Military Empowerment and Civilian Targeting in Civil War

Juan F. Vargas

Abstract
Civilians constitute a large share of casualties in civil wars across the world. They are targeted to create fear and punish allegiance with the enemy. This maximizes collaboration with the perpetrator and strengthens the support network necessary to consolidate control over contested regions. I develop a model of the magnitude and structure of civilian killings in civil wars involving two armed groups who fight over territorial control. Armies secure compliance through a combination of carrots and sticks. In turn, civilians differ from each other in their intrinsic preference towards one group. I explore the effect of the empowerment of one of the groups in the civilian death toll. There are two effects that go in opposite directions. While a direct effect makes the powerful group more lethal, a fear effect increases the number of civilians who align with that group, leaving less enemy supporters to kill. I study the conditions under which there is one dominant effect and illustrate the predictions using sub-national longitudinal data for Colombia’s civil war.

*Draft; comments are welcome. I am indebted to James Robinson. I thank Robert Bates, Alexandra Hartman, Ron Smith and participants at the 4th Annual HiCN Workshop for helpful comments. I also thank Hend Alhinawi for excellent research assistance.

†Economics Department, Universidad del Rosario. La Buhardilla, Cl 14 # 4-80, Bogota, Colombia. Contact: juan.vargas@urosario.edu.co
1 Introduction

Over 3100 civilians died in 92 massacres in Algeria between August 1996 and December 1998.1 The war between the government and various Islamist insurgencies (notably the Armed Islamic Group) spanned between 1991 and 2002 and left a remarkably high civilian death toll. The legacy of massacres in Colombia is equally distressing: Between 1988 and 2005 Colombian guerrillas killed 1200 civilians in about 200 massacres while over 6100 died in just under 1000 massacres perpetrated by right-wing militias.2 This pattern of terror is by no means inherent to these two countries. Targeting civilians was the main strategy of the Peruvian militias (Rondas Campesinas) to recover the rural strongholds under the control of the Shining Path. Before the cease fire declared in October 2002, the Sudan People’s Liberation Army targeted civilians all across southern Sudan to punish alleged supporters of Karthoum-backed militias (Johnson, 1995). During Museveni’s rule in the 1990s, the Lord Resistance Army (LRA) alienated the local population in northern Uganda by massacring civilians. Later, to recover the lost territories, Museveni’s National Revolutionary Army used the same strategy, killing alleged LRA supporters (Berkeley, 2001).

Most civilian killings are deliberately planned by both state and non-state actors (Eck and Hultman, 2007). The number civilians killed intentionally and directly in internal armed conflicts is about half the number of total deaths in combat.3 War-induced famine and disease are likely to hit civilians further both during the conflict and in the post-conflict. The death of non-combatants represents an enormous long-term cost of civil war as it erodes the labor force of a country. In addition the deliberate killing of civilians nurses hatreds and revenge desires, triggering cycles of violence in what the World Bank calls a "conflict trap" (World Bank, 2003).

Civilians are targeted to create fear, spawn collaboration and consolidate control of contested territories. Neither the insurgency nor the incumbent can be successful without the support of civilians. The allegiance of the population is a primary objective of the armed groups in civil war. Contesting parties seek to form a “support network” of locals to secure the provision of food, shelter, supplies, information and recruits. The effectiveness of such network determines the group’s success in securing contested areas.4

\begin{itemize}
 \item 1Kalyvas (1999) reports all the massacre events that occurred in Algeria in that 29-month period. Each event is described in terms of its date and location, and includes the number of people killed.
 \item 2CERAC, a Colombian think tank, maintains an event-based dataset on the Colombian conflict (see www.cerac.org.co).
 \item 3Lacina and Gleditsch (2005) introduce a longitudinal dataset on battle deaths. The Uppsala Conflict Data Program has a dataset on civilian casualties in civil war for the period 1989-2005 (see http://www.pcr.uu.se/research/UCDP/).
 \item 4As pointed out by an IRA combatant: “Without the community we were irrelevant. We carried the guns and planted the bombs, but the community fed us, hid us, opened their homes to us, turned a blind eye to our operations” (Collins 1999 cited in Kalyvas, 2006: p.91)
\end{itemize}
Hence the strategic rationale of targeting the civilian network of the enemy to weaken its power by damaging its local base. Petersen and Liaras (2006) argue that fear and terror are effective weapons often used to bend the enemy’s objectives. Azam and Hoefer (2002) show that in Subsaharan Africa terrorizing civilians is often used to substitute for actual combat. Because they generate widespread fear, civilian killings not only reduce the support of the enemy but also increase compliance with the perpetrator. So the degree of which different armed groups receive support from the population is endogenous to the dynamics of conflict (Kalyvas, 2006): On the one hand, armed groups constantly attempt to secure popular collaboration and deter support to rival groups. On the other, irrespective of their true preferences, most people tend to collaborate with the group that maximizes their survival opportunities. Indeed, when caught in a juncture of violence people naturally tend to put survival considerations and the protection of their family and property before their political preferences. Thus, the control of a specific territory by one group often leads to compliance from local communities. Civilians are then compelled to participate in combat for strategic considerations rather than ideology. Greater compliance from the civilian population in turn helps consolidating control, making collaboration and control mutually reinforcing.

Collaboration is a zero-sum game. It must be exclusive and such condition is enforced with violence. Defection is severely punished. Information leaks, for example, are often punished with execution. Killing defectors creates widespread fear, which deters others from doing so. In addition, non-compliance with one group is equated with treason and also punished: Neutrality is not an option for the civilian population who often, and not without risk, prefer to flee the contested region. Households who choose to stay must show some allegiance to one group or the other. Civil war is a polarizing process.

There are many factors that can exogenously alter the balance of power between the armed groups of a civil war. A foreign power may intervene by providing financial aid or military support to one group. During the Cold War a number of civil strifes an Africa and Latin America were effectively proxy wars featuring the support of either the US or the USSR to incumbent regimes or insurgent movements. Several African governments supported the National Union for the Total Independence of Angola and the governments of Rwanda, Uganda and Zimbabwe have allegedly financed armed movements in Congo at least since the fall of Mobutu in 1996. More recently, the Colombian conflict has increasingly been shaped by the participation of international actors and both the government and the rebels have benefited from external support: While the Colombian government is the largest recipient of military aid from the US who brought to their camps food, medicine, messages, liquor, prostitutes, and these types of things. And we realized that we could isolate them and that this strategy would give us very good results" (Quoted in Kirk, 2003).

According to Cenarro (2002), during the Spanish Civil War many leftists living in regions dominated by the right-wing militias ended up supporting them. In Colombia, collaboration with the FARC and ELN guerrillas is almost completely a rural phenomenon.
in the western hemisphere, the Chavez regime from neighbor Venezuela has been accused of protecting and financing the Revolutionary Armed Forces of Colombia (FARC). Intervention from abroad can also take the form of donations from diasporas. Examples abound and range from the support of the Tamil diaspora in North America to Sri Lanka’s Tamil Tigers – to the support Albanian diaspora in Europe to the Kosovo Liberation Army. The balance of power in civil war can also be altered by fluctuations in the value of natural resources that are used to finance armed groups. Additionally, Ross (2005) reports that rebel groups have been able to raise substantial finance by selling the future rights to war booty. Insurgencies in Angola, Congo, Liberia and Sierra Leone have used this practice. Finally, armed groups can boost their power by merging into unified armies thereby sharing intelligence and taking advantage of military economies of scale. One example is the collusion in 1997 of several local right-wing militias in Colombia.

How is the security of the civilian population affected by shifts in the relative balance of power of armed groups? Because civilians are strategically targeted by local rebels and militias, the consequences of the empowerment of one of them may be catastrophic. A stronger military capacity boosts the ability of generating widespread fear by killing the civilian infrastructure of the enemy. This direct effect of military empowerment maps into higher tolls of civilian casualties. However, an empowered army that has built a reputation of executing enemy supporters is more frightful, and so induces some civilians to shift their support towards it. Thus there is a fear effect of empowerment that works in the opposite direction and saves lives. The ultimate effect on civilians casualties depends on the relative size of the direct effect vis-a-vis the fear effect.

This paper develops a simple rational choice model in which two armed groups fight for the control of a strategic territory. Local civilians are compelled to decide which groups to support. This decision depends on the combination of material payoffs and coercion offered by each group to the civilians as well as on an idiosyncratic political preference that every individual has towards one armed group. One obvious result of this simplified framework is that when the majority of the population has strong a priori preferences towards one group, compliance is so massive that such group is likely to consolidate territorial control easily. I derive an expression for the equilibrium number of civilians killed by either armed group. The size of civilian casualties depends on the equilibrium size of the "support networks" of the armed groups and the military capacity of each of them. A testable comparative static is the effect on the number of killings of an exogenous change in the balance of power of the two armies. I rationalize

\[\text{Mahmud and Vargas (2008) provide an analytical framework to study the effect of resource booms in civil war. They distinguish booms in cash crops like coffee from booms in resource intensive commodities like oil. The effect of resource booms also depends on the regime type which proxies for whether the benefits of the boom are concentrated in the hands of the mass of citizens or the elite.} \]

\[\text{This ‘corner solution’ can be illustrated by the fact that most foreign powers find it extremely difficult to subjugate colonized territories for too long. Polk (2007) argues that because most human beings are territorial, they are seldom willing to accept foreign rulers.} \]
the conditions under which the direct effect of empowerment dominates the fear effect and thus the casualty toll increases. Because the model describes a sub-national phenomenon that cannot be contrasted with cross-national variation, I am able to test the predictions using micro-level conflict data across circa 1000 Colombian municipalities for the period 1988-2005. Consistent with the model, I show that everything else equal an exogenous shift in the military capacity of one group leads to an increase in the number of civilian killings only in territories in which the enemy is more powerful.

The rest of the paper is organized as follows. Section 2 presents the analytical framework and the main testable predictions. Section 3 discusses the case study of Colombia, a country that has experienced civil war for over 40 years and where about a third of all the casualties are civilians killed directly and intentionally. I exploit longitudinal variation across Colombian municipalities to test the model. Section 4 concludes.

2 The Model

I develop a simple analytical framework to study the pattern of civilian killings in civil war given the strategic role of non-combatants regarding the formation of networks for the provision of supplies, shelter and information to armed groups. Like Wintrobe (1998)’s model on how dictators survive in power, in this model armed actors simultaneously make use of carrots and sticks to achieve the compliance necessary to build support networks. On the one hand repression creates compliance by making people fear violent reprisals. On the other, loyalty can be secured through material benefits. The ideological preferences of the potential supporters also play a role. The allegiance of the population is a primary objective for the warring parties. No insurgency can be successful without the support of civilians and no incumbent can retain power without it. Russell (1974) illustrates this point eloquently:

"(...) [N]o mass rebellion can succeed without defection of some of the regime’s armed forces. (...) [R]evolutionaries (...) must devote a great deal of thought to how to encourage defections from the police and the army." (Quoted in Gates, 2002).

2.1 Set up

Consider a territory of some strategic value in the context of an ongoing civil war. Controlling such territory is desirable by the armed groups in dispute,
which I henceforth assume are only two: The rebels, \(R \) and the militia, \(M \).\(^8\)

There is a continuum of mass 1 of civilians each of whom must decide what group to support. Civilian \(i \)'s payoff from supporting the rebels is linear and additive in her expected material reward and in an idiosyncratic component representing the individual’s bias towards supporting the rebels. It can be represented with the utility function:

\[
U^R_i = (1 - \theta_M)w_R + \sigma^i_R
\]

where \(\theta_M \) is the probability of being killed by the militia –who target \(i \) because of her support to the rebels–, \(w_R \) is the material reward that \(i \) receives in exchange of her support, and \(\sigma^i_R \) is a non-negative payoff derived privately by civilian \(i \) and measured in the same units as \(w_R \). As in a standard probabilistic-voting model (Lindbeck and Weibull, 1987 and Persson and Tabellini, 2000) this component of the utility can be interpreted as parametrizing the ideological bias of individual \(i \) towards group \(R \).\(^9\)

Similarly, individual \(i \)'s utility from supporting the militia is:

\[
U^M_i = (1 - \theta_R)w_M + \sigma^i_M
\]

where \(\theta_R \) is the probability of being killed by the rebels –who target \(i \) because of her support to the militia–, \(w_M \) is the material payoff derived by such allegiance and \(\sigma^i_M \) is the non-negative idiosyncratic reward derived from supporting the militia.

For completeness, consider a third option whereby \(i \) does not support either armed group. In such case the utility of not taking part of the conflict is given by:

\[
U^R;M_i = (1 - \theta_R)(1 - \theta_M)y + \sigma^i_{R;M}
\]

where \(y \) is the outside option. This formulation captures the idea that neutrality is a very risky strategy in civil war. Collaborators to one armed group are automatically seen as non-collaborators of the rival group and hence targeted by the latter (Kalyvas, 2006). In this sense, the choice of neutrality implies becoming a target of both armed groups. For simplicity I assume that the neutrality alternative is strictly dominated by supporting either armed group for every civilian \(i \). This is equivalent of assuming that \(\sigma^i_{R;M} \) cannot take extraordinarily high values and is naturally limited by survival considerations.

\(^8\)The choice of these two actors over the more obvious Rebels vs. Government game is consistent with the fact that in most civil wars it is illegal militias (usually with the acquiescence and support of the government) who target the civilian population. However this is just a choice of notation. The two armed groups described in this model could as well be two rebel groups. This has indeed been the case in specific areas of countries like Congo, Angola and Colombia.

\(^9\)The model abstracts from the reason why achieving control over the territory is important. Some such reasons may include the existence of a valuable natural resource, the control of which would help financing the armed struggle; the necessity of consolidating a safe haven for the cultivation of hard drugs or for the illegal transportation of arms and supplies; or the strategic proximity of an important city or enemy’s camp.

\(^{10}\)For an application of this approach to the context of the trade-off between democracy and fighting, see Chacón, Robinson and Torvik (2007).
Opposition to all armed actors is of course observed in reality. Amidst other reasons, in order to avoid the risk inherent to not aligning with any armed group, a great number of civilians usually flee from territories under dispute. According the UN High Commissioner for Refugees (UNHCR, 2006), the country with the largest number of internally displaced people is Colombia. Iraq and Sudan rank second and third respectively. A Colombian NGO estimates that between 1988 and 2004 over 3 million people have internally migrated. The model I present here abstracts from this phenomenon and in some sense deals with the situation of civilians who choose not to flee, and stay after any mass displacement has taken place. The fact that in the model those who stay are forced to take side in the conflict is consistent with the empirical observation that collaboration must be exclusive.11

The relative importance of \(w_j, \theta_j \) and \(\sigma^i_j; j = \{R, M\} \) depends of the stage of the civil war at which fighting takes place. The average civil war lasts about 16 years (Fearon, 2004). When the fighting has lasted long enough, the provision of material incentives gets harder as a larger share of the country’s infrastructure has been damaged and local economies have been disrupted. As a result, the relative importance of \(w_j \) may be offset overtime by an increase in coercion \(\theta_j \). The parameter \(\sigma^i_j \) is also likely to lose importance in the long run: initial ideological convictions may be replaced by the accumulated hatreds created by a long-lasting conflict.

Given equations (1) and (2) civilian \(i \) will support the rebels if:

\[
(1 - \theta_M)w_R > (1 - \theta_R)w_M + \sigma^i
\]

where:

\[
\sigma^i = \sigma^i_M - \sigma^i_R \begin{cases} > 0 & \text{if } \sigma^i_M > \sigma^i_R \\ = 0 & \text{if } \sigma^i_M = \sigma^i_R \\ < 0 & \text{if } \sigma^i_M < \sigma^i_R \end{cases}
\]

This parameter is crucial in the analysis since it gives the private component to (3) and hence allows individuals to differ in their optimal decision. Notice that, in the absence of \(\sigma^i \), for any given set of material compensations and coercion parameters, every civilian would support the same armed group. To focus on the more interesting case in which civilian support is divided between the two groups, let \(\sigma \) be distributed across civilians according to the probability density function \(f(\sigma) \).

Define \(\tilde{\sigma} = (1 - \theta_M)w_R - (1 - \theta_R)w_M \). From inequality (3) it follows that any civilian \(i \) for which \(\sigma^i < \tilde{\sigma} \) will support the rebels. Otherwise, she will support the militia. Hence, the fraction of civilians who align with the rebels (\(N_R \)) in

11Horton (1998) describes how the Contras repressed sympathizers of the Frente Sandinista during the Nicaraguan civil war. As a result some peasants abandoned their farms. Some others decided to stay and comply with the Contras, withdrawing support to the Sandinista project. Horton quotes a peasant from Quilali town: “If you behaved well you wouldn’t have problems [with the contras]. If not, it was a mess.”
equilibrium is:

\[N_R = \int_{-\infty}^{\sigma} f(\sigma) d\sigma \] (4)

while a fraction \(N_M = 1 - N_R \) aligns with the militia.

Note that \(f(\sigma) \) depends on how attached the local population is to the cause of one group or the other. In an extreme case, for a particular civilian \(i \), \(\sigma^i \) would be sufficiently negative (positive) that \(i \) would strongly support the rebels (the militia). In order to make \(i \) switch sides the enemy would have to offer extremely high material rewards \((w) \) but also high threats \((\theta) \).

Polk (2007) argues that the very presence of foreigners who attempt to control a specific region stimulates a strong sense of group cohesion among natives that often materializes in strong insurgency movements. To Polk the Vietnam experience is the ultimate example of how, regardless of how many soldiers and civilians are killed, how much money is spent and how powerful and sophisticated are the weapons, foreigners cannot militarily defeat an insurgency that is supported by the majority of the people, except perhaps by genocide. Examples range from the Spanish Guerrilla against the French in the early 19th century to the Mau Mau rebellion in Kenya in the 1950s to, arguably, today’s armed resistance in Iraq against the Americans.

In sharp contrast with the corner solution in which a foreign power is ultimately defeated by a cohesive resistance, in most instances \(\sigma^i \) is likely to be sufficiently small for the majority of the population. Only a small share of civilians will be tightly attached to one party or the other. In fact, the majority of people tend to be only weakly committed to any specific group. That is, the average non-combatant does not support any cause with sufficient conviction so as to be willing to make big sacrifices. In this case of “weak” inherent preferences, material incentives and military considerations can be more important than actual political preferences at driving actions (what group to show allegiance to). In fact, irrespective of preferences, equilibrium behavior in terms of support to a given group can change. Switching sides is common in civil war: entire Algerian communities in the early 1990s defected the GIA to join the militias (Kalyvas, 1999). Widespread fear created by the Rondas Campesinas led to massive desertions of insurgents from the Shining Path in Peru during the 1980s. The Zapatista Revolution in early 20th century Mexico was only able to overthrow Porfirio Diaz when twenty six thousand men deserted from the constitutional army and joined the rebels (Wolf, 1973). In Colombia, 46% of the 316 FARC members demobilized by 2002 stated that they joined the guerrilla by force because a salary was promised, or simply because of fear. Only 12% of the subjects claim to have joined the insurgency for ideological reasons (Pinto et al., 2002).\(^\text{12}\)

\(^{12}\) However it is very likely that this number is a lower bound because of selection issues. Arguably the most ideological of the combatants of a rebel group are underrepresented among those who demobilize.
2.2 Civilian casualties

In this reduced-form framework, where the risk of death is unavoidable and given both coercion θ_j and material incentives w_j civilians who decide to support one group are targeted by the other, both the rebels and the militia end up killing civilians. This is consistent with the observation that in civil wars featuring local contests for territorial control, civilian communities are strategically targeted by all armed actors. In the model, the total number of civilian killings, K_T, is then the sum of killings by the rebels and by the militia. This can be written:

$$K_T = \theta_R N_M(\tilde{\sigma}) + \theta_M N_R(\tilde{\sigma}) \quad (5)$$

where the first term of the right hand side is the share of militia supporters killed by the rebels, K_R, according to their power θ_R; and the second is the share of rebel supporters killed by the militia, K_M.

I assume that θ_R and θ_M depend respectively on the power the militia and the rebels. Hence θ_j provides the key comparative static of the model. Empowerment of group j maps into an increase in the parameter θ_j. Note that the assumption is that a more powerful group is more deadly.

2.3 Empowerment

There are many different potential reasons why the balance of power between two armed groups can change in civil war. Foreign intervention is perhaps the most notorious. The involvement of the Soviet Union and the US in Africa and Latin America during the Cold War is an illustrative example. While the USSR gave military and financial support to "communist" insurgencies fighting in most cases against authoritarian regimes, the US backed incumbents in their struggle to content such insurgencies. Congo’s president Joseph Mobutu is a telling example of a ruthless dictator backed by successive American administrations because of its strategic value in the anti-communist campaign in Central Africa. Donations by diasporas living in rich countries are another potential source of empowerment. For many years the main source of finance of the Eritrean People’s Liberation Front was its huge diaspora (World Bank, 2003). Irish Americans were suspected of contributing to the campaign of IRA in Great Britain. Secondly, insurgent organizations in Angola, Congo, Liberia and Sierra Leone have acquired non-negligible resources by selling the future rights on the war booty (Ross, 2005). Third, fluctuations in the value of natural resources used to finance armed struggles, like oil or diamonds are also a potential source for the relative empowerment of one groups. Finally, there are also cases of alliances and mergers of armed groups after which the resulting force is able to benefit from increasing returns in the use of mass violence. The spectacular upsurge of the late 1990s in militia activity in Colombia documented by Restrepo et al. (2004) originated in the collusion of a large number of militias from different parts of the country under an umbrella organization.
In the context of their strategic role in civil war as the source of the support networks necessary for victory, would more civilians get killed if one group becomes stronger?

I use the simple framework developed above and summarized in (5) to study how exogenous shocks to the military capacity of one group change the magnitude and structure of civilian victimization. That this empowerment and hence greater lethality translates into a greater number of killings is not obvious and I explore the conditions under which this is the most likely outcome. Assuming that more power maps into more killing capacity there is a clear direct effect whereby the number of deaths will increase. However, everything else equal, a more lethal group attracts more supporters who shift sides to reduce the chance of being killed. This fear effect can offset the aforementioned direct effect and the net impact on the number of casualties is ambiguous.

I illustrate these opposite effects by means of equation (5). I examine an increase of, say θ_M, on K_T. The total change in civilian casualties due to an increase in the lethality of the militia, $\partial K_T/\partial \theta_M$, can be decomposed in the change in rebel victims, $\partial K_R/\partial \theta_M$, and the change in civilians killed by the militia, $\partial K_M/\partial \theta_M$. The first component can be written:

$$\frac{\partial K_R}{\partial \theta_M} = \theta_R \frac{\partial N_M(\tilde{\sigma})}{\partial \theta_M}$$

This expression is positive because θ_R is positive and –using the chain rule– can be written as the product of two negative numbers, so it’s also positive. To see this notice that $\frac{\partial N_M(\tilde{\sigma})}{\partial \theta_M} = \frac{\partial N_M}{\partial \tilde{\sigma}} \cdot \frac{\partial \tilde{\sigma}}{\partial \theta_M}$ and, while $\frac{\partial N_M}{\partial \tilde{\sigma}} > 0$, as pointed out

Lemma 1 $\frac{\partial K_R}{\partial \theta_M} > 0$. An increase in the power of the militia leads to an increase in the number of civilians killed by the rebels

This result at first appears counterintuitive. The logic behind it is that, everything else equal, a more powerful militia will attract more supporters (the fear effect) and hence the target population of the rebels will increase.

As conjectured, the effect of higher military capacity of the militia on the number of civilians killed by the militia $\partial K_M/\partial \theta_M$, is not unambiguous. Notice from equation (5) that:

$$\frac{\partial K_M}{\partial \theta_M} = N_R + \theta_M \frac{\partial N_R(\tilde{\sigma})}{\partial \theta_M}$$

where the first term of the right hand side, the civilian support of the rebels, is greater than zero and the second is less than zero. The latter claim follows from the fact that $\frac{\partial N_R(\tilde{\sigma})}{\partial \theta_M} = \frac{\partial N_R}{\partial \tilde{\sigma}} \cdot \frac{\partial \tilde{\sigma}}{\partial \theta_M}$ and, while $\frac{\partial N_R}{\partial \tilde{\sigma}} > 0$, as pointed out
above \(\frac{\partial^2 K}{\partial \theta_M^2} < 0 \). The effect of an exogenous shift in the military capacity of the militia on the number of civilians killed by the militia depends on whether or not the direct effect of an increase in \(\theta_M \) dominates the fear effect.

Lemma 2 The change in the number of civilians killed by the militias due to an increase in their own power is:

- \(\frac{\partial K_M}{\partial \theta_M} > 0 \) if \(N_R > -\theta_M (\partial N_R / \partial \theta_M) \); so the direct effect dominates and \(K_M \) increases
- \(\frac{\partial K_M}{\partial \theta_M} < 0 \) if \(N_R < -\theta_M (\partial N_R / \partial \theta_M) \); so the fear effect dominates and \(K_M \) decreases
- \(\frac{\partial K_M}{\partial \theta_M} = 0 \) if \(N_R = -\theta_M (\partial N_R / \partial \theta_M) \); so the two effects cancel out and \(K_M \) remains unchanged

Since both \(N_R \) and \(N_M \) depend on \(\sigma \) which in turn depends on \((\theta_j, w_j)\), the dominant effect will be determined by the parameters of the model. In order to generate testable comparative statics, I now give a specific functional form to \(f(\sigma) \), the distribution across the civilian population of the net component of political preferences on civilians’ payoff. I assume \(\sigma^i \) is uniformly distributed across civilians in the interval \([-\frac{1}{2\phi}, \frac{1}{2\phi}]\). Recall that for any civilian \(i \) who is ideologically biased towards the rebels: \(\sigma^i > 0 \), while \(\sigma^i < 0 \) reflects bias toward the militia. With this particular probability density function the density \(\phi \) is inversely related to the strength of ideology in the population. That is, \(\phi \) is directly proportional to how responsive individuals are to material incentives or coercion. Given the functional form equation (4) becomes:

\[
N_R = 1 - N_M = \frac{1}{2} + \phi [(1 - \theta_M) w_R - (1 - \theta_R) w_M]
\]

(6)

Recall that the condition for an increase in the number of civilians killed by the militia due to an increase in their power is \(N_R > -\theta_M (\partial N_R / \partial \theta_M) \). Using equation (6) this can be written as \(\theta_M < \theta_M^* \) with the critical value \(\theta_M^* \) defined as:

\[
\theta_M^* = \min \left\{ \frac{1}{2} + \frac{1}{2w_R} \left[\frac{1}{2\phi} - (1 - \theta_R) w_M \right], 1 \right\}
\]

(7)

Summarizing the results so far, an increase in \(\theta_M \) will lead to an unambiguous increase in \(K_R \) because the support of the militia increases and so does the pool of civilians targeted by the rebels. In addition, to the extent that \(\theta_M < \theta_M^* \) the direct effect of being more deadly will dominate and the number of civilians killed by the militia will also increase. Hence, the total number of civilian casualties will increase as long as \(\theta_M < \theta_M^* \). However, if \(\theta_M > \theta_M^* \) the fear effect dominates and the reduction in \(N_R \) due to the greater power of the militia will offset the increase in militia lethality so that the empowered militia will end up killing less civilians. Under this scenario and giving that \(\partial K_R / \partial \theta_M \) is
unambiguously positive, it is uncertain what happens with the total number of killings.

If the increase in civilian casualties by the rebels is proportionally greater than the decrease in militia killings, overall more civilians will get killed when the balance of power shifts in favor of the militia. That is $\partial K_R/\partial \theta_M + \partial K_M/\partial \theta_M > 0$. Using equation (6) this can be written as $\theta_M < \theta_M^{**}$ with the new critical threshold θ_M^{**} defined as:

$$\theta_M^{**} = \min \left\{ \theta_M^* + \frac{\theta_R}{2}, 1 \right\}$$

Proposition 1 summarizes the impact an exogenous shift in the balance of power that favors the militia (and hence the impact of an increase in θ_M) on the number and structure of civilian casualties in this model.

Proposition 1 Let θ_M^* and θ_M^{**} be defined as above. From Lemma 1 it follows that $\frac{\partial K_R}{\partial \theta_M} > 0$. In addition:

- If $\theta_M \leq \theta_M^*$ then $\frac{\partial K_M}{\partial \theta_M} \geq 0$ and $\frac{\partial K_T}{\partial \theta_M} > 0$
- If $\theta_M^* < \theta_M \leq \theta_M^{**}$ then $\frac{\partial K_M}{\partial \theta_M} < 0$ and $\frac{\partial K_R}{\partial \theta_M} \geq -\frac{\partial K_M}{\partial \theta_M}$, so that $\frac{\partial K_T}{\partial \theta_M} \geq 0$
- If $\theta_M > \theta_M^{**}$ then $\frac{\partial K_M}{\partial \theta_M} < 0$ and $\frac{\partial K_R}{\partial \theta_M} < -\frac{\partial K_M}{\partial \theta_M}$ so that $\frac{\partial K_T}{\partial \theta_M} < 0$

Figure 1 represents graphically the predictions in Proposition 1. The horizontal axis measures the lethality of the militia: $\theta_M \in [0, 1]$, and the vertical axis the toll of civilian casualties. When, $\theta_M = 0$, the militia is unable to kill any of the rebel supporters and $K_M = \theta_M N_R = 0$. Moreover, given $K_R = \theta_R N_M$, from equation (6) it follows that $K_R(\theta_M = 0) = \theta_R \left[\frac{1}{2} + \phi((1-\theta_R)w_M - w_R) \right]$, which is greater than zero.

For strictly positive killing probabilities of the militia, as long as $0 < \theta_M < \theta_M^*$, then K_M is increasing in θ_M. But it is decreasing once θ_M is greater than the threshold θ_M^*. In turn, K_T is increasing in θ_M up to $\theta_M > \theta_M^*$, and decreasing thereafter.

When $\theta_M = 1$, civilians will die with certainty if they support the guerrilla. Survival considerations imply a natural bound to positive values of σ^i so that $K_M(\theta_M = 1) = 0$. Yet, $K_R(\theta = 1) = \theta_R \left[\frac{1}{2} + \phi(1-\theta_R)w_M \right]$ which is greater than zero so $K_T(\theta_M = 1)$ will too be positive.
2.4 Comparative statics

Recall that $\partial K_M / \partial \theta_M$ is positive if and only if $\theta_M < \theta_M^*$. Further, note from equation (7) that θ_M^* is increasing in θ_R. Since $\theta_M^* = \theta_M^* + \frac{\theta_R}{2}$, then θ_M^* is also increasing in θ_R. It follows that a higher military capability of the rebel group is associated with a larger parameter space for which an empowerment of the militia will result in a higher death toll of civilians. This is a priori not an obvious result. Intuitively this is because a higher θ_R implies that civilians who support the militia are more likely to be killed and hence the fear effect of an increase in θ_M—whereby the support to the empowered militia increases—will be weakened by the fact that the rebels themselves are also more lethal so militia collaborators will be targeted by a more powerful enemy. Thus, the fact that the fear effect gets weakened is, paradoxically, due to the fear that the rebels generate among the civilians. In the next section I test this prediction using longitudinal data of conflict-related violence in Colombia.

Albeit not directly testable with the data at hand, equation (7) offers other comparative statics of interest. For instance, θ_M^* is decreasing in ϕ. That is, when civilians are less ideological and hence more responsive to coercion and material incentives, the increase in the lethality of the militia generates a higher incentive to comply with them. Hence it is more likely that the fear effect will offset the direct one so less civilians will be killed.

In addition θ_M^* is decreasing in w_M which emphasizes the fact that on top of coercion, illegal groups can offer material incentives to increase compliance of their support network, thereby reducing the support of the enemy and thus the number of targeted people.

3 Testing the Model: Empowerment of Colombian Militias

3.1 Background

3.1.1 Colombia’s armed conflict

Colombia’s civil war involves rebel insurgencies, government forces and illegal militias. By most accounts the civil war has lasted over four decades and scholars identify its origin in *La Violencia*, a period of intense violence between the two traditional political parties from 1946 to 1966. Insurgent groups were formed in the early 1960s as peasant self-defense organizations originally aligned with the Liberal party. Two of them survive today as the main guerrilla organizations: the FARC and the National Liberation Army (ELN) with about 20,000 and 4,000 combatants respectively. While allegedly the main objective of these groups is taking over political power, their actions have increasingly relied on terrorism. For instance the two most important sources of finance for rebel groups from the early 1990s are the drug business and the kidnapping of civilians. Drugs are a major source of finance especially for the FARC, which is
known to tax coca crops, and to control the production, processing and export of cocaine and heroine. In terms of bellicose activity the most common guerilla actions are the disruption of the economic infrastructure (e.g., attacks to oil pipelines), attacks to government military positions, and bombings and road blocks.

The other major active armed actors of the conflict are the illegal militias, called paramilitary forces. They are said to have had over 12,000 members at the peak of their strength. The first militias were organized by the military during the late 1970s thanks to a law that permitted the formation of armed self-defense organizations of civilians encouraged to fight against the insurgents. Subsequently, rural elites formed private armies which emerged on a widespread scale during the eighties when drug lords started becoming landowners and facing extortion from the guerillas. These militias were banned in 1989 but kept operating in the shadow after which the Colombian conflict technically became three-sided. However, in recent years the vast majority of the fighting involves the guerilla against the military. Paramilitaries are not primarily a clash force and try to avoid direct combat with either the guerrilla or the government forces. Rather, the militia specializes in selective killings of civilians whom they presume support the rebels. Seven out of ten civilians killed in Colombia from 1988 to 2005 have been victimized by armed militias, often with the alleged acquiescence of the military. Over 70% of all the uncontested attacks carried out by militias have been massacres, with incursions, check points and kidnapping taking up the slack (Restrepo and Spagat, 2004).

3.1.2 The United Self-Defense of Colombia–AUC

In 1997, several disparate local militias came together under an umbrella alliance called the United Self-Defense of Colombia (AUC), which contributed substantially to the dramatic expansion of conflict-activity during the late 1990s. The AUC intensified its strategy of targeting civilians. Two thirds of the 7,000 civilians killed by paramilitary groups from 1988 to 2005 died in one third of the time, from 1997 to 2002 during the life span of the AUC. At the same time Colombia witnessed a rapid geographical expansion of militia presence. Year 2000 was the peak of paramilitary activity with attacks in 120 municipalities, four times the average geographical incidence of the pre-AUC period –1988 to 1997. This is consistent with the idea that civilians are killed as means of consolidating control over new strongholds. In the words of the AUC leader Carlos Castaño:

"I made of this conflict a high intensity war that now involves the people it must involve: the hidden allies of the guerrilla" (quoted in Aranguren, 2001, p. 116).

Indeed, the AUC publicly claimed that at least two thirds of the guerrilla members were civilian supporters rather than proper combatants (Aranguren,
The organization also argued that while the human rights constraints prevent the Colombian military from involving civilians in the conflict, the survival success of the rebels is determined by the capacity of coercing rural communities into supporting them. According to the AUC rhetoric, an effective counterinsurgency strategy must give priority to block these “guerrillas without uniform”.

Taking advantage of a presidential transition, in 2002 the AUC leadership estimated the organization had enough leverage to cut a good deal on an eventual peace process (see Romero, 2003). In December the AUC command unilaterally declared a cease fire as a gesture to foster negotiations with the administration of President Alvaro Uribe. Negotiations started in January 2003 and lasted about three years, ending with a controversial peace process and a massive demobilization of militia combatants in 2006 and 2007.

3.2 Data

The conflict dataset used in this paper was first introduced by Restrepo, Spagat and Vargas (2004). Since 2005 it is maintained by CERAC, a Colombia-based think-tank. It is an event-based conflict dataset on Colombia covering the period 1988-2005. For every event the dataset records its type, the date, location, perpetrator, and victims involved in the incident. The dataset is described thoroughly by Restrepo et al. (2004) and Dube and Vargas (2008). Here I provide a succinct account of the data collection process.

The dataset is constructed on the basis of events listed in the annexes of periodicals published by two Colombian human rights NGO’s: CINEP and Justicia y Paz. Most of the event information in these annexes comes from two primary sources, a network of priests from the Catholic Church—with representation in almost every municipality in Colombia—and over 25 newspapers with national and local coverage. The inclusion of reports from the Catholic priests, who are often located in rural areas that are unlikely to receive press coverage, broadens the municipality-level representation. Based on these sources, the resulting data includes every municipality that has ever experienced a conflict related action (either a unilateral attack or a clash between two groups). There is a stringent regime to guarantee the quality and representativeness of the data. As a first step a large number of events and is randomly sampled and compared against the original source, to check for correct coding from the annexes into the dataset. Second, a different random sample is looked up in press archives to confirm whether incidents should have been included in the annexes. This step checks the quality of the raw information provided by the NGO’s, which turns out to be quite high. Third, the largest events associated with the highest number of casualties are carefully investigated in press records. Finally, without

\[13\] Although the number of massacres dropped significantly, militia killings of civilians did not stop. From 2003 several massacres have taken place. However, the government argues that most of these violations are carried out by splinter militia groups and AUC dissidents.
double-coding, the dataset is complemented with additional events provided in reports by human rights NGOs and by Colombian Government agencies.

I use several variables from the CERAC dataset throughout the empirical analysis that follows. These include the number of civilians killed by the paramilitaries (the dependent variable); the number of combatants killed; the number of massacres of civilians\(^{14}\); and the number of attacks by the rebels, which I treat as the baseline proxy of rebel power, \(\theta_R\) (see Table 1). Other proxies of rebel power are a dummy for the presence of rebel fronts (from the Colombia Ministry of Defense); a dummy for the presence of coca crops in 1994 (from the Colombia National Police Department); and a dummy for whether a municipality is a strategic stronghold of FARC, the country’s largest rebel group (from Giraldo et al., 2001)– see Table 1.

I control for a number of observable time-invariant and time-varying municipality-specific characteristics including (the log of) population—which is used as scale control-, poverty, health and education rates (all from DANE, the national statistics office of Colombia); an index of institutional quality (from Fundacion Social, a local NGO); and several geographic characteristics like altitude and average levels of temperature and rainfall (from IGAC, the country’s geography bureau)–Table 1.

\begin{table}
\caption{Table 1 about here}
\end{table}

3.3 Empirical analysis

3.3.1 Benchmark results

Recall from the discussion of the theoretical framework that an empowerment episode triggers two opposite forces: a fear effect and a direct effect. If the militia gets more powerful, everything else equal, the higher the power of the rebels the weaker the fear effect, which operates by preventing rebel supporters to switch sides. Hence militia targeting of civilians will be higher in places where rebels are stronger. Table 2 shows evidence in this respect. I regress the number of civilians killed by the militia on the interaction between \(\theta_R\) (proxied by the number of rebel attacks in a given municipality-year) and a dummy that takes the value of 1 from 1997 to 2002, representing the period where militias colluded into the AUC\(^{15}\). The model predicts that the lethality of the rebels should be positively associated with civilian killings by the militia, especially after the formation of the AUC (which shifted the relative balance of power in

\(^{14}\)Massacres are defined as single killing events resulting in the death of at least four people.

\(^{15}\)Clearly, this proxy of \(\theta_R\) may be problematic. In particular, rebel attacks may be negatively related to their power if such attacks occur in places where they seek to gain control through violence. Table 2 deals with these concerns and show the robustness of the baseline results to a number of potential proxies for the unobservable power measure.
favor of the militia). In other words, an increase in the power of the militia worsens human security especially in places where the rebels are more powerful. I then expect the coefficient on the interaction between the proxy of θ_R and a dummy for the militia collusion period to be positive and significant.16

<Table 2 about here>

Column 1 of Table 2 reports estimates from pooling the data across municipalities, and years and running an OLS of the number of civilians killed by the militia on the interaction of the number of rebel attacks and the six-year period of militia empowerment (1997-2002) across the pooled data. This specification controls for the non-interacted version of the two variables. Column 2 explores how robust the baseline result is to controlling for a battery of municipality-specific observable characteristics, both time-invariant and time-varying. In particular, socioeconomic controls like the poverty rate, school enrollment and an indicator of average health conditions are included. Other controls are municipality-specific institutional quality, a dummy for whether the municipality is urban or rural, geographical characteristics like average temperature, altitude and rainfall, and (the log of) the municipality’s registered population as a time-varying scale control. Column 3 adds state-specific time-trends. This is a very stringent test because there are about 1000 municipalities but just 32 states. The trend controls for serial correlation over time and across municipalities in the same state.

A potential problem with the approach taken in columns 1 to 3 is that it does not account for potential unobserved municipality-specific heterogeneity. If present, such heterogeneity can take different forms: It may be independent from the covariates or it may be correlated with them. If the unobserved characteristics are independent from the regressors a random-effects estimation is consistent. However, if the unobserved heterogeneity is systematically correlated with the covariates, failing to remove the time-invariant unmeasured municipality-level characteristics may confound the analysis since it leads to omitted variable bias. Results from a Hausman test (not reported) suggest one cannot accept the null hypothesis that the unobserved heterogeneity is uncorrelated with the covariates. That is, it seems that the data generating process is best described by a fixed-effects model. Moreover, in addition to municipality-specific fixed-effects, in column 4 I include year fixed-effects, which control for any arbitrary annual changes in the militia killing of civilians.17

16For conciseness, in the reported tables I only include the coefficients of interest. Estimated coefficients on control variables have the expected sign and vary in significance. These are available from the author by request.

17This specification absorbs the time-invariant municipality-specific controls. In this sense, while fixed effects estimates are consistent even if the ‘true’ data generating process has random effects, one disadvantage of fixed over random effects is that the marginal effect of time-invariant regressors cannot be estimated. But this is not true for time-varying controls, which can also be estimated using fixed effects. In any case, in the present analysis I do not conduct substantive interpretation of the impact of any of the controls and focus on the interaction which is relevant according to the theoretical model.
All specifications account for the fact that stochastic disturbances are likely to be correlated over time within a given municipality, or may have covariances that differ across regions. Such potential problems of serial correlation and heteroskedasticity respectively are taken care of by clustering the errors at the municipal level. Hence reported standard errors in all tables are panel-robust.

Results show that the lethality of rebels (as measured by the number of guerrilla unilateral attacks) is positively associated with the number of civilians killed by the militia during the militia empowerment period. The coefficient of interest is significant at 99 percent of confidence and its magnitude implies that a municipality going from the mean number of rebel attacks in the pre-AUC period to one additional rebel attack during the empowerment of the militia will have 1.1 additional civilians killed by the latter group. This figure is remarkably stable across the four specifications and the effect is significantly different from zero in all cases.

3.3.2 Accounting for the count nature of the data

Count-data are highly non-normal and hence not well estimated by linear regression. The Poisson model is usually incorporated to account for the data generating process that produces counts. For a count \(y_t \) taking values 0, 1, 2, . . . the Poisson distribution has a parameter \(\lambda \) representing the mean number of occurrences. The regression model sets:

\[
E[y_t|x_t] = \lambda_t = \exp(x_t\beta)
\]

Columns 1 and 2 of Table 3 fit Poisson models with and without fixed effects. As in Table 2 the latter includes year-fixed effects to account for any arbitrary annual changes in the dependent variable in addition to the municipality-specific unobserved heterogeneity. The coefficient on the interaction between the proxy for the power of the rebels and the empowerment period of the militia is once again positive and significantly different from zero at 99 percent confidence in both cases. Despite the difference in the magnitude of the coefficients reported in columns 1 and 2, the substantive economic quantity of interest is very similar: A municipality going from the mean number of rebel attacks in the pre-AUC period to one additional rebel attack during the empowerment of the militia, will have 0.4 additional civilians killed by the latter group. Despite the fact that this figure is quite smaller than the one predicted by the linear regression approach (Table 2) its magnitude is far from negligible if one

18 Note that I do not make any claim of causality since the power of rebels is likely to be endogenous. Despite the fact that the fixed-effects approach of column 4 deals in part with such endogeneity by controlling for unobserved characteristics that may be affecting both civilian casualties and the power of the rebels, I interpret the econometric results as associations. Nevertheless these associations are informative, especially since they are consisting with the predictions of the theoretical framework.

19 The fixed-effects Poisson model is estimated by conditional maximum likelihood. Because the likelihood function is conditional to the aggregate sum of counts the actual number of observations used to estimate the parameters is smaller than the whole sample.
takes into account that the average number of civilians killed by the militia per municipality-year is 0.4, hence one additional rebel attack during the AUC period will *double* the lethality of the militia.

Columns 3 and 4 of Table 3 account for the fact that the simple Poisson approach has two potential problems. First, the Poisson distribution sets the population mean (λ) equal to the variance. However, it is often the case for count variables to be *overdispersed*, that is to have the variance greater than the mean. Here, the variance of the dependent variable (the municipality-year count of civilians killed by the Colombia paramilitary) is 2.7, almost seven times larger than the mean (0.4).\(^{20}\)

The second problem of the Poisson approach is that count data may be highly left-skewed, having “excess zeros”: Consider the process that could lead to a count being zero. A militia front may be stationed in a municipality but abstain from targeting the civilian population. Another municipality may lack militia presence altogether and hence present zero killings by the militia. In the latter case zero militia killings are a certain outcome and thus the number of zeros may be inflated and killings in municipalities free of militia cannot be explained in the same way as killings in militia regions. Here, 94.8\% of the 14,370 observations the dependent variable is zero, so the data is indeed highly left-skewed.

This discussion suggests that the Poisson assumptions are most probably not met and different models for count-data analysis should be considered. Column 3 of Table 3 fits a (fixed effects) Negative Binomial distribution which can be regarded as a generalization of the Poisson with one additional ancillary parameter that allows the variance to be greater than the mean. The model estimated in column 3 of Table 3 produces an estimate of such parameter that confirms the existence of overdispersion and validates the Negative Binomial over the Poisson. The coefficient on the interaction of interest is positive and significant and does not differ substantively from the marginal effect implied by the Poisson and reported above.

The standard Negative Binomial model does not distinguish between the two possibly different processes causing a high number of zero counts. Column 4 of Table 3 fits a *zero-inflated* Negative Binomial model. The complication of excess zeros is corrected by combining two otherwise separate models: A Logit model is used to predict the cases in which zero is a certain outcome and a Negative Binomial distribution fits the counts having non-certain zeros. For the former I use as predictors the whole set of time-varying and time-invariant municipality-specific characteristics that otherwise serve as controls across specifications. Once again

\(^{20}\) These are however the unconditional mean and variance and their comparison only suggests whether overdispersion is likely to be present. More formally, in the regression setting one can test whether the conditional mean and variance are significantly different from each other or not.
the estimated value of the ancillary parameter of the Negative Binomial suggests that this model is more appropriate than the Poisson. In addition, the Vuong test (not reported) suggests that the zero-inflated model is significantly better than the standard Negative Binomial. Finally, the coefficient of interest turns out to be robust to this general model that accounts for both overdispersion and excess zeros and it is indeed positive and significant, this time at 95 percent confidence. Its marginal effect is also virtually unchanged and so a municipality going from the mean number of rebel attacks (0.6) in the pre-AUC period to one additional rebel attack during the empowerment of the militia, will have on average double number of civilians killed by the latter group.

3.3.3 Other proxies of rebel power

Proxying the power of an armed group that fights for territorial control with the number of attacks it carries out on such territory may be problematic. It could be argued that the opposite is in fact true: while the more contested a territory is, the more bellicose activity there will be from contesting groups, the consolidation of territorial control is associated with a rather peaceful period ex post. Table 4 acknowledges such concern and looks at the robustness of the benchmark fixed-effects model presented in Table 2 (column 4) to the use of different proxies of \(\theta_R \). Columns 1 and 2 use a dummy for whether a given municipality is reported—by the military intelligence—to have respectively a FARC or ELN front operating in a municipality, independently of whether there has been any recent active bellicose activity by it or not. The idea is that, everything else equal, rebels hold relatively more power in places where they are reported to have a permanent basis. The results suggest that, with 99 percent confidence, districts where there is a FARC (ELN) front had an average of 0.6 (0.7) additional militia-sponsored civilian killing in the period 1997-2002.

Columns 3 and 4 of Table 4 look at other two proxies for \(\theta_R \). The coefficient of interest in column 3 is the interaction between the dummy for the militia empowerment period and a dummy for whether a municipality grew any coca plants in 1994 according to a survey conducted that year by the National Police Department. This is arguably highly correlated with the places where the rebels have been traditionally powerful. Indeed, after the Medellin and Cali drug cartels were dismantled in the early-to-mid 1990s the rebels took over the control of the production-trafficking chain. The militia was not involved in the coca business until well after the formation of the AUC in 1997 (Aranguren, 2001). The interaction term is positive and significant so the baseline results are also robust to the third alternative measure of rebel power and suggest that, everything else equal, had an additional municipality been controlled by the rebels in the period 1997-2002; in expectation such municipality would have
had 0.7 additional civilians killed by the militia. In turn, column 4 focus on the
effect of rebel power proxied by an indicator of municipalities that, according
to the thorough study of rebel territorial control in Colombia by Giraldo et al. (2001), are strongholds of the FARC, the largest rebel group in Colombia.
These are municipalities that: i) belong to the strategic backward of the rebel
group–mainly located in the states of Caqueta and Meta– where the rebel com-
mand is thought to be located; ii) secure access to strategic roads and rivers (in
Caqueta, Cundinamarca, Huila and Guaviare) and iii) ensure a steady finance
source for the rebel group. Column 4 suggests that these municipalities have
had on average 1.3 additional civilians killed by the militia in the period of the
empowerment of the latter relative to the previous period.

The baseline results are then robust to using a heterogenous set of proxies for
rebel power, in addition to time-varying scale controls, state-specific time trends,
and year and municipality-specific fixed effects, which account respectively for
time and municipality unobserved heterogeneity not captured by the controls.

3.3.4 Additional robustness checks

Table 5 reports additional robustness checks. Columns 1 and 2 check whether
the results are robust to changing the dependent variable. Instead of looking at
the number of civilians killed by the militia, these columns report the effect of the
interaction between θ_R and the militia empowerment period on the number of
civilian massacres carried out by the militia. The effect is positive and significant
suggesting that, even after controlling for municipality-specific economic, social,
political, geographical and demographic characteristics, civilians were massacred
more by the militias in places where the rebels were more powerful.

Columns 3 and 4 perform falsification tests. A ‘placebo’ empowerment pe-
riod, one that also last six years (as the true AUC life-span, 1997-2002), is used
instead to interact the proxy for θ_R. The coefficient associating this interaction
with the number of civilians killed by the militia is insignificant. Further, the
model predicts an association between the power of one of the contesting groups
and the number of civilians killed by the other. While combatants die as result
of clashes with contesting illegal armed groups or government forces, civilians
are target with the specific objective of consolidate territorial control. Indeed,
a different dependent variable (namely the number of combatants killed by the
militia) is not significantly associated with the interaction of interest, after con-
trolling for municipality-specific and year fixed effects, state time trends and
time-varying characteristics of the municipality.

<Table 5 about here>
4 Conclusion

Most civil wars witness the killing of non-combatants by both state and non-state parties. The objective behind this practice seems to be weakening the enemy by eliminating its civilian support network, and take military advantage over it. I capture this idea in a simple model were civilians stationed in a contested territory are killed by the party they do not comply with. In this context I examine under what circumstances the empowerment of one of the groups will result in more or less civilian casualties.

There are two opposite forces captured by the model. On the one hand, assuming that more power translates into a greater killing capacity there is a direct effect whereby more civilians will die as a result of the greater killing capability. On the other hand this same mechanism dissuades some civilians from supporting the enemy, so it is not clear whether the total number of civilians killed increases or decreases. The model predicts that greater power will result in more civilian killings only if the enemy is itself powerful enough.

Using an event-based dataset that permits exploiting the sub-national variation of the Colombian armed conflict, I find empirical support for this prediction. The empowerment of illegal right-wing militias resulted in higher killing of civilians in places where the rebels are more powerful. This result is robust to various econometric specifications, set of controls, measures of power and dependent variables.

Future work is needed to enrich the model with a more complex economic environment that allows testing predictions on the pattern of killings in places that vary in terms of their socioeconomic characteristics.

5 References

Rabassa, Angel and Peter Chalk. (2001). Colombian Labyrinth: The Synergy of Drugs and Insurgency and Its Implications for Regional Stability. RAND.

Ross, Michael (2002). "Booty Futures" mimeo, Department of Political Science, UCLA.

Figure 1: Model Predictions on the Structure and Magnitude of Civilian Casualties

\[K \]

\[K_T, K_R, K_M \]

\[\theta_M^*, \theta_M^{**} \]
<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conflict Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Intensity Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Militia killings of civilians</td>
<td>count</td>
<td>0.44</td>
<td>2.7</td>
<td>CERAC</td>
</tr>
<tr>
<td>Militia massacres of civilians</td>
<td>count</td>
<td>0.06</td>
<td>0.34</td>
<td>CERAC</td>
</tr>
<tr>
<td>Militia killings of combatants</td>
<td>count</td>
<td>0.01</td>
<td>0.31</td>
<td>CERAC</td>
</tr>
<tr>
<td>1.2. Proxies of Rebel Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attacks by rebels</td>
<td>count</td>
<td>0.61</td>
<td>1.78</td>
<td>CERAC</td>
</tr>
<tr>
<td>Presence of FARC front(^{a})</td>
<td>dummy</td>
<td>0.48</td>
<td>0.5</td>
<td>Colombian Army</td>
</tr>
<tr>
<td>Presence of ELN front(^{a})</td>
<td>dummy</td>
<td>0.23</td>
<td>0.42</td>
<td>Colombian Army</td>
</tr>
<tr>
<td>Presence of coca crops in 1994</td>
<td>dummy</td>
<td>0.06</td>
<td>0.23</td>
<td>National Police Department</td>
</tr>
<tr>
<td>Municipality is FARC strategic stronghold(^{b})</td>
<td>dummy</td>
<td>0.07</td>
<td>0.25</td>
<td>Garcia et al. (2002)</td>
</tr>
<tr>
<td>2. Municipality Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Time Invariant Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1. Socioeconomic Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poverty rate (index of unmet basic needs)</td>
<td>0-100 index</td>
<td>54.53</td>
<td>19.81</td>
<td>DANE</td>
</tr>
<tr>
<td>Education (secondary enrolment)</td>
<td>percentage</td>
<td>0.57</td>
<td>0.26</td>
<td>DANE</td>
</tr>
<tr>
<td>Health conditions (< 1 year-old child mortality)</td>
<td>1000 births count per capita</td>
<td>58.35</td>
<td>119.29</td>
<td>DANE</td>
</tr>
<tr>
<td>Institutional quality(^{c})</td>
<td>dummy</td>
<td>1.14</td>
<td>0.84</td>
<td>Fundacion Social</td>
</tr>
<tr>
<td>Whether municipality is urban or rural</td>
<td>dummy</td>
<td>0.70</td>
<td>0.46</td>
<td>Based on 2004 population</td>
</tr>
<tr>
<td>2.1.2. Geographic Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>meters</td>
<td>1,136.58</td>
<td>1,167.81</td>
<td>IGAC</td>
</tr>
<tr>
<td>Average temperature (^{\circ})C</td>
<td>21.96</td>
<td>4.77</td>
<td>IGAC</td>
<td></td>
</tr>
<tr>
<td>Average rainfall (\text{mm}^{3})</td>
<td>1,978.07</td>
<td>1,070.6</td>
<td>IGAC</td>
<td></td>
</tr>
<tr>
<td>2.2. Time Varying Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of population</td>
<td>(\ln\text{(count)})</td>
<td>9.66</td>
<td>1.05</td>
<td>DANE</td>
</tr>
</tbody>
</table>

\(^{a}\) FARC and ELN are the two largest rebel groups
\(^{b}\) See text for discussion
\(^{c}\) the sum of the (per capita) number of financial, social, fiscal, security and law enforcement institutions
TABLE 2
Benchmark Results

Dependent variable: Number of civilians killed by Colombian militias

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebel power x militia empowerment period</td>
<td>0.478</td>
<td>0.476</td>
<td>0.452</td>
<td>0.484</td>
</tr>
<tr>
<td>Time-invariant controls</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Time-varying controls</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Time trends</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>14,370</td>
<td>12,420</td>
<td>12,420</td>
<td>13,740</td>
</tr>
</tbody>
</table>

Note - Panel robust standard errors are in parentheses. Regression disturbance terms are clustered at the municipality level. Time-invariant controls (coefficient estimates not reported) include poverty rate, average education, health conditions, institutional quality, whether the municipality is urban or rural and geographic characteristics like average rainfall, average temperature and altitude. The Log of population (coefficient estimates not reported) is used as a scale control and it is time-varying. Time trends are at the state level.

* Significantly different from zero at 90 percent confidence
** Significantly different from zero at 95 percent confidence
*** Significantly different from zero at 99 percent confidence
TABLE 3
Results from Distributions for Count Data

<table>
<thead>
<tr>
<th>Dependent variable: Number of civilians killed by Colombian militias</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Poisson</th>
<th>Negative Binomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Rebel power x militia empowerment period</td>
<td>0.058 0.026 0.045 0.044</td>
</tr>
<tr>
<td>(0.015)***</td>
<td>(0.005)***</td>
</tr>
<tr>
<td>Time-invariant controls</td>
<td>yes no no yes</td>
</tr>
<tr>
<td>Time-varying controls</td>
<td>yes yes yes yes</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>no yes yes no</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>no yes yes no</td>
</tr>
<tr>
<td>Excess-zeros correction</td>
<td>no no no yes</td>
</tr>
<tr>
<td>Observations</td>
<td>12,420 5,462 4,995 12,420</td>
</tr>
</tbody>
</table>

Note - Standard errors are in parentheses. Regression disturbance terms of columns (1) and (4) clustered at the municipality level. Time-invariant controls (coefficient estimates not reported) include poverty rate, average education, health conditions, institutional quality, whether the municipality is urban or rural and geographic characteristics like average rainfall, average temperature and altitude. The Log of population (coefficient estimates not reported) is used as a scale control and it is time-varying. Column (4) uses a Zero-inflated negative binomial distribution.

* Significantly different from zero at 90 percent confidence

** Significantly different from zero at 95 percent confidence

*** Significantly different from zero at 99 percent confidence
TABLE 4
Robustness to Measures of Rebel Power
Dependent variable: Number of civilians killed by Colombian militias

<table>
<thead>
<tr>
<th>Proxy for rebel power:</th>
<th>FARC front (1)</th>
<th>ELN front (2)</th>
<th>Coca in 1994 (3)</th>
<th>FARC strategic stronghold (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebel power x militia empowerment period</td>
<td>0.587 (0.213)***</td>
<td>0.702 (0.230)***</td>
<td>0.739 (0.442)*</td>
<td>1.335 (0.791)*</td>
</tr>
<tr>
<td>Time-invariant controls</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Time-varying controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Time trends</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>13,740</td>
<td>13,740</td>
<td>13,740</td>
<td>13,740</td>
</tr>
</tbody>
</table>

Note - Panel-robust standard errors are in parentheses. Regression disturbance terms are clustered at the municipality level. The Log of population (coefficient estimates not reported) is used as a scale control and it is time-varying. Rebel power measures are: the presence of a FARC company in column 1; the presence of an ELN company in column 2; whether there were illegal coca crops in a given municipality in 1994 in column 3; whether a given municipality is part of FARC strategic stronghold according to Giraldo et al. (2001) in column 4.

* Significantly different from zero at 90 percent confidence
** Significantly different from zero at 95 percent confidence
*** Significantly different from zero at 99 percent confidence
TABLE 5
Additional Robustness Checks

<table>
<thead>
<tr>
<th>Ordinary Least Squares</th>
<th>Falsification tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo empowerment period</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Rebel power x militia empowerment period</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.013)**</td>
</tr>
<tr>
<td>Time-invariant controls</td>
<td>yes</td>
</tr>
<tr>
<td>Time-varying controls</td>
<td>yes</td>
</tr>
<tr>
<td>Time trends</td>
<td>no</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>no</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>no</td>
</tr>
<tr>
<td>Observations</td>
<td>12,420</td>
</tr>
</tbody>
</table>

Note: Panel-robust standard errors are in parentheses. Regression disturbance terms are clustered at the municipality level. Time-invariant controls (coefficient estimates not reported) include poverty rate, average education, health conditions, institutional quality, whether the municipality is urban or rural and geographic characteristics like average rainfall, average temperature and altitude. The Log of population (coefficient estimates not reported) is used as a scale control and it is time-varying. Columns 1 and 2 report results from falsification tests. Column 1 uses a placebo empowerment period for the militias. Column 2 looks at militia killing of combatants as dependent variable. Columns 3 and 4 look at the robustness to using the number of militia massacres of civilians as the dependent variable.

* Significantly different from zero at 90 percent confidence
** Significantly different from zero at 95 percent confidence
*** Significantly different from zero at 99 percent confidence