experiences of their own population. However, we retain the key

assumptions that all players observe the size of each population at the beginning of every

period and that matched players know each other’s type.

In the case of perfect information, the solution concept we use is that of subgame perfect

equilibrium. For versions of the game with imperfect information, we introduce the concept

of belief-independent equilibrium. A strategy profile constitutes a belief-independent

equilibrium for an extensive form game if every player’s strategy is optimal conditional on

each information set against all beliefs at that information set. In other words, a strategy

profile is a belief-independent equilibrium if it is sequentially rational with respect to every

profile of beliefs.8 For either solution concept, we restrict attention to equilibria that are

robust in the sense that no (infinitesimal) player can affect the population sizes along the

path by changing his own strategy. Our results apply for all types of information structure

discussed above, and henceforth we simply refer to the corresponding solution concept as

equilibrium.9

Several technical assumptions are necessary to guarantee that the stock of players present

in the market at every stage is measurable. The set of players i present in the game at time

6The condition
∑
i∈N λi0 > 0, along with the assumption that a positive measure of players is left unmatched

every period, implies that µt 6= 0 for all t ≥ 0.
7A player who never reaches an agreement obtains a zero payoff.
8Note that in our setting each information set includes knowledge of the current market distribution, so that
all agents can correctly asses the matching probabilities.
9The equilibria we construct have a strong Markovian flavor in that at any point in time each player’s
behavior depends only on the underlying market distribution and the type of his bargaining partner. However,
formalizing the idea of payoff relevant histories (Maskin and Tirole 2001) for imperfect information versions
of our game—particularly for cases in which players are uncertain about the realized market-wide matching
at some stages—is beyond the scope of this paper.
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t can be transformed into the interval [0, µit) through a measure-preserving bijection. The

matching process is a probability distribution over proposer-responder assignments (which

leaves out some players) with the property that a measurable set of players i is selected to

make (receive) an offer to (from) one of the players j. It is only possible to formally define

strategy profiles under which the set of players from each population reaching agreement at

any history is measurable. We also need to restrict attention to pure strategies (see Aumann

(1964)). Note that the macroeconomic effects of mixing can be replicated by the idea of

distributional strategies (Milgrom and Weber 1985).

Note that players drawn from populations of measure zero may be matched for bargaining

with positive probability and enjoy positive payoffs. However, the existence of such players

does not directly impact the matching probabilities and the expected payoffs of other market

participants. Allowing the size of a population to vanish at some date may seem pedantic

at this stage, but will become useful for the analysis of steady states in Section 5. Up to

that point, the reader may focus on the case in which the inequalities 2.1 hold strictly and

λi0 > 0 for all i ∈ N . The latter conditions guarantee that no population is ever completely

depleted.

The existence of an equilibrium in our dynamic setting is not straightforward because

the rate of departures following agreements is endogenously determined in equilibrium, and

the matching probabilities depend in turn on the population sizes. There is a complex

relationship between the evolution of the payoffs for each population of players and the path

of feasible agreements. Our first result establishes equilibrium existence. The proof of this

and subsequent results may be found in the Appendix.

Theorem 1. An equilibrium exists for the bargaining game.

In Section 4 we show that the equilibrium is not necessarily unique. However, a partial

uniqueness result holds for robust equilibria that lead to the same path of market distribu-

tions. More generally, payoff equivalence is obtained in an environment where the path of

matching probabilities is exogenously given. The latter model, which we formally introduce

in the next section, can be used to describe behavior on the equilibrium path in the bench-

mark model—in particular, it provides a building block for the proof of Theorem 1—but is

also of independent interest.
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To sketch the proof of Theorem 1, define the spaces of paths of agreement rates, market

distributions, matching probabilities, and feasible payoffs, respectively, as follows

A = {(aijt)i,j∈N,t≥0|aijt ∈ [0, 1],∀i, j ∈ N, t ≥ 0}

M = {(µit)i∈N,t≥0|µ0 = λ0;µit ∈ [0,
t∑

τ=0

λiτ ],∀i ∈ N, t ≥ 1}

P = {(pijt)i,j∈N,t≥0|pijt ∈ [0, 1],∀i, j ∈ N, t ≥ 0}

V = {(vit)i∈N,t≥0|vit ∈ [0,max
j∈N

sij], ∀i ∈ N, t ≥ 0}.

We construct a correspondence f : A ⇒ A by composing the correspondence α and the

functions v∗, π, κ, where

A κ→M π→ P v∗→ V
α

⇒ A.

The latter maps are specified as follows

• κ(a) describes the path of the market under the assumption that a fraction aijt of

the proposer-responder pairs (i, j) matched at time t reaches agreement

• π(µ) denotes the matching probabilities along the market path µ, as specified by 2.2

(with a minor abuse of notation)

• v∗(p) represents the unique equilibrium payoffs in the model with exogenous matching

probabilities p (characterized by Theorem 2 in Section 3)

• αijt(v) defines the set of agreement rates that are incentive compatible for proposer-

responder pairs (i, j) matched at time t, assuming that bargaining proceeds as if the

expected disagreement payoffs at t+ 1 were given by vt+1.

Note that while κ and π stem from the physical constraints of the environment, v∗ and α

reflect (hypothetical) equilibrium conditions.

We can verify that f = α ◦ v∗ ◦ π ◦ κ satisfies the hypotheses of the Kakutani-Fan-

Glicksberg theorem and thus it has a fixed point a∗. We then construct a robust equilibrium

in which agreements arise at the rates described by a∗, the market follows the path κ(a∗),

and the payoffs are given by v∗(π(κ(a∗))). At stages where the trajectory of the economy

diverges from κ(a∗), strategies are derived from a fixed point of an appropriately modified

correspondence (the set M and the function a need to be redefined taking into account the
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state of the market at the first stage where divergence occurs). Departures from the path of

market distributions induced by the latter strategies are treated analogously, and so on.

The sketch of the proof above provides intuition about how different elements of the

game fit together. In particular, it highlights the relationship between payoffs and matching

probabilities, which we further explore in the next section.

Remark 1. The structure of agreements may seem an unusual starting point for our fixed

point construction. Paths of payoffs and market distributions constitute more natural primi-

tives for describing equilibrium outcomes. These variables suggest the study of the following

map compositions

V
α

⇒ A κ→M π→ P v∗→ V

M π→ P v∗→ V
α

⇒ A κ→M.

However, neither of the compositions above is necessarily convex valued due to the non-

liniarities in κ induced by the general matching process. Then standard fixed point theorems

are not applicable.

Remark 2. A more traditional approach to proving the existence of equilibria in dynamic

games does not seem tractable in our setting. The bargaining game can be approximated by

a sequence of finite horizon truncations as in Fundenberg and Levine (1983). Limit points

of robust equilibria of the truncated games constitute equilibria of the infinite horizon game.

In order to establish the existence of an equilibrium for the benchmark bargaining game, it

suffices to show that every finite period version admits a robust equilibrium. The latter step

typically involves an inductive argument on the length of the game (similar to backward

induction). Consider a finite horizon version of the bargaining game and suppose that an

equilibrium exists for all shorter games. In an equilibrium of the game under consideration,

the second period play and payoffs depend on the first period volume of trade. We are

led to define a correspondence that maps first period agreement rates into continuation

equilibrium payoffs. Each profile of second period payoffs in turn determines what first

period agreements are incentive compatible. Note that both of the outlined correspondences

may be set valued. Fixed points of the composition of the two correspondences describe

first period trade and second period payoffs in equilibria of the considered game. The two
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correspondences are upper hemicontinuous, and so is their composition. However, it seems

theoretically plausible that the composition (in either order) is not convex valued (even

if we convexify the former correspondence by the introduction of a public randomization

device). Thus classic fixed point results do not directly apply. It is also unclear whether

the problem may be circumvented by showing that the former correspondence admits a

continuous selection that we can exploit in the construction instead. Dutta and Sundaram

(1998) discuss related issues with using backward induction to prove the existence of Markov

perfect equilibria in finite horizon stochastic games.

3. An Alternative Model

We consider the following model with exogenous matching probabilities. Players

from the n populations are present in the market in every period t = 0, 1, . . . We are agnostic

about the composition of the market at each date. We assume that every player of type i is

given the opportunity to make an offer to one of the players j in period t with the exogenous

probability pijt ≥ 0.10 11 A player remains in the market until he reaches an agreement.

Payoffs are specified as in the benchmark model.

The sketch of the game above is purposely vague regarding the set of new players entering

the market every period, the exact matching procedure, and the information structure. It

is conceivable that knowledge of the latter elements could permit players to make complex

inferences about the state of the market. However, the nature of these inferences does

not significantly affect the equilibrium outcomes of the class of games sharing the qualities

outlined above. We are able to make sharp predictions about equilibrium behavior without

keeping track of the inflows and outflows for each population, the details of the matching

procedure, and the beliefs every player holds. Indeed, we will show that the probabilities

(pijt) completely characterize the strategic situation for all players.

Technically, one can imagine that the matching probabilities are held fixed under the

matching technology from the benchmark model by adjusting the inflows into the market

in response to the outflows of agents reaching agreement every period. As suggested ear-

lier, the analysis of the model with exogenous matching probabilities can be alternatively

10We maintain the assumption that every matched player knows the type of his partner.
11The probability that i receives an offer from j will be irrelevant to the analysis.
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regarded as a partial equilibrium approach to predicting payoffs for a certain evolution of

the macroeconomic conditions over time.

As a free-standing piece, the model describes a market with behavioral participants. Play-

ers start with identical beliefs about the path of matching probabilities and never revise these

expectations in response to information they receive. This is reasonable in a setting where

agents rely on public predictions of the macroeconomic variables and ignore evidence that

seems inconsistent with the projections. In a large market where mistakes are possible,

agents may think that their own past interactions and observations do not necessarily reflect

future trends.

In the strategic environment of the exogenous matching probabilities model, we establish

that all belief-independent equilibria are payoff equivalent. We actually prove a stronger

claim: behavior is essentially pinned down by a process of iterated conditional dominance

analogous to that proposed by Fudenberg and Tirole (1991, Section 4.6) in the context

of multi-stage games with observed actions. In our setting, an action a available at an

information set h of some player i is conditionally dominated if, for every belief ν over

the decision nodes at h, any strategy of i that assigns positive probability to a is strictly

dominated by another strategy when i’s payoffs are evaluated with respect to the information

set h and the beliefs ν. Iterated conditional dominance is the process that, at every stage,

eliminates all conditionally dominated actions at each information set, given the opponents’

strategies that survived the earlier stages of elimination. The following result summarizes

properties of the equilibrium behavior and the unique equilibrium payoffs.

Theorem 2. There exists a vector of payoffs (v∗it(p))i∈N,t≥0 such that every bargaining game

embedded in the model with exogenous matching probabilities p satisfies the following prop-

erties.

(i) The only period t actions that may survive iterated conditional dominance specify that

player i reject any offer smaller than δiv
∗
i(t+1)(p) and accept any offer greater than

δiv
∗
i(t+1)(p).

(ii) A belief-independent equilibrium exists.

(iii) In every belief-independent equilibrium, the expected payoff of any player i present at

the beginning of period t is v∗it(p).
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(iv) The equilibrium payoffs (v∗it(p))i∈N,t≥0 constitute the unique bounded solution (vit)i∈N,t≥0

to the system of equations

(3.1) vit =
∑
j∈N

pijt max
(
sij − δjvj(t+1), δivi(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δivi(t+1).

(v) The payoffs v∗it(p) vary continuously in p for all i ∈ N, t ≥ 0.

Corollary 1. All equilibria of the benchmark bargaining game that lead to the same path of

population distributions are payoff equivalent.

The proof of Theorem 2 can be easily adapted to show uniqueness of the security equilib-

rium payoffs for the model with exogenous matching probabilities. The latter equilibrium

concept has been introduced by Binmore and Herrero (1988b).12 The alternative statement

of Theorem 2 asserting payoff equivalence of security equilibria generalizes Theorem 6.3 of

Binmore and Herrero (1988b) to settings with more than two populations. In turn, the

latter result represents an extension of the analysis of Rubinstein and Wolinsky (1985) to

non-stationary environments.

The derivation of bounds for the offers and payoffs that survive iterated conditional domi-

nance rely on implicit conjectures about which matches lead to trade. The bounds need to be

tight in order to yield unique payoffs, so they must reflect precise estimates of the best and

worst case scenarios for every player and each potential bargaining partner. In particular, it

is not a priori clear whether the best and worst case scenarios for a given match involve an

agreement.

In general, solving the infinite system of equations 3.1 that characterizes the equilibrium

payoffs may be intractable. Nonetheless, we can implement the following computational pro-

cedure to estimate the equilibrium payoffs. Define the sequences (mk
it)i∈N,t≥0 and (Mk

it)i∈N,t≥0

12The relationship between iterated conditional dominance and security equilibrium has not been established
for general dynamic games.
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recursively for k = 0, 1, . . . as follows

m0
it = 0,M0

it = max
j∈N

sij

mk+1
it =

∑
j∈N

pijt max
(
sij − δjMk

j(t+1), δim
k
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δim

k
i(t+1)

Mk+1
it =

∑
j∈N

pijt max
(
sij − δjmk

j(t+1), δiM
k
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δiM

k
i(t+1).

The proof of Theorem 2 establishes that, for all k ≥ 0, under the strategies that survive

iterated conditional dominance, every player of type i rejects any offer smaller than δim
k
i(t+1)

and accepts any offer greater than δiM
k
i(t+1) in period t (regardless of the identity of the

proposer). Both sequences (mk
it)k≥0 and (Mk

it)k≥0 converge to v∗it(p) as k →∞, and v∗it(p) ∈

[mk
it,M

k
it] for all k ≥ 0. We also show that for every i ∈ N, t ≥ 0, k ≥ 0,

0 ≤Mk
it −mk

it ≤ (max
j∈N

δj)
k max
j,j′∈N

sjj′ .

Therefore, the equilibrium payoffs v∗i0(p) can be approximated by the interval [mk
i0,M

k
i0],

the length of which declines exponentially in k. Note that the number of steps required to

compute mk
i0 and Mk

i0 is linear in k.

4. Equilibrium Multiplicity

In this section we analyze the structure of the equilibria of the bargaining game in a two-

population setting (n = 2). We identify a range of parameters for which multiple equilibria

exist. Assume that s11 = a ∈ (1, 2], s12 = s22 = 1 and δ1 = δ2 = δ ∈ [0, 1). Suppose that

the initial market distribution is given by µ10 = x ∈ [1/2, 1), µ20 = 1 − x and that no new

players enter the economy after the first period (λit = 0 for all t ≥ 1).

Players are matched to bargain following the protocol from 2.3 with p = 1/2. Thus the

probability that a player i is selected to make an offer to some player j in the period t market

µt is

πijt(µt) =
µjt

4(µ1t + µ2t)
.

Hence the proportion of players of type 1 present in the market, µ1t/(µ1t + µ2t), constitutes

a sufficient statistic for the matching probabilities at time t. We refer to the latter ratio as

the index of the market µt.
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We inquire into the existence of two types of equilibria. In an all-agreement equilibrium

all matches along the equilibrium path result in agreement. A population-agreement

equilibrium has the property that on the equilibrium path, in every period, each player

reaches agreements when matched to bargain with players from his own population, but not

from the other. Each type of equilibrium leads to a particular path of market distributions

and generates unique payoffs in light of Corollary 1. We can evaluate the total welfare of

an equilibrium as x times the expected payoff of a player of type 1 in that equilibrium plus

1− x times the payoff of a player 2.

Note that, under the assumed matching technology, if all pairs of players matched at time

t in the market µt reach agreement, then the next period market distribution is µt+1 = µt/2.

Then on the equilibrium path of the all-agreement equilibrium the market index must be x in

every period, and the unique payoffs of players from the same population are stationary. This

makes the computation of payoffs in the candidate equilibrium straightforward. The formulae

for payoffs in the population-agreement equilibrium are not as tractable. If agreements arise

as postulated in the latter equilibrium, play proceeds from a market with index y to one with

index y(2− y)/(1 + 2y(1− y)). In particular, the market index declines over time. The non-

trivial evolution of market indices complicates the estimation of the ranges of parameters

where the two types of equilibria (co)exist and the comparison of payoffs across equilibria.

Proposition 1 below shows that the two types of equilibria coexist for a non-generic range

of parameters. When both equilibria exist, players of type 1 are better off in the population-

agreement equilibrium, while players 2 prefer the all-agreement one. However, the two types

of equilibria cannot be consistently ranked according to their welfare.

Proposition 1. Fix a ∈ (1, 2].

(i) For every x ∈ [1/2, 1), there exist δ̄(x) and δ(x) such that an all-agreement equilibrium

exists if and only if δ ≤ δ̄(x), and a population-agreement equilibrium exists if and only

if δ ≥ δ(x).

(ii) If x ∈ ((a+ 1)/4, 1), then δ̄(x) > δ(x), and both equilibria exist for δ ∈ [δ(x), δ̄(x)].

(iii) For every profile of parameters for which both types of equilibria exist, the payoff of

a player of type 1 in the all-agreement equilibrium is not greater than that in the
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population-agreement one. Players of type 2 have the opposite (weak) preferences over

the two equilibria.

(iv) The two types of equilibria are not consistently ranked in terms of total welfare: for every

a ∈ (1, 4/3), there exists ε > 0 such that the all-agreement equilibrium yields higher

welfare than the population-agreement equilibrium for x ∈ ((a+ 1)/4, (a+ 1)/4 + ε) and

δ = δ̄(x), and the comparison is reversed for x ∈ (1− ε, 1) and δ = δ̄(x).

To gain some intuition into the coexistence of the two equilibria, note first that the players

of type 1 are intrinsically more powerful because they can generate a surplus a > 1 when

matched to bargain with one another, while the other pairs of types create only a unit

surplus. Moreover, players 1 are given the opportunity to realize the surplus a frequently

since population 1 constitutes a proportion x > 1/2 of the total mass of market participants.

By the same token, the players of type 2 are more likely to be matched with players from

population 1 than with other players 2. All matches involving population 2 generate one unit

of surplus, but players 1 are relatively stronger than players 2, so the players of type 2 often

encounter unfavorable partners. Thus the matching process further boosts the bargaining

power of players 1 and undermines the position of players 2. We refer to the impact of

the greater amount of surplus available within population 1 on relative bargaining strengths

as the surplus effect, and to the ramifications of this effect, amplified by the larger size of

population 1 via the matching probabilities, as the frequency effect.

Consider now an all-agreement equilibrium. As explained earlier, the market index is

constant along the equilibrium path. The players from population 2 allow the frequency

effect to propagate over time by trading with players of type 1. In effect, the players 1

exploit the self-inflicted weakness of players 2. The dynamic is different in the context of a

population-agreement equilibrium. By refusing to trade with players from population 1, the

players 2 secure a market path with declining indices and diminishing frequency effect. The

bargaining position of players 2 steadily improves over time, and the prospect of higher future

payoffs provides incentives for them to avoid agreements with population 1. Therefore, the

divergence of the two market paths leads to differences in the magnitude of the frequency

effect, which create a wedge in the relative bargaining power of the two populations that

overturns the incentives for across population trade.
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The two equilibria embody contrasting expressions of market sentiment. On the one hand,

in the all-agreement equilibrium players 2 hold the pessimistic beliefs that all matchings

between populations 1 and 2 result in agreement. A persistent frequency effect is expected to

emerge. On the other hand, in the population-agreement equilibrium players 2 optimistically

anticipate that populations 1 and 2 do not engage in trade with one another. The frequency

effect is expected to gradually decline. In both cases, the predicted trajectory of the economy

becomes a self-fulfilling prophecy: the anticipated agreements are incentive compatible.

Remark 3. The analysis of this section is reminiscent of the multiplicity of steady states

in a two-type example from the context of the search model of Burdett and Coles (1997,

1999). It is important to clarify the differences. Burdett and Coles fix some stationary

inflows and restrict attention to steady states (in an exercise analogous to Section 5 below).

The initial market composition is endogenously determined in their model. The two types

of equilibria constructed by Burdett and Coles start with distinct market compositions and

induce constant paths of market indices. By contrast, we allow for non-stationary dynamics

in a setting where both the initial market distribution and the future inflows are exogenous.

The paths of the market index in our equilibria originate from the same point and gradually

diverge. In particular, the population-agreement equilibrium features a declining path of

market indices.

5. Steady States

This section focuses on stationary environments. Specifically, we assume that the inflows

and the matching process are time independent. In this context, we explore the properties

of steady states, which are defined by equilibria of the bargaining game that lead to constant

population sizes over time. We modify the previous notation as follows: λi > 0 is the measure

of new players of type i in every period, µ = (µi)i∈N ∈ [0,∞)n\{0} describes the size of each

population in a potential steady state, βij(µ) and πij(µ) represent the measure of players i

who can make an offer to some player j at any date where the market distribution is µ and

the probability that a given player of type i is involved in such a match, respectively. We

retain the assumptions that guarantee the continuity of πij over [0,∞)n \{0} for all i, j ∈ N .

In a robust equilibrium with a market distribution µ ∈ [0,∞)n \ {0} at every date,

incentives on the path map to the equilibrium conditions in the model with exogenous
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matching probabilities where pijt = πij(µ) for all t ≥ 0. We denote the unique equilibrium

payoffs of the corresponding class of games by v(µ). Theorem 2 establishes that v(µ) is

the only bounded solution (vit)i∈N,t≥0 to the system of equations 3.1. However, since pijt =

pij(t+1) for all i, j ∈ N, t ≥ 0, the one-period forward translation v′ of v(µ) (defined by

v′it = vi(t+1)(µ) for i ∈ N, t ≥ 0) also constitutes a bounded solution for that system, thus

vit(µ) = v′it = vi(t+1)(µ) for all i ∈ N, t ≥ 0. This shows that the equilibrium payoffs in

a steady state are constant over time. We simply use the notation vi(µ) for the common

expected payoff of all players of type i at any date. Hence v(µ) solves13

vi(µ) =
∑
j∈N

πij(µ) max (sij − δjvj(µ), δivi(µ)) +

(
1−

∑
j∈N

πij(µ)

)
δivi(µ),∀i ∈ N.

We first argue that even with minimal equilibrium restrictions on the set of agreements,

regardless of the matching technology, it may be that no feasible mass of pairwise departures

from the market perfectly balances the inflows.

Example 1. Suppose there are two populations with s11 = s22 = 0, s12 > 0. Then in

every equilibrium agreements are reached only between players of distinct types. Hence any

matching process leads to equal measures of players 1 and 2 exiting the market every period.

If λ1 6= λ2 then it is impossible for inflows of λ1 players 1 and λ2 players 2 to match the

outflow of pairs of players 1 and 2.

We next argue that introducing small entry costs may stabilize the market. In the setting

of Example 1, suppose that measures λ1 of players 1 and λ2 of players 2 enter the game

every period, with λ1 > λ2. Assume additionally that a measure λ2 of players 2 exits the

market per period. Then the population of players 1 grows without bound over time, while

the size of population 2 remains constant. This means that the probability a player 1 gets

matched to bargain in any given period becomes vanishingly small. Hence the payoffs of

players of type 1 approach 0. If there is a small cost of entry c1 for players 1, intuition

suggests that in a steady state only a fraction of the new λ1 players 1 will choose to enter,

13Rewritten in the form

vi(µ) =
1

1− δi

∑
j∈N

πij(µ) max (sij − δivi(µ)− δjvj(µ), 0) ,∀i ∈ N,

the payoff formulae resemble the value equations (5)-(6) of Shimer and Smith (2000) (see also equation (14)
in Smith (2011)) and Lemma 2 from Manea (2011).
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and their probability of being matched for bargaining is sufficiently low so that they receive

a payoff of c1 in the game. Each of the new players 1 is then indifferent between entering

the market and staying out.

Suppose that players of type i face a cost ci > 0 to enter the market. When does a market

distribution µ constitute a steady state of the economy with inflows λ = (λi)i∈N and entry

costs c = (ci)i∈N? It must be that every player of type i enters the game if vi(µ) > ci and does

not if vi(µ) < ci. Moreover, the measure of new players joining population i in any period

must be identical to the measure of players i who reach agreement that period. A concise

definition of steady states can be expressed in terms of fixed points of the correspondence S,

which we construct below. It is useful to first introduce the correspondence X : R ⇒ [0, 1],

X(a) =


{0} if a < 0

[0, 1] if a = 0

{1} if a > 0

.

Definition 1. A market distribution µ constitutes a steady state for the economy with

inflows λ and entry costs c if µ is a fixed point of the correspondence S : [0,∞)n \ {0} ⇒

[0,∞)n \ {0} defined by

(5.1) S(µ) =

{
(µi −

∑
j∈N

(β̃ij + β̃ji) + λ̃i)i∈N

∣∣∣∣∣
β̃ij ∈ βij(µ)X (sij − δivi(µ)− δjvj(µ)) & λ̃i ∈ λiX (vi(µ)− ci)

}
.

In 5.1, the term µi−
∑

j∈N(β̃ij + β̃ji) + λ̃i represents the size of population i in the “next”

period under the following premises

• µi is the measure of players i participating in the “current” market

• β̃ij is the mass of proposer-responder matches (i, j) that reach agreement in the

current period

• λ̃i is the measure of new players i who enter the market in the next period.

The constraints on β̃ij and λ̃i reflect the equilibrium requirements on agreements and entry

decisions conditional on facing the stationary market µ, which is strategically captured by

the model with exogenous matching probabilities where pijt = πij(µ) for all t ≥ 0. The rate
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of agreement for matched pairs of players (i, j) must be 0, 1, or any number in the interval

[0, 1] depending on whether the sum of their continuation payoffs δivi(µ) + δjvj(µ) is greater

than, less than, or equal to sij, respectively. The proportion of players i entering the market

is 0, 1, or some number in [0, 1] if their payoff vi(µ) is smaller than, larger than, or equal to

ci, respectively.

Remark 4. Note that S(µ) is not always a product set since β̃ij and β̃ji link its i and j

components. While the projection of S(µ) on the i coordinate is

pri(S(µ)) = µi −
∑
j∈N

(βij(µ) + βji(µ))X (sij − δivi(µ)− δjvj(µ)) + λiX (vi(µ)− ci) ,

we have S(µ) 6=
∏

i∈N pri(S(µ)) whenever there is a link ij with δivi(µ) + δjvj(µ) = sij.

We show that if the matching technology satisfies a mild regularity assumption, steady

states exist for any sufficiently low entry costs.

Theorem 3. Suppose that the matching process satisfies the following condition

(5.2) α := inf
µ∈[0,∞)n\{0}

max
i,j∈N

πij(µ)

1 + πij(µ)
sij > 0.

Then for any inflows λ ∈ (0,∞)n and entry costs c ∈ (0, α]n, the economy has a steady state

µ ∈ [0,∞)n \ {0}.

Condition 5.2 requires that for each market state there exists a player who, with probability

uniformly bounded away from zero, gets the opportunity to share positive gains from trade

with another player.14 If for every i ∈ N there exists j ∈ N such that sij > 0, then the

natural matching technology described by 2.3 satisfies 5.2, with

α ≥ pmin{sij|i, j ∈ N ; sij > 0}
2n+ p

.

The proof of Theorem 3 shows that S(µ) ⊂ C, ∀µ ∈ C, where

C =

{
µ ∈ [0,∞)n \ {0}

∣∣∣∣∣∑
i∈N

µi ≥ min
i∈N

λi & µi ≤ λi

(
1 +

maxj∈N sij
ci(1− δi)

)
,∀i ∈ N

}
.

Then it argues that the restriction of S to the set C satisfies the hypotheses of Kakutani’s

theorem and concludes that S has a fixed point in C.
14The former player may belong to a population of size zero.
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The definition of steady states takes the view that the initial players participate in the

market for free or have a sunk cost of entry. Then some players present in the market

“before” the first period may receive payoffs smaller than the entry cost for their types.

One may wonder about the existence of steady states µ with the property that µi = 0 if

vi(µ) < ci.
15 The next result provides a positive answer.

Theorem 3’. Suppose that the matching process satisfies the condition 5.2. Then for any

inflows λ ∈ (0,∞)n and entry costs c ∈ (0, α]n, the economy has a steady state µ ∈ [0,∞)n \

{0} with µi = 0 whenever vi(µ) < ci.

The proof proceeds as follows. For ρ ∈ [0, 1], perturb S to obtain the correspondence

Sρ : [0,∞)n \ {0}⇒ [0,∞)n \ {0},

(5.3) Sρ(µ) =


(
ρ

(
µi −

∑
j∈N

(β̃ij + β̃ji)

)
+ λ̃i

)
i∈N

∣∣∣∣∣∣
β̃ij ∈ βij(µ)X (sij − δivi(µ)− δjvj(µ)) & λ̃i ∈ λiX (vi(µ)− ci)

}
.

Fixed points of Sρ describe steady states in an environment where the size of each population

decays by a factor of ρ in every round (but players do not take into account their personal

probability of exit). With minimal modifications, the argument from the proof of Theorem 3

extends to prove that Sρ has a fixed point µρ ∈ C for each ρ ∈ [0, 1]. It can be easily checked

that vi(µ
ρ) < ci ⇒ µρi = 0. In the Appendix, we show that (µρ)ρ∈[0,1] has a limit point as

ρ→ 1, which constitutes a steady state with the desired property.

Theorems 3 and 3’ do not provide intuition for the formation of steady states in which all

populations have non-zero measure. We say that a steady state µ is positive if it assigns

a positive size to each population and provides all players (weak) incentives to enter the

market, i.e., µi > 0 and vi(µ) ≥ ci for all i ∈ N . The next example shows that some

economies admit positive steady states only for specific configurations of entry costs.

Example 2. Consider a three-population setting with the matching technology given by

2.3. Assume that s11 = s22 = s33 = s23 = 0 < s12 = s13 and λ1 < λ2 = λ3. Let µ be a

corresponding steady state market with µi > 0 and vi(µ) ≥ ci for all i. It is obvious that

15Note that if µ is a steady state with µi > 0 and vi(µ) < ci, then vi(µ) = 0.
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agreements arise in the steady state equilibrium only when a player of type 1 is matched to

some player of type 2 or 3. Since the measure λi of potential entrants of type i = 2, 3 exceeds

the measure λ1 of type 1 entrants, it must be that only a fraction of the λi players i enters,

so vi(µ) ≤ ci. It follows that vi(µ) = ci for i = 2, 3. Note that the matching technology 2.3

assigns the same probability to every player of type 2 or 3 having the opportunity to make

an offer to some player 1. Then v2(µ) = v3(µ). Hence a positive steady state exists only if

c2 = c3.16

In general, the costs of entry that guarantee the existence of positive steady states depend

on the pattern of gains from trade and the matching process in a complex fashion. However,

if we regard entry costs as an explanation for the operation of stationary markets, we may

ask whether for given inflows λ there exist small costs c such that the resulting economy

admits a positive steady state. The result below answers the latter question affirmatively,

even for matching processes that violate the regularity condition 5.2.

Theorem 3”. For every vector of inflows λ ∈ (0,∞)n and any k > 0, there exists c ∈ [0, k]n

such that the economy with entry costs c has a positive steady state.

Loosely speaking, the result shows that, for any continuous matching process, one can set

arbitrarily low entry fees to limit the inflows into the populations that need to be rationed

in order to attain a positive steady state.

Remark 5. Shimer and Smith (2000) prove the existence of steady states in a continuous

time search model with a continuum of types. They impose some additional structure on the

pattern of gains from trade and assume anonymous random matching. While our fixed point

constructions have similar flavors, the two models are vastly different, and the existence

proofs do not share many formal connections.

6. Conclusion

We analyzed a general model of bargaining in decentralized dynamic markets. The model

features multiple populations that share heterogenous trading opportunities among them.

16The conclusion is not a consequence of the “non-generic” surplus distribution or matching technology.
Indeed, a similar argument establishes that if s21 > s31 and π21(µ) > π31(µ),∀µ ∈ (0,∞)3 in the setting of
this example, then the existence of a positive steady state entails that c2 > c3.
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The inflows of new players into each population are exogenous and possibly non-stationary.

The state of the market at any date is determined by the size of the inflows and the volume

of trade prior to that date. At every point in time, the matching probabilities for any pair

of player types are endogenously derived from the underlying market distribution. In this

setting, the bargaining powers of market participants coevolve over time in relation to the

structure of agreements, the path of matching frequencies, and the overall trajectory of the

economy. Our comprehensive framework provides insights into richer market dynamics than

earlier models of bargaining in markets.

We established that an equilibrium always exists. We also proved that all equilibria leading

to the same evolution of the economy are payoff equivalent. The unique equilibrium payoffs

consistent with a given market path can be computed using an iterative method. However,

the equilibrium payoffs are not necessarily unique. We showed by example that multiple

self-fulfilling beliefs about the trajectory of the economy may coexist, giving rise to entirely

different equilibrium dynamics.

A significant part of the previous literature on bargaining in markets focused on the

(relatively more tractable) analysis of steady states. The current model provides a natural

framework for investigating when and how steady states emerge. We offered theoretical

foundations for the existence of steady states.

Appendix A. Proofs

Proof of Theorem 1. Every information set begins a bargaining game that can be described

by some path of inflows (λ̃it)i∈N,t≥0 with λ̃i0 > 0 for all i ∈ N . In order to specify behavior

at each stage characterized by any such inflows (λ̃it)i∈N,t≥0, we define the sets of paths of

possible fractions of agreeing pairs, market distributions, matching probabilities, and feasible

payoffs, respectively, as follows

A = {(aijt)i,j∈N,t≥0|aijt ∈ [0, 1],∀i, j ∈ N, t ≥ 0}

Mλ̃ = {(µit)i∈N,t≥0|µ0 = λ̃0;µit ∈ [0,
t∑

τ=0

λ̃iτ ],∀i ∈ N, t ≥ 1}

P = {(pijt)i,j∈N,t≥0|pijt ∈ [0, 1],∀i, j ∈ N, t ≥ 0}

V = {(vit)i∈N,t≥0|vit ∈ [0,max
j∈N

sij],∀i ∈ N, t ≥ 0}.
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Each of the four sets can be regarded as a topological vector space via a natural embed-

ding in the space RN (the countable product of the set of real numbers) endowed with the

standard product topology. Note that the product topology on RN is metrizable, so the

characterizations of closed sets and continuous functions in terms of convergent sequences

apply for each of the four sets (Theorem 2.40, [1]). The spaces A,Mλ̃,P ,V are compact by

Tychonoff’s theorem.

We construct the correspondence f λ̃ : A ⇒ A by composing the correspondence α and

the functions v∗, π, κλ̃, where

A κλ̃→Mλ̃ π→ P v∗→ V
α

⇒ A.

Thus f λ̃ = α ◦ v∗ ◦ π ◦ κλ̃, where π is given by 2.217 and v∗ is derived from Theorem 2, while

κλ̃ and α are defined below. We will show how the fixed points of f λ̃ can be used to describe

the equilibrium path at stages of the bargaining game where the market is in state λ̃0 and

the future inflows are given by λ̃1, λ̃2, . . .

For any a ∈ A, the sequence κλ̃(a) describes the path of the market under the assumption

that a fraction aijt of the pairs (i, j) matched to bargain at time t (with i playing the role of

the proposer if i 6= j) reaches agreement. Hence κλ̃(a) is recursively defined by

κλ̃i0(a) = λ̃i0,∀i ∈ N

κλ̃i(t+1)(a) = κλ̃it(a) + λ̃i(t+1) −
∑
j∈N

(
aijtβijt(κ

λ̃
t (a)) + ajitβjit(κ

λ̃
t (a))

)
,∀i ∈ N, t ≥ 0.

For any v ∈ V , the set αijt(v) consists of the possible rates of agreement among the

proposer-responder pairs (i, j) matched at time t, assuming that bargaining proceeds as if

the expected period t+1 payoffs (in case of disagreement) were given by vt+1. In this scenario,

the fraction of pairs (i, j) that reach agreement is 0, 1, or any number in [0, 1] depending on

whether δivi(t+1) + δjvj(t+1) is strictly greater, strictly smaller, or equal to sij, respectively.

Thus

αijt(v) =


{0} if δivi(t+1) + δjvj(t+1) > sij

[0, 1] if δivi(t+1) + δjvj(t+1) = sij

{1} if δivi(t+1) + δjvj(t+1) < sij

.

17Although π(µ) is not defined if µit = 0 for some i and t, this will not become an issue because κλ̃(A) does
not contain such µ’s.
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Our first goal is to apply the Kakutani-Fan-Glicksberg theorem (Corollary 17.55, [1]) to

establish that f λ̃ = α ◦ v∗ ◦ π ◦ κλ̃ has a fixed point. We then show how fixed points of

f λ̃ translate into equilibrium behavior. Note that the definitions of κλ̃ and π, along with

the continuity of β (assumed) and v∗ (Theorem 2), imply that the function v∗ ◦ π ◦ κλ̃ is

continuous. Since the correspondence α has a closed graph, it follows that f λ̃ = α◦(v∗◦π◦κλ̃)

also has a closed graph. Furthermore, f λ̃ takes non-empty convex values because α does.

Clearly, A is a non-empty compact convex subset of a topological vector space that is linearly

homeomorphic to RN; the latter is a locally convex Hausdorff space (Theorem 16.2, [1]). Thus

f λ̃ : A⇒ A satisfies all the hypotheses of the Kakutani-Fan-Glicksberg theorem, and it must

have a fixed point.

We next demonstrate how fixed points of f λ̃ map into equilibria of the bargaining game.

For every (λ̃it)i∈N,t≥0 with λ̃i0 > 0 for all i ∈ N , let aλ̃ be a fixed point of f λ̃. We will show

that the strategy profile constructed below constitutes an equilibrium in which the market

follows the path κλ(aλ) and the payoffs are given by v∗(π(κλ(aλ))). Under the constructed

strategies, play can fall into several regimes, indexed by λ̃. We first define the strategies for

each regime λ̃ and then specify the transition rule between regimes.

In the regime λ̃ play is as follows. When a player i is selected to make an offer to some

player j at stage τ = 0, 1, . . . of the regime, he offers x := δjv
∗
j(τ+1)(π(κλ̃(aλ̃))) if aλ̃ijτ > 0 and

declines to bargain otherwise. In stage τ of the regime, any player j accepts all offers strictly

greater than x and rejects all offers strictly smaller than x. Furthermore, a proportion aλ̃ijτ

of the players j receiving the (exact) offer x from some i accepts it.18 Clearly, in regime λ̃,

if players conform to the prescribed behavior, then the market follows the path κλ̃(aλ̃).

The game commences in the regime λ and progresses as follows. While being in a regime

λ̃, play stays in the regime as long as the market evolves along the path κλ̃(aλ̃). After

any stage of the regime λ̃ where the market distribution diverges from the latter path, play

switches to a new regime ˜̃λ. If divergence occurs at the beginning of period t in the game (as

a consequence of a positive measure of players deviating from regime λ̃ in period t− 1), and

the game proceeds to a market µt (including the period t inflows λt), then the new regime

is given by ˜̃λ0 = µt,
˜̃λ1 = λt+1,

˜̃λ2 = λt+2, . . .

18For the sake of the argument, we assume that if aλ̃ijτ = 1 then all (as opposed to “almost all”) players j
accept the offer x from any i at stage τ .
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The description of the strategies in regime λ̃ is incomplete, in that, for aλ̃ijτ ∈ (0, 1), it does

not specify which fraction aλ̃ijτ of players j must accept the stipulated offer from the players i

at stage τ . One may be concerned that any concrete procedure selecting a set of agreements

leads to heterogeneity in the expected payoffs of each population of players at stage τ , but

it turns out that payoffs are not affected by the selection procedure.19 More specifically, we

establish that the expected payoffs in regime λ̃ are given by v∗(π(κλ̃(aλ̃))), regardless of the

unspecified details of the strategy profile. Since the focus of this part of the proof is on the

regime λ̃, in an extreme abuse of notation we write v∗ for v∗(π(κλ̃(aλ̃))) and π for π(κλ̃(aλ̃)).

Let Uiτ denote the range of expected payoffs for the players of type i participating at stage

τ of regime λ̃ (possible under the collection of strategy profiles complying with the regime).

Each value in Uiτ is obtained as an expectation over several types of payoffs, depending

on the outcome for the particular player i in stage τ of the regime λ̃ as follows

• elements of δiUi(τ+1), for situations in which the player does not reach an agreement

(including events where he is not matched for bargaining at stage τ)

• δiv∗i(τ+1), in instances where the player accepts an offer

• sij − δjv∗j(τ+1), for cases in which the player’s offer to j is accepted.

The terms sij − δjv∗j(τ+1) appear in the expectation with positive probability only if aλ̃ijτ > 0.

Since aλ̃ ∈ f λ̃(aλ̃) = α(v∗) by definition, the condition aλ̃ijτ > 0 implies that sij − δjv∗j(τ+1) ≥

δiv
∗
i(τ+1). If the latter weak inequality holds with equality, then sij − δjv∗j(τ+1) simply enters

the expectation as δiv
∗
i(τ+1). Otherwise, we have sij − δjv∗j(τ+1) > δiv

∗
i(τ+1), so aλ̃ijτ = 1, which

implies that all players j accept the offer δjv
∗
j(τ+1) from any i at stage τ (see footnote 18). In

this case, the value sij − δjv∗j(τ+1) is weighted in the expectation by the probability πijτ with

which every i is selected to make an offer to some j in stage τ of the regime. To sum up, any

payoff in Uiτ can be represented as a convex combination of elements of δiUi(τ+1), δiv
∗
i(τ+1),

and terms sij − δjv
∗
j(τ+1), where the latter receive positive weight—equal to πijτ—only if

sij − δjv∗j(τ+1) > δiv
∗
i(τ+1). Formally, for all u ∈ Uiτ , there exist w ∈ co(Ui(τ+1)) and q ∈ [0, 1]

19Note that the “symmetric” treatment whereupon each player j accepts the offer with probability aλ̃ijτ is
not feasible due to the (unavoidable) restriction to pure strategies.
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such that

u =
∑

{j∈N |sij−δjv∗j(τ+1)
>δiv∗i(τ+1)

}

πijτ
(
sij − δjv∗j(τ+1)

)

+

1− q −
∑

{j∈N |sij−δjv∗j(τ+1)
>δiv∗i(τ+1)

}

πijτ

 δiv
∗
i(τ+1) + qδiw.

Theorem 2 shows that

v∗iτ =
∑
j∈N

πijτ max
(
sij − δjv∗j(τ+1), δiv

∗
i(τ+1)

)
+

(
1−

∑
j∈N

πijτ

)
δiv
∗
i(τ+1),

which can be rewritten as

v∗iτ =
∑

{j∈N |sij−δjv∗j(τ+1)
>δiv∗i(τ+1)

}

πijτ
(
sij − δjv∗j(τ+1)

)
+

1−
∑

{j∈N |sij−δjv∗j(τ+1)
>δiv∗i(τ+1)

}

πijτ

 δiv
∗
i(τ+1).

We immediately obtain that

sup
u∈Uiτ

|u− v∗iτ | ≤ sup
w∈co(Ui(τ+1)),q∈[0,1]

qδi|w − v∗i(τ+1)| ≤ δi sup
u∈Ui(τ+1)

|u− v∗i(τ+1)|.

Iterating the inequalities above, and observing that the sequence (v∗iτ )s≥0 and the sets (Uiτ )s≥0

are uniformly bounded, we conclude that supu∈Uiτ |u−v
∗
iτ | = 0, which means that Uiτ = {v∗iτ},

for all τ . Therefore, the constructed strategies yield expected payoffs of v∗iτ to all players i

present at stage τ of the regime λ̃.

We can finally prove that the constructed strategies constitute an equilibrium of the bar-

gaining game. In any period of the game, a deviation from the associated regime by a single

player (or a measure-zero set of players) does not trigger a regime change. Hence we only

need to check incentives within each regime. Moreover, the single deviation principle applies

to our setting. In light of the finding that the regime λ̃ yields payoffs v∗(π(κλ̃(aλ̃))), we can

easily check that no player has a profitable one-shot deviation from the strategies prescribed

by regime λ̃. �
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Proof of Theorem 2. (i) Define the sequences (mk
it)i∈N,t≥0 and (Mk

it)i∈N,t≥0 recursively for

k = 0, 1, . . . as follows

m0
it = 0,M0

it = max
j∈N

sij(A.1)

mk+1
it =

∑
j∈N

pijt max
(
sij − δjMk

j(t+1), δim
k
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δim

k
i(t+1)(A.2)

Mk+1
it =

∑
j∈N

pijt max
(
sij − δjmk

j(t+1), δiM
k
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δiM

k
i(t+1).(A.3)

We refer to strategies that assign positive probability only to actions that survive iterated

conditional dominance as “surviving strategies.” We simultaneously establish the following

claims by induction on k. Under all surviving strategies, in period t every player of type i

(1) rejects any offer smaller than δim
k
i(t+1) (regardless of the identity of the proposer)

(2) has an expected payoff (at the beginning of the period) of at most Mk
it

(3) accepts any offer greater than δiM
k
i(t+1) (regardless of the identity of the proposer)

(4) does not make an offer greater than δjM
k
j(t+1) when matched to bargain with some

player j.

For the base case k = 0, claims (1) and (2) hold trivially. We also note at this stage that

claims (3) and (4) follow from (2) for all k. Suppose that claim (2) holds. Fix a period t

information set where i receives some offer x > δiM
k
i(t+1). Any strategy whereupon i rejects

the offer x in period t leads to a period t + 1 expected payoff of at most Mk
i(t+1) under

the surviving strategies. Hence such strategies are conditionally dominated by accepting x

at the information set under consideration. We now show that claim (3) implies (4). Let

y > δjM
k
j(t+1), and consider all strategies under which i offers y to some j in period t at a

particular information set. If, as per claim (3), j accepts every offer greater than δjM
k
j(t+1),

then each of the latter strategies is conditionally dominated by any strategy that prescribes

an offer in the interval (δjM
k
j(t+1), y) at the given information set.

Therefore, we only need to prove the induction hypotheses (1) and (2) for step k + 1,

assuming that the four claims hold for all earlier steps. Consider a period t information set

where some player i has to respond to an offer x < δim
k+1
i(t+1). We argue that accepting the

offer x is conditionally dominated for player i by the following plan of action for sufficiently

small ε > 0. Player i rejects any offer received at every time t′ ≥ t. When selected to make
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an offer to some j at date t′ = t + 1, t + 2, . . . , t + k + 1, player i offers δjM
k+t+1−t′
j(t′+1) + ε if

sij−δjMk+t+1−t′
j(t′+1) ≥ δim

k+t+1−t′
i(t′+1) and declines to bargain otherwise. Player i declines to bargain

when selected as a proposer after date t+ k+ 1. Note that, by the induction hypothesis, all

players j accept the offers δjM
k+t+1−t′
j(t′+1) +ε at time t′ = t+1, t+2, . . . , t+k+1. Then we can

easily show by induction on k that the constructed strategy generates a period t payoff for

i of δim
k+1
i(t+1) as ε → 0 under the surviving strategies for the opponents, so it conditionally

dominates accepting x in period t for sufficiently small ε > 0.

We now show that all the surviving strategies deliver expected payoffs of at most Mk+1
it at

the beginning of period t to the players of type i present in the game at that time. Consider

a period t information set where i is given the opportunity to make an offer to j. By

the induction hypothesis, player j rejects any offer lower than δjm
k
j(t+1). Moreover, when i

declines to bargain or makes an offer that is rejected, he can expect a period t+1 payoff of at

most Mk
i(t+1) under the surviving strategies. Hence i cannot make an offer that generates an

expected payoff greater than max
(
sij − δjmk

j(t+1), δiM
k
i(t+1)

)
. By the induction hypothesis,

any action of some player j specifying an offer above δiM
k
i(t+1) to i in period t is eliminated

in the process of iterated conditional dominance. Also by the induction hypothesis, in all

cases where i does not reach an agreement in period t, he enjoys a period t + 1 expected

payoff of at most Mk
i(t+1). Therefore, i’s date t payoff under the surviving strategies cannot

exceed the expression from A.3, which defines Mk+1
it .

Our next goal is to show that the sequences (mk
it)k≥0 and (Mk

it)k≥0 converge to a common

limit. One can easily demonstrate by induction that for all i ∈ N, t ≥ 0,

• the sequence (mk
it)k≥0 is increasing in k

• the sequence (Mk
it)k≥0 is decreasing in k

• maxj∈N sij ≥Mk
it ≥ mk

it ≥ 0 for all k ≥ 0.

Hence the sequences (mk
it)k≥0 and (Mk

it)k≥0 are convergent. We now prove that they have

the same limit.
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Let Dk = supi∈N,t≥0M
k
it −mk

it. We have

Dk+1 = sup
i∈N,t≥0

Mk+1
it −mk+1

it

= sup
i∈N,t≥0

∑
j∈N

pijt max
(
sij − δjmk

j(t+1), δiM
k
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δiM

k
i(t+1)

−
∑
j∈N

pijt max
(
sij − δjMk

j(t+1), δim
k
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δim

k
i(t+1)

= sup
i∈N,t≥0

∑
j∈N

pijt
[
max

(
sij − δjmk

j(t+1), δiM
k
i(t+1)

)
−max

(
sij − δjMk

j(t+1), δim
k
i(t+1)

)]
+

(
1−

∑
j∈N

pijt

)
δi
[
Mk

i(t+1) −mk
i(t+1)

]
≤ sup

i∈N,t≥0

∑
j∈N

pijt max(δj(M
k
j(t+1) −mk

j(t+1)), δi(M
k
i(t+1) −mk

i(t+1)) +

(
1−

∑
j∈N

pijt

)
δiD

k

≤ max
j∈N

δjD
k,

where the first inequality uses the following fact.

Lemma 1. For all w1, w2, w3, w4 ∈ R,

|max(w1, w2)−max(w3, w4)| ≤ max(|w1 − w3|, |w2 − w4|).

Proof of Lemma 1. Suppose w1 = max(w1, w2, w3, w4). Then

|max(w1, w2)−max(w3, w4)| = w1 −max(w3, w4) ≤ w1 − w3 ≤ max(|w1 − w3|, |w2 − w4|).

The proof is similar for the cases when w2, w3, or w4 is equal to max(w1, w2, w3, w4). �

It follows thatDk ≤ (maxj∈N δj)
kD0 = (maxj∈N δj)

k maxj,j′∈N sjj′ for all k ≥ 0. Therefore,

for every i ∈ N, t ≥ 0, we have

0 ≤Mk
it −mk

it ≤ (max
j∈N

δj)
k max
j,j′∈N

sjj′ ,∀k ≥ 0,

which implies that the sequences (mk
it)k≥0 and (Mk

it)k≥0 have the same limit, denoted v∗it(p).

We omit the parameter p in v∗(p) until we address the issue of continuity with respect to p.
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Recall that iterated conditional dominance predicts that in period t every player of type

i rejects offers smaller than δim
k
i(t+1) and accepts offers greater than δiM

k
i(t+1). Since

lim
k→∞

mk
i(t+1) = lim

k→∞
Mk

i(t+1) = v∗i(t+1),

it follows that only actions specifying that i reject offers smaller than δiv
∗
i(t+1) and accept

offers greater than δiv
∗
i(t+1) at time t can survive iterated conditional dominance.

(iii) We first show that all belief-independent equilibria of the model with exogenous

matching probabilities p yield payoffs (v∗it(p))i∈N,t≥0 and then establish equilibrium existence.

Note that all actions used with positive probability in any belief-independent equilibrium

must survive iterated conditional dominance. Then claim (2) in the proof by induction from

part (i) demonstrates that each player i obtains an expected payoff of at most Mk
it at the

beginning of period t in every equilibrium. In the inductive argument we also constructed a

sequence of strategies for i that, under the surviving strategies of the opponents, generates

a limit payoff for i of mk+1
i(t+1) at the beginning of period t + 1. A simple reindexing of that

construction leads to strategies that deliver a limit period t payoff of mk
it to i. In every

equilibrium, i must not find it profitable to deviate to any of the latter strategies, so his

period t expected payoff should be at least mk
it. Since limk→∞m

k
it = limk→∞M

k
it = v∗it,

the arguments above establish that in every belief-independent equilibrium, any player i

participating in the game at the beginning of period t has an expected payoff of v∗it.

(iv) Taking the limit k →∞ in A.2, we obtain the following system of equations for v∗

(A.4) v∗it =
∑
j∈N

pijt max
(
sij − δjv∗j(t+1), δiv

∗
i(t+1)

)
+

(
1−

∑
j∈N

pijt

)
δiv
∗
i(t+1).

Thus we showed indirectly that the system 3.1 has a bounded solution. Inequalities similar

to those above demonstrate that any two payoff vectors v and v′ that solve 3.1 must satisfy

max
i∈N
|vit − v′it| ≤ max

j∈N
δj max

i∈N
|vi(t+1) − v′i(t+1)|.

If v and v′ are bounded, then we can easily conclude that v = v′. Therefore, v∗ is the unique

bounded solution to the system of equations 3.1.

(ii) We now prove the existence of belief-independent equilibria. We claim that the fol-

lowing strategy profile constitutes an equilibrium. When player i has the opportunity to

make an offer to some player j in period t, he offers δjv
∗
j(t+1) if δiv

∗
i(t+1) + δjv

∗
j(t+1) ≤ sij
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and declines to bargain otherwise. At time t, any player j accepts all offers greater than or

equal to δjv
∗
j(t+1) and rejects all strictly smaller offers. In what follows, we show that the

strategies above generate expected payoffs of v∗it for all players of type i present in period t of

the game. Then one can easily see that the constructed strategies constitute an equilibrium

(the single-deviation principle extends straightforwardly to the present setting).

Fix a player of type i participating in period t of the game after some history. Let qijt

denote the probability that the latter player accepts an offer from players of type j under

the strategies constructed above.20 We rewrite the equations A.4 as follows

v∗it =
∑

{j∈N |δiv∗i(t+1)
+δjv∗j(t+1)

≤sij}

(
pijt(sij − δjv∗j(t+1)) + qijtδiv

∗
i(t+1)

)

+

1−
∑

{j∈N |δiv∗i(t+1)
+δjv∗j(t+1)

≤sij}

(pijt + qijt)

 δiv
∗
i(t+1).

Substituting the formula for v∗i(t+1) in the last term of the equation for v∗it, then the formula

for v∗i(t+2) in the last term of the proxy for v∗i(t+1), and so on, we find that v∗it represents the

expected period t-discounted value for a player of type i of a stochastic prize generated as

follows. At each date t′ ≥ t, conditional on not having received a prize by that time, for every

j ∈ N with δiv
∗
i(t+1) + δjv

∗
j(t+1) ≤ sij, the prizes sij − δjv∗j(t′+1) and δiv

∗
i(t′+1) are realized with

respective probabilities pijt′ and qijt′ (all events are mutually exclusive; a prize is not awarded

in period t′ with conditional probability 1 −
∑
{j∈N |δiv∗i(t′+1)

+δjv∗j(t′+1)
≤sij} (pijt′ + qijt′)). Note

that the strategies constructed above lead to the same distribution over outcomes for the

fixed player i from the perspective of period t as the stochastic prize. Hence the constructed

strategies yield expected payoffs of v∗it for all players of type i present in period t, as claimed.

(v) To show that v∗it(p) varies continuously in p, fix ε > 0 and let k be such that

(max
j∈N

δj)
k max
j,j′∈N

sjj′ < ε/3.

The definition of Mk
it relies on the matching probabilities p, and we instate the notation

Mk
it(p) to underline this dependence. The resulting function Mk

it is obviously continuous in

20As footnote 11 asserts, the model with exogenous matching probabilities does not impose any restrictions
on the probability that each player is chosen as the responder to a potential offer from a certain population
of players. Hence qijt is derived from the (unspecified) underlying matching procedure in the particular
game form under consideration and the constructed strategies for a given player i. The argument applies
independently to every player of type i.
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p. Then any given p has a neighborhood P such that

|Mk
it(p)−Mk

it(p
′)| < ε/3, ∀p′ ∈ P.

Earlier arguments show that for all p′ ∈ P ,

v∗it(p
′) ∈ [mk

it(p
′),Mk

it(p
′)]

0 ≤Mk
it(p
′)− v∗it(p′) ≤Mk

it(p
′)−mk

it(p
′) ≤ (max

j∈N
δj)

k max
j,j′∈N

sjj′ < ε/3.

It follows that

|v∗it(p)− v∗it(p′)| ≤ |v∗it(p)−Mk
it(p)|+ |Mk

it(p)−Mk
it(p
′)|+ |Mk

it(p
′)− v∗it(p′)| < ε,∀p′ ∈ P,

which completes the proof of continuity. �

Proof of Proposition 1. It is useful to explore the properties of the two types of equilibria for

a given δ and varying x, and then apply the findings in the context of a fixed x and changing

δ.

Equilibrium analysis for fixed δ and variable x.

All-agreement equilibria. We first inquire into the existence of all-agreement equilibria for

initial markets with index x ∈ [1/2, 1). As argued in the text, the market index must be x

in every period along the equilibrium path. Moreover, the proofs of Theorems 1 and 2 show

that the equilibrium payoffs are unique and stationary. The payoffs (u1(x), u2(x)) for the

two populations solve the linear system

u1(x) =
x

4
(a− δu1(x)) +

1− x
4

(1− δu2(x)) +
3

4
δu1(x)

u2(x) =
x

4
(1− δu1(x)) +

1− x
4

(1− δu2(x)) +
3

4
δu2(x).

The unique solution of the system is

u1(x) =
1

2(2− δ)
− δx2(a− 1)

2(2− δ)(4− 3δ)
+
x(a− 1)

4− 3δ

u2(x) =
1

2(2− δ)
− δx2(a− 1)

2(2− δ)(4− 3δ)
.
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In order to provide incentives for the desired agreements and disagreements, we need u1(x) ≥

0, u2(x) ≥ 0, 2δu1(x) ≤ a, δ(u1(x) + u2(x)) ≤ 1, 2δu2(x) ≤ 1. One can show that the

inequalities u2(x) ≥ 0 and δ(u1(x) + u2(x)) ≤ 1 imply all the others for every x ∈ [1/2, 1).21

Note that u2(x) is decreasing in x, so

u2(x) ≥ lim
y→1

u2(y) =
4− (2 + a)δ

2(2− δ)(4− 3δ)
> 0,

as by assumption, δ < 1, a ≤ 2. Thus an all-agreement equilibrium exists if δ(u1(x)+u2(x)) ≤

1. To study the latter inequality, define f : R→ R by f(x) = 1− δ(u1(x) + u2(x)).

We have

f(1/2) =
8− (7 + a)δ

4(2− δ)
< 0,

given the assumption that δ > 8/(7 + a). Also,

lim
y→1

f(y) =
2(1− δ)(4− (2 + a)δ)

(2− δ)(4− 3δ)
> 0,

since (2 + a)δ < 4 for δ < 1, a ≤ 2. Since f is a quadratic function with a positive leading

coefficient, there exists x ∈ (1/2, 1) such that f(x) = 0, f(x) > 0 for x ∈ (x, 1) and f(x) < 0

for x ∈ [1/2, x). Therefore, an all-agreement equilibrium exists for all x ∈ [x, 1).

Population-agreement equilibria. We next look for population-agreement equilibria. If the

period t market distribution is µt, with a corresponding index x = µ1t/(µ1t + µ2t), and

agreements arise as postulated, then the next period market is given by

µi(t+1) = µit

(
1− 2

µit
4(µ1t + µ2t)

)
(i = 1, 2),

with an index
µ1(t+1)

µ1(t+1) + µ2(t+1)

=
x(2− x)

1 + 2x(1− x)
=: τ(x).

One can easily check that τ(x) ∈ [1/2, 1) and τ(x) ≤ x for all x ∈ [1/2, 1). The function

τ : [1/2, 1)→ [1/2, 1) has the following properties:

21Since

u1(x)− u2(x) =
x(a− 1)
4− 3δ

> 0,

the following conditions hold u2(x) ≥ 0⇒ u1(x) ≥ 0 and δ(u1(x) + u2(x)) ≤ 1⇒ 2δu2(x) ≤ 1. To see that
δ(u1(x) + u2(x)) ≤ 1 implies 2δu1(x) ≤ a, note that the former inequality leads to

2δu1(x) ≤ 1 + δ(u1(x)− u2(x)) = 1 + δ
x(a− 1)
4− 3δ

< a.

Indeed, the last inequality is equivalent to δ(x+ 3) < 4, which holds for all δ < 1, x < 1.
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• τ is strictly increasing and continuous on [1/2, 1) and has an inverse τ−1 : [1/2, 1)→

[1/2, 1)

• for every x ∈ [1/2, 1), the sequence (τ k(x))k≥0 is decreasing and converges to 1/2,

which is the unique fixed point of τ on [1/2, 1)

• for every x ∈ (1/2, 1), the sequence (τ−k(x))k≥0 is increasing and converges to 1.22

We will show that for x ∈ [1/2, τ−1(x)] there exists a population-agreement equilibrium.

Theorems 1 and 2 show that, in such an equilibrium, the expected payoffs for players of type

1 and 2 in a period where the market index is x are given by, respectively,

v1(x) = a
∑
k≥0

δk
(

1− x

2

)(
1− τ(x)

2

)
. . .

(
1− τ k−1(x)

2

)
τ k(x)

4

v2(x) =
∑
k≥0

δk
1 + x

2

1 + τ(x)

2
. . .

1 + τ k−1(x)

2

1− τ k(x)

4
.

To prove this claim, note that the function v1 satisfies the following equations

v1(x) = a

(
x

4
+
∑
k≥1

δk
(

1− x

2

)(
1− τ(x)

2

)
. . .

(
1− τ k−1(x)

2

)
τ k(x)

4

)

=
x

4
a+

(
1− x

2

)
δa
∑
k≥0

δk
(

1− τ(x)

2

)
. . .

(
1− τ k(x)

2

)
τ k+1(x)

4

=
x

4
a+

(
1− x

2

)
δv1(τ(x))

=
x

4
(a− δv1(τ(x))) +

(
1− x

4

)
δv1(τ(x)).

Similarly,

v2(x) =
1− x

4
(1− δv2(τ(x))) +

3 + x

4
δv2(τ(x)).

We can construct equilibria in which the two types of players have expected payoffs

(v1(x), v2(x)) in periods with market index x ∈ [1/2, τ−1(x)] if the conjectured structure

of agreements and disagreements is incentive compatible, i.e.,

∀x ∈ [1/2, τ−1(x)] : 2δv1(τ(x)) ≤ a, 2δv2(τ(x)) ≤ 1, δ (v1(τ(x)) + v2(τ(x))) ≥ 1.

Through a change of variable, the latter condition becomes

(A.5) ∀x ∈ [1/2, x] : 2δv1(x) ≤ a, 2δv2(x) ≤ 1, δ (v1(x) + v2(x)) ≥ 1.

22τk (τ−k) denotes τ ’s (τ−1’s) composition with itself k times (by convention, τ0 is the identity function).
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A range of x where a population-agreement equilibrium exists. The first inequality in A.5 is

a consequence of

v1(x) = a
∑
k≥0

δk
(

1− x

2

)(
1− τ(x)

2

)
. . .

(
1− τ k−1(x)

2

)
τ k(x)

4

≤ a/2
∑
k≥0

(
1− x

2

)(
1− τ(x)

2

)
. . .

(
1− τ k−1(x)

2

)
τ k(x)

2

= a/2.

The second inequality is proven analogously.

We are left to establish that δ(v1(x) + v2(x)) ≥ 1 holds for all x ∈ [1/2, x]. Note that

τ k(1/2) = 1/2 for all k ≥ 0. Then v1(1/2) = a
∑

k≥0 δ
k(3/4)k(1/8) = a/(8 − 6δ), and

analogously v2(1/2) = 1/(8 − 6δ). Hence δ(v1(1/2) + v2(1/2)) = δ(a + 1)/(8 − 6δ) > 1 for

δ > 8/(7 + a). Clearly, v1(x) and v2(x) vary continuously in x, so there exists x0 ∈ (1/2, x)

such that δ(v1(x) + v2(x)) > 1 for all x ∈ [1/2, x0].

Define xk = τ−k(x0) for k ≥ 1. As stated earlier, the sequence (xk)k≥0 is increasing and

converges to 1 as k → ∞. We prove by induction on k that δ(v1(x) + v2(x)) > 1 for all

x ∈ [1/2,min(xk, x)]. Note that we have already established the claim for the base case

k = 0. We now assume that the claim is true over the interval [1/2,min(xk−1, x)] and show

that it holds over [1/2,min(xk, x)].

Fix x ∈ [1/2,min(xk, x)]. For the purposes of proving the induction step, we abuse

notation and write vi for vi(x), v′i for vi(τ(x)), and ui for ui(x) (i = 1, 2). The goal is thus

to show that δ(v1 + v2) > 1.

Since x ∈ [1/2,min(xk, x)], we have that τ(x) ≤ τ(min(xk, x)) = min(xk−1, τ(x)) ≤

min(xk−1, x). Hence the induction hypothesis implies that δ(v′1 + v′2) > 1.

The earlier payoff equations can be rewritten as follows

v1 =
x

4
a+

(
1− x

2

)
δv′1

v2 =
1− x

4
+

1 + x

2
δv′2

u1 =
x

4
a+

(
1− x

2

)
δu1

u2 =
1− x

4
+

1 + x

2
δu2.

The last two identities use the fact that f(x) = 1− δ(u1 + u2) = 0.
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We set out to show that δ(v1+v2) > δ(u1+u2) = 1, or equivalently that v1+v2−u1−u2 > 0.

Manipulating the identities above, we obtain

(A.6) v1 + v2 − u1 − u2

=
x− x

4
(a− 1) +

(
1− x

2

)
δv′1 −

(
1− x

2

)
δu1 +

1 + x

2
δv′2 −

1 + x

2
δu2

=
x− x

4
(a− 1) +

(
1− x

2

)
δ(v′1 − u1) +

x− x
2

δu1 +
1 + x

2
δ(v′2 − u2) +

x− x
2

δu2

=
x− x

4
(2δ(u1 − u2)− (a− 1)) +

(
1− x

2

)
δ(v′1 + v′2 − u1 − u2) +

(
x− 1

2

)
δ(v′2 − u2).

We show that every term in the last sum is non-negative, with the second one being positive.

Since x ∈ [1/2,min(xk, x)] and x < 1, the coefficients satisfy the following inequalities

x − x ≥ 0, 1 − x/2 > 0, x − 1/2 ≥ 0. The second term is positive since we argued that

δ(v′1 + v′2) > 1 = δ(u1 + u2).

To show that the first term is non-negative, we need to prove that 2δ(u1−u2)−(a−1) ≥ 0,

which can be rewritten as u1 − u2 ≥ (a− 1)/(2δ), or

x(a− 1)

4− 3δ
≥ a− 1

2δ
.

The latter inequality is equivalent to x ≥ 2/δ − 3/2. Since 2/δ − 3/2 > 1/2, using the

properties of the function f discussed earlier, x ≥ 2/δ−3/2 is equivalent to f(2/δ−3/2) ≤ 0.

We find that, if δ > 8/(7 + a), then

f(2/δ − 3/2) =
8− δ(7 + a)

4(2− δ)
< 0.

The third term is non-negative because

(A.7)

v′2 =
∑
k≥0

δk
1 + τ(x)

2

1 + τ 2(x)

2
. . .

1 + τ k(x)

2

1− τ k+1(x)

4
≥
∑
k≥0

δk
(

1 + x

2

)k
1− x

4
= u2.

For a proof, note that the first sum represents the expected value of a random variable

generated as follows. A coin is tossed at every date k = 0, 1, . . . until a heads outcome is

observed. The conditional probability of heads turning up at time k is (1−τ k+1(x))/2. In the

event that the first heads appears at date k, the realized discounted payoff is δk/2. Similarly,

the second sum can be interpreted as the present value of an analogous process where heads

is obtained with probability (1 − x)/2 at each date. The inequality follows from the fact
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that the distribution of the former random variable first-order stochastically dominates that

of the latter (τ k+1(x) ≤ x ≤ x for x ∈ [1/2,min(xk, x)] and k ≥ 0).

We proved the existence of the two types of equilibria for the bargaining game with an

initial market indexed by x ∈ [x, τ−1(x)]. The all-agreement equilibrium delivers expected

payoffs (u1(x), u2(x)), while the population-agreement one leads to payoffs (v1(x), v2(x)).

Equilibrium analysis for fixed x and variable δ. We next explore the existence of the

two types of equilibria for a given x ∈ [1/2, 1), as we vary δ ∈ [0, 1), to prove each part of

Proposition 1. We revise the notation to recognize that ui(x), vi(x), f(x) depend on δ and

write ui(x, δ), vi(x, δ), f(x, δ) instead (i = 1, 2).

Part (i). As already argued, an all-agreement equilibrium exists if and only if

f(x, δ) =
8− 2δ(7 + (a− 1)x) + δ2(6 + (a− 1)x(x+ 1))

(2− δ)(4− 3δ)
≥ 0.

The inequality above is equivalent to

g(x, δ) := 8− 2δ(7 + (a− 1)x) + δ2(6 + (a− 1)x(x+ 1)) ≥ 0.

Note that g is a quadratic function in the second variable with a positive leading coefficient

and g(x, 1) = −(a − 1)x(1 − x) < 0. It follows that for every x ∈ [1/2, 1) there exists δ̄(x)

such that g(x, δ) ≥ 0 (for δ ∈ [0, 1)) if and only if δ ≤ δ̄(x). Moreover,

g

(
x,

8

7 + a

)
=

32(a− 1)(2x− 1)

(7 + a)2

(
x− a+ 1

4

)
implies that δ̄(x) > 8/(7 + a) for x > (a+ 1)/4.

The population-agreement equilibrium exits if and only if

h(x, δ) := 1− δ(v1(x, δ) + v2(x, δ)) ≤ 0.

Since v1(x, δ) and v2(x, δ) are continuous and increasing in δ, the function h is continuous

and decreasing in the second argument. Then h(x, 0) = 1 > 0 > h(x, 1) = (1− a)/2 implies

the existence of δ(x) such that h(x, δ) ≤ 0 if and only if δ ≥ δ(x).



BARGAINING IN DYNAMIC MARKETS 39

Part (ii). We next show that δ̄(x) > δ(x) for all x > (a+1)/4. The arguments from the first

stage of the proof, applied with x playing the role of x and δ = δ̄(x) > 8/(7 + a), establish

that

δ̄(x)
(
v1(x, δ̄(x)) + v2(x, δ̄(x))

)
> δ̄(x)

(
u1(x, δ̄(x)) + u2(x, δ̄(x))

)
= 1.

The definition of δ(x), along with the continuity and strict monotonicity of h(x, ·), leads to

δ̄(x) > δ(x).

Part (iii). Consider a pair (x, δ) for which both types of equilibria exist. As argued earlier,

the unique payoffs (u1, u2) for the two populations in the all-agreement equilibrium satisfy

the conditions

u1 =
x

4
(a− δu1) +

1− x
4

(1− δu2) +
3

4
δu1

u2 =
x

4
(1− δu1) +

1− x
4

(1− δu2) +
3

4
δu2

δ(u1 + u2) ≤ 1.

Since 1− δu2 ≥ δu1, we have

u1 ≥
x

4
(a− δu1) +

(
1− x

4

)
δu1 =

x

4
a+

(
1− x

2

)
δu1,

which leads to

u1 ≥ a
∑
k≥0

δk
(

1− x

2

)k x
4
.

On the other hand, the payoffs (v1, v2) in the population-agreement equilibrium satisfy

v1 = a
∑
k≥0

δk
(

1− x

2

)(
1− τ(x)

2

)
. . .

(
1− τ k−1(x)

2

)
τ k(x)

4

v2 =
∑
k≥0

δk
1 + x

2

1 + τ(x)

2
. . .

1 + τ k−1(x)

2

1− τ k(x)

4

1 ≤ δ(v1 + v2).

An argument similar to the one for A.7 establishes that u1 ≥ v1. Then the inequalities

δ(u1 + u2) ≤ 1 ≤ δ(v1 + v2) imply that u2 ≤ v2.
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Part (iv). Let U(x, δ) and V (x, δ) denote the total welfare attained in the bargaining game

with an initial measure x of players 1 and 1−x of players 2, sharing the discount factor δ, if

agreements arise as in the all-agreement and population-agreement equilibria, respectively.

U solves the following equation23

U(x, δ) = a
x2

4
+
x(1− x)

2
+

(1− x)2

4
+

1

2
δU(x, δ).

Thus

U(x, δ) =
(a− 1)x2 + 1

2(2− δ)
.

Similarly, V satisfies the formula

V (x, δ) = a
x2

4
+

(1− x)2

4
+

(
1

2
+ x(1− x)

)
δV (τ(x), δ).

To obtain bounds on V (x, δ), note that if the expression

D(y, δ) := V (y, δ)−
(

1

2
+ y(1− y)

)
δV (τ(y), δ)−

(
U(y, δ)−

(
1

2
+ y(1− y)

)
δU(τ(y), δ)

)
is positive (negative) for all y ∈ (1/2, x], then we can immediately conclude that V (x, δ) is

strictly greater (smaller) than U(x, δ).

Using the formula for U(x, δ) and the recursion for V (·, δ), we compute

D(y, δ) =
y(1− y)(4 + (5 + 3a)y(1− y))

4(2− δ)(1 + 2y(1− y))

(
δ − 4 + 8y(1− y)

4 + (5 + 3a)y(1− y)

)
Hence D(y, δ) is positive (negative) for all y ∈ (1/2, x] if

δ > (<)
4 + 8y(1− y)

4 + (5 + 3a)y(1− y)
=: d(y),∀y ∈ (1/2, x].

Since d(y) is strictly increasing in y for y ∈ (1/2, x], we have that

δ > d(x) ⇒ V (x, δ) > U(x, δ)

δ ≤ lim
y→1/2

d(y) =
8

7 + a
⇒ V (x, δ) < U(x, δ).

23In a market with x players of type 1 and 1 − x players of type 2, there is a mass of x2/4 pairs of
players 1 matched to bargain with one another, 2 × x(1 − x)/4 pairs of players of types 1 and 2, and
(1− x)2/4 pairs of players 2. The measures of players of type 1 and 2 left unmatched in the first period are
x −

(
2× x2/4 + x(1− x)/2

)
= x/2 and 1 − x −

(
2× (1− x)2/4 + x(1− x)/2

)
= (1 − x)/2, respectively. If

all first period matches result in agreement, the second period market contains half of the players in each
population and contributes to welfare with a surplus of δU(x, δ)/2.
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We showed that if δ̄(x) > d(x) then V (x, δ̄(x)) > U(x, δ̄(x)). The inequality δ̄(x) > d(x)

is equivalent to

g(x, d(x)) =
24(a− 1)x2(2− x)(1− x)(2x− 1)

(4 + (5 + 3a)x(1− x))2

(
(x+ 1)(7x− 4x2 − 1)

3x(2− x)
− a
)
> 0.

Thus V (x, δ̄(x)) > U(x, δ̄(x)) whenever

(x+ 1)(7x− 4x2 − 1)

3x(2− x)
> a.

For every a ∈ (1, 4/3), there exists ε > 0 such that the inequality above holds for all

x ∈ (1− ε, 1), as

lim
x→1

(x+ 1)(7x− 4x2 − 1)

3x(2− x)
= 4/3.

Consider now x̃ = (a + 1)/4. We have δ̄(x̃) = 8/(7 + a), and the discussion above proves

that V (x̃, δ̄(x̃)) < U(x̃, δ̄(x̃)). Since U, V, δ̄ are continuous functions on their respective

domains, it follows that there exists ε > 0 such that V (x, δ̄(x)) < U(x, δ̄(x)) for all x ∈

((a+ 1)/4, (a+ 1)/4 + ε). �

Proof of Theorem 3. Note that v(µ) = v∗ ((pijt)i,j∈N,t≥0), where pijt = πij(µ) for all i, j ∈

N, t ≥ 0. Since v∗ is a continuous function by Theorem 2 and π is also continuous, it follows

that the steady state payoffs v(µ) vary continuously for µ ∈ [0,∞)n \ {0}. The continuity

of v and β, along with the closedness of X’s graph, implies that S has a closed graph on

[0,∞)n \ {0} (endowed with the relative standard topology).

Clearly, S(µ) is a non-empty convex set for every µ ∈ [0,∞)n \ {0}. Aiming to apply

Kakutani’s fixed point theorem, we seek to restrict the domain and range of S to a compact

convex subset of an Euclidean space. Define

Mi = λi

(
1 +

maxj∈N sij
ci(1− δi)

)
C =

{
µ ∈ [0,∞)n \ {0}

∣∣∣∣∣∑
i∈N

µi ≥ min
i∈N

λi;µi ≤Mi,∀i ∈ N

}
.

C is a non-empty, compact, and convex subset of Rn. In what follows, we establish that

S(µ) ⊂ C,∀µ ∈ C. This step constitutes the core of our fixed point argument.

We first show that for every market state µ ∈ [0,∞)n\{0} we have
∑

i∈N µ̃i ≥ mini∈N λi, ∀µ̃ ∈

S(µ). Since vi(µ) > ci ⇒ µ̃i ≥ λi,∀µ̃ ∈ S(µ), it suffices to argue that for every µ there exists
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i ∈ N such that vi(µ) > ci. We prove the latter assertion by contradiction. Suppose that

vi(µ) ≤ ci,∀i ∈ N

for some market state µ. Let

(̄i, j̄) ∈ arg max
(i,j)∈N×N

πij(µ)

1 + πij(µ)
sij.

By assumption,

(A.8) 0 < ci ≤ α ≤
πīj̄(µ)

1 + πīj̄(µ)
sīj̄,∀i ∈ N.

We also have that vī(µ) ≥ πīj̄(µ)(sīj̄ − δj̄vj̄(µ)) + (1− πīj̄(µ))δīvī(µ), and thus

(
1− (1− πīj̄(µ))δī + πīj̄(µ)δj̄

)
α ≥

(
1− (1− πīj̄(µ))δī

)
vī(µ) + πīj̄(µ)δj̄vj̄(µ) ≥ πīj̄(µ)sīj̄,

Therefore,

α ≥
πīj̄(µ)

1−
(
1− πīj̄(µ)

)
δī + πīj̄(µ)δj̄

sīj̄ >
πīj̄(µ)

1 + πīj̄(µ)
sīj̄,

which contradicts A.8.

Fix a market state µ and a player type i. We next prove that µi ≤ Mi implies µ̃i ≤

Mi,∀µ̃ ∈ S(µ). Assume by contradiction that there exist µ, i such that

µi ≤Mi

µi −
∑
j∈N

(β̃ij + β̃ji) + λ̃i > Mi

for some β̃ij ∈ βij(µ)X (sij − δivi(µ)− δjvj(µ)) and λ̃i ∈ λiX(vi(µ) − ci). The inequalities

above imply that λ̃i > Mi − µi +
∑

j∈N(β̃ij + β̃ji) ≥ 0. Hence λ̃i > 0, which is possible only

if

(A.9) vi(µ) ≥ ci.

As ci > 0, the latter inequality implies that

(A.10) max
j∈N

sij > 0.
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Since λ̃i ∈ λiX(vi(µ) − ci), we have λ̃i ≤ λi. Thus µi −
∑

j∈N(β̃ij + β̃ji) + λi ≥ µi −∑
j∈N(β̃ij + β̃ji) + λ̃i > Mi, which leads to

µi > Mi +
∑
j∈N

(β̃ij + β̃ji)− λi ≥Mi − λi > 0

∑
j∈N

β̃ij ≤
∑
j∈N

(β̃ij + β̃ji) < µi −Mi + λi ≤ λi.

Therefore,

(A.11)

∑
j∈N β̃ij

µi
<

λi
Mi − λi

.

Recall that for µi > 0 the payoffs satisfy

vi(µ) =
∑
j∈N

βij(µ)

µi
max(sij − δjvj(µ), δivi(µ)) +

(
1−

∑
j∈N

βij(µ)

µi

)
δivi(µ),

which we can rewrite as

(1− δi)vi(µ) =
∑
j∈N

βij(µ)

µi
max(sij − δivi(µ)− δjvj(µ), 0).

Since β̃ij ∈ βij(µ)X (sij − δivi(µ)− δjvj(µ)), we have that

max(sij − δivi(µ)− δjvj(µ), 0) 6= 0⇒ β̃ij = βij(µ),

and hence

(1− δi)vi(µ) =
∑
j∈N

β̃ij
µi

max(sij − δivi(µ)− δjvj(µ), 0).

As max(sij − δivi(µ)− δjvj(µ), 0) ≤ sij, we obtain24

(A.12) vi(µ) ≤ 1

1− δi

∑
j∈N

β̃ij
µi
sij.

Putting together A.9-A.12, we obtain

ci ≤ vi(µ) ≤ maxj∈N sij
1− δi

∑
j∈N

β̃ij
µi

<
maxj∈N sijλi

(1− δi)(Mi − λi)
.

It follows that

Mi < λi

(
1 +

maxj∈N sij
ci(1− δi)

)
,

which contradicts the definition of Mi.

24Better upper bounds for vi(µ) are achievable, but unnecessary for the argument.
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We established that S(µ) ⊂ C,∀µ ∈ C. Therefore, the restriction of S to C satisfies the

hypotheses of Kakutani’s fixed point theorem. It follows that S has a fixed point µ ∈ C,

which constitutes a steady state of the economy with entry costs c. �

Proof of Theorem 3’. The definition of Sρ and µρ implies that

µρi = ρ

(
µρi −

∑
j∈N

(β̃ρij + β̃ρji)

)
+ λ̃ρi ,

for some β̃ρij ∈ βij(µρ)X (sij − δivi(µρ)− δjvj(µρ)) and λ̃ρi ∈ λiX (vi(µ
ρ)− ci) .

The set {(µρ, β̃ρ, λ̃ρ)|ρ ∈ [0, 1]} is contained in a sequentially compact space (βij(µ
ρ) and β̃ρij

are bounded from above because µρ ∈ C, C is compact, and βij is continuous). Hence there

exists a sequence (ρk)k≥0 that approaches 1 such that (µρ
k
, β̃ρ

k
, λ̃ρ

k
)k≥0 converges to some

vector (µ1, β̃1, λ̃1) as k → ∞. The continuity of v and β and the closedness of X’s graph

imply that

µ1
i = µ1

i −
∑
j∈N

(β̃1
ij + β̃1

ji) + λ̃1
i ,

and β̃1
ij ∈ βij(µ1)X

(
sij − δivi(µ1)− δjvj(µ1)

)
and λ̃1

i ∈ λiX
(
vi(µ

1)− ci
)
.

Hence µ1 is a steady state.

We now prove that µ1 has the desired property. Suppose that vi(µ
1) < ci, or equivalently

that X (vi(µ
1)− ci) = {0}. By continuity, there exists k such that X

(
vi(µ

ρk)− ci
)

= {0},

so λ̃ρ
k

i = 0, for all k ≥ k. By definition,

µρ
k

i = ρk

(
µρ

k

i −
∑
j∈N

(β̃ρ
k

ij + β̃ρ
k

ji )

)
,∀k ≥ k.

As ρk < 1 and
∑

j∈N(β̃ρ
k

ij + β̃ρ
k

ji ) ≥ 0, we need µρ
k

i = 0 for all k ≥ k. Therefore, µ1
i =

limk→∞ µ
ρk

i = 0, which completes the proof. �

Proof of Theorem 3”. Fix the inflows λ. For every k > 0, we need to find entry costs c with

ci < k for all i ∈ N such that the economy with entry costs c has a positive steady state.

As argued in Example 2, for many c, the correspondence S does not have a fixed point that

delivers the desired conclusion. We modify the definition of S to obtain a correspondence
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S̄ : (0,∞)n ⇒ (0,∞)n as follows

(A.13) S̄(µ) =

{
(µi + λ̃i −

∑
j∈N

(β̃ij + β̃ji))i∈N

∣∣∣∣∣
β̃ij ∈ βij(µ)X (sij − δivi(µ)− δjvj(µ)) , ∀i, j ∈ N & λ̃i ∈ λiX(max(0,vi(µ)− k)), ∀i ∈ N

}
,

which differs from S only in the λ̃ constraints: the argument vi(µ)− ci has been replaced by

max(0, vi(µ)− k).

As in the proof of Theorem 3, we try to restrict the domain and range of S̄ to a compact

convex subset of Rn. Define

Mi = λi

(
1 +

maxj∈N sij
k(1− δi)

)
C =

∏
i∈N

[λi,Mi].

Construct the restriction ¯̄S of S̄ to C as follows,

¯̄S : C ⇒ C, ¯̄S(µ) = S̄(µ) ∩ C,∀µ ∈ C.

Clearly, ¯̄S is convex valued. Arguments similar to those used for Theorem 3 establish that

¯̄S has a closed graph on C. In order to apply Kakutani’s fixed point theorem, all we have

left to argue is that ¯̄S(µ) 6= ∅,∀µ ∈ C.

Fix µ ∈ C and β̃ij ∈ βij(µ)X (sij − δivi(µ)− δjvj(µ)) for all i, j ∈ N . For every i ∈ N ,

we will find λ̃i ∈ λiX(max(0, vi(µ)− k)) such that µi + λ̃i −
∑

j∈N(β̃ij + β̃ji) ∈ [λi,Mi]. We

consider two cases.

If vi(µ) ≤ k, then X(max(0, vi(µ) − k)) = [0, 1], so λ̃i is constrained to belong to [0, λi].

There exists λ̃i ∈ [0, λi] such that µi + λ̃i −
∑

j∈N(β̃ij + β̃ji) ∈ [λi,Mi] because

µi −
∑
j∈N

(β̃ij + β̃ji) ≤ µi ≤Mi

µi + λi −
∑
j∈N

(β̃ij + β̃ji) ≥ λi.

If vi(µ) > k, then X(max(0, vi(µ) − k)) = {1}, which leads to the constraint λ̃i = λi.

We prove that µi + λi −
∑

j∈N(β̃ij + β̃ji) ∈ [λi,Mi] by contradiction. We clearly have

µi + λi−
∑

j∈N(β̃ij + β̃ji) ≥ λi, so µi + λi−
∑

j∈N(β̃ij + β̃ji) /∈ [λi,Mi] implies that µi + λi−
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j∈N(β̃ij + β̃ji) > Mi. The latter inequality, along with vi(µ) > k, leads to a contradiction

as in the proof of Theorem 3.

We have verified that ¯̄S satisfies the hypotheses of Kakutani’s theorem, hence it has a

fixed point µ ∈ C. One can then easily check that µ is a positive steady state of the economy

with entry costs c, where for each i ∈ N , the entry cost ci is set equal to vi(µ) if vi(µ) ≤ k

and can be any arbitrary number in [0, k] if vi(µ) > k. Basically, in order to make µ a steady

state we need to set entry fees so that the players who do not expect payoffs in excess of k

are indifferent between entering the market and staying out. �

References

1. Aliprantis, C.D. and K.C. Border (2006) Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd ed.,

Springer.

2. Alos-Ferrer, C. (1999) Dynamical Systems with a Continuum of Randomly Matched Agents, J. Econ.

Theory, 86, 245-267.

3. Aumann, R. J. (1964) Mixed and Behavior Strategies in Infinite Extensive Games, in M. Dresher, L.S.

Shapley and A.W. Tucker (eds.) Advances in Game Theory, Ann. of Math. Studies, 52, Princeton

University Press, Princeton, 627-650.

4. Binmore, K.G. and M.J. Herrero (1988a) Matching and Bargaining in Dynamic Markets, Rev. Econ.

Stud., 55, 17-31.

5. Binmore, K.G. and M.J. Herrero (1988b) Security Equilibrium, Rev. Econ. Stud., 55, 33-48.

6. Burdett, K. and M.G. Coles (1997) Marriage and Class, Quart. J. Econ., 112, 141-168.

7. Burdett, K. and M.G. Coles (1999) Long-Term Partnership Formation: Marriage and Employment,

Econ. J., 109, 307-334.

8. Dutta, P.K. and R.K. Sundaram (1998) The Equilibrium Existence Problem in General Markovian

Games, in M. Majumdar (ed.) Organizations with Incomplete Information, 5, Cambridge University

Press, Cambridge, 159-207.

9. Fudenberg, D. and D. K. Levine (1983) Subgame-Perfect Equilibria of Finite and Infinite Horizon

Games, Journal of Economic Theory, 31, 251-268.

10. Fudenberg, D. and J. Tirole (1991) Game Theory, MIT Press, Cambridge.

11. Gale, D. (1987) Limit Theorems for Markets with Sequential Bargaining, J. Econ. Theory, 43, 20-54.

12. Manea, M. (2011) Bargaining in Stationary Networks, Amer. Econ. Rev., 101, 2042-2080.

13. Maskin, M. and J. Tirole (2001) Markov Perfect Equilibrium, I. Observable Actions, J. Econ. Theory,

100, 191-219.



BARGAINING IN DYNAMIC MARKETS 47

14. Milgrom, P.R. and R.J. Weber (1985) Distributional Strategies for Games with Incomplete Information,

Math. Oper. Res., 10, 619-632.

15. Osborne, M.J. and A. Rubinstein (1990) Bargaining and Markets, Academic Press, San Diego.

16. Rubinstein, A. and A. Wolinsky (1985) Equilibrium in a Market with Sequential Bargaining, Econo-

metrica, 53, 295-328.

17. Shimer, R. and L. Smith (2000) Assortative Matching and Search, Econometrica, 68, 343-369

18. Smith, L. (2011) Frictional Matching Models, Annual Review of Economics, 3, 319-338.


