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Abstract

We study efficient allocations and optimal policies in a Mirrleesean life-cycle econ-
omy with risky human capital accumulation and permanent ability differences. We
assume that ability, labor supply, learning effort and returns to human capital are all
private information of the agents. We show that the “no distortion at the top” result
from the Mirrleesean literature may not apply if discouraging labor supply increases
incentives to invest in human capital. We also show that, under certain conditions, the
inverse of the intratemporal wedge follows a random walk, implying that the average
intratemporal wedge increases over time. This result is, to our knowledge, novel.

We calibrate a two-period economy and find several notable results. First, to elicit
learning effort, it is efficient to make the consumption process risky for high-ability
agents while insuring low-ability agents. Second, high-ability agents face the largest
expected increase in the intratemporal wedge. Third, high-ability agents face a higher
intertemporal wedge. These normative prescriptions differ significantly from the exist-
ing literature that abstracts from human capital. We also find large welfare gains for
the U.S. from switching to an optimal tax system.
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1 Introduction

We explore the optimal tax structure and efficient allocations in a model where agents are

heterogeneous in their ability to produce output, can invest in human capital to augment

their productivity, and the rates of return to human capital evolve stochastically over the

lifetime. We assume that the government’s choices are limited by two frictions. The first one

is a standard Mirrleesean private information friction where abilities and labor supply are

unobservable by the government. The second one is a moral hazard friction where learning

effort and realized rates of return to human capital are unobservable by the government as

well. The model framework is similar to the one used by Huggett, Ventura, and Yaron (2011),

who show that it is able to account for key empirical features of the dynamics of earnings and

consumption. We show that with the informational structure described above, the model

is also a useful and tractable framework for studying optimal taxation. In particular, due

to the private information about abilities the optimum features permanent differences in

earnings and consumption, but also consumption risk over the lifetime; consumption must

vary with human capital realizations so as to provide agents with incentives to accumulate

human capital.

We derive several theoretical results. We show that, when utility is additively separable in

leisure and effort, the inverse of the intratemporal (labor) wedge follows a random walk. This

result is, to the best of our knowledge, novel. It arises from two unique features of the model:

the inverse Euler equation holds, and the agents receive no new information about abilities

over the course of their lifetime. While the assumption of additive separability is restrictive,

the result serves as a useful benchmark for the analysis of the dynamics of intratemporal

wedges. The result immediately implies that the expected labor wedge is increasing with

age. We also show that the well-known “no distortion at the top” result from the Mirrleesean

literature may not apply ; if discouraging labor supply increases incentives to invest in human

capital, even the “top” agent will optimally face a positive marginal tax.

We calibrate a two-period model to the U.S. economy and show that consumption disper-

sion, as measured by the variance of log-consumption, is increasing in ability at the optimum.

In other words, low-ability agents are relatively insured whereas high-ability agents face sig-

nificant consumption risk. The reason is that high-ability agents must be provided the
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strongest incentives to accumulate human capital. These incentive are provided by making

their second period consumption very sensitive to the realization of human capital shocks,

i.e. by making their consumption very risky. This result stands in contrast to some of the

previous literature with exogenous productivities (for example Albanesi and Sleet (2006)),

where high-ability agents typically have more consumption insurance. The result implies

that the intertemporal (savings) wedge increases in ability, which is again a conclusion that

differs from e.g. Albanesi and Sleet (2006).

In order to get a sense of the magnitude of the normative prescriptions, we compare

the efficient allocations to a benchmark decentralized economy with incomplete markets and

U.S. tax system. In the benchmark, agents at the 97 percentile of the income distribution

face average income tax rates of 23%. The model prescription raises average taxes for these

agents to 63%. The efficient labor wedge for these agents is about 9% in the first period

and 11% in the second period, whereas low-ability agents face a labor wedge of over 90%.

The efficient savings wedge is close to zero for low-ability agents and it increases to 40%

for high-ability agents. These normative prescriptions amount to substantial overall welfare

gains for the U.S. The utilitarian representative agent is indifferent between the optimal

tax system and the benchmark with 11% higher consumption in every period and state of

the world. We find that, compared to the benchmark economy with U.S. taxes, the efficient

allocation involves significant redistribution. Learning effort and output are reallocated from

low-ability agents to high-ability agents. On average, the pre-tax labor earnings of the lowest

ability drop by 81%, whereas those of the highest ability increase by 38%. Consumption,

on the other hand, is reallocated from high-ability agents to low-ability agents. On average,

the lowest ability agent increases his consumption by 96%, whereas the highest ability agent

reduces his consumption by 31%. The outcome is that the social planner increases pre-tax

labor earnings inequality while decreasing consumption inequality.

A key aspect that makes the optimal tax problem tractable is that we extend the

method developed in Boháček and Kapička (2008) (for riskless observable human capital)

and Kapička (2008) (for riskless unobservable human capital). Both papers show that with

a first-order approach one can partially separate the redistributional dimension of the op-

timal tax problem, where the social planner redistributes resources across agents, and the
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dynamic dimension of the optimal tax problem, where the social planner chooses the opti-

mal sequences of labor supply and learning effort. In addition, the dynamic dimension can

be conveniently written recursively. Using recursive Lagrangean techniques of Marcet and

Marimon (2009) we show that a similar decomposition is possible in this model. The result

relies on the assumption that abilities are permanent (which is consistent with the model

structure of Huggett, Ventura, and Yaron (2011)). The assumption that human capital is

observable is also important for preserving tractability. It is, however, worth noting that due

to unobservability of learning effort the model shares some features typically associated with

models with unobserved human capital, namely that the incentives to accumulate human

capital must be provided indirectly, through the income taxes.

Human capital in our model is both risky and observable. These assumptions are sup-

ported by a large literature which shows that displaced workers suffer a persistent decrease

in wages. Jacobson, LaLonde, and Sullivan (1993) is a classic paper that argues that high-

tenure workers separating from distressed firms suffer long-term wage losses. Neal (1995)

and Parent (2000) provide evidence of industry-specific human capital whereas Poletaev and

Robinson (2008) and Kambourov and Manovskii (2009) argue that human capital is spe-

cific to occupations. Following this literature, observability of human capital amounts to

observability of a person’s industry, firm, or occupation.

1.1 Relationship to the existing literature

Recent research on optimal taxation with private information followed the seminal con-

tributions of Mirrlees (1971), Mirrlees (1976), and Mirrlees (1986), and extended them

to dynamic economies. It has mostly focused on cases when the individual skills are ex-

ogenous (Golosov, Kocherlakota, and Tsyvinski (2003), Kocherlakota (2005), Albanesi and

Sleet (2006), Battaglini and Coate (2008), Farhi and Werning (2005), Werning (2007)). A

most complete life-cycle analysis is Golosov, Tsyvinski, and Troshkin (2010) and Farhi and

Werning (2010) who analyze optimal taxation in an environment where individual skills are

Markov (essentially a stripped-down version of the RIP model).

In contrast, this paper focuses on a case when individual skills are endogenous. A signifi-

cant progress in this direction has been made by Grochulski and Piskorski (2010) who study
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a problem with unobservable risky human capital. However, investment in human capital in

their model is only possible in the initial period and the dynamics in the remaining periods

are technically similar to the above models with exogenous skills. Boháček and Kapička

(2008) and Kapička (2008) study environments with riskless human capital in an infinite

horizon setting. Boháček and Kapička (2008) assumes that human capital is observable,

while Kapička (2008) assumes that it is unobservable.1 While each of those models captures

some important component of endogenous skill formation, neither of them is rich enough to

fully capture the earnings and consumption dynamics observed in the data.

A related research has studied the impact of moral hazard on optimal tax structures.

Abraham, Koehne, and Pavoni (2012) study optimal income taxation in a life-cycle frame-

work with hidden effort. Our paper focuses on the interaction between hidden effort and

private information. Albanesi (2007) studies a problem with observable risky physical capital,

while Shourideh (2010) studies optimal allocation with entrepreneurial risk in a multiperiod

setting.

One of the contributions of this paper is that it studies optimal taxation in a framework

that is able to account for key features of the dynamics of the earnings and consumption

that are observed in the data. As shown by Huggett, Ventura, and Yaron (2011), a properly

parameterized life-cycle incomplete markets economy with risky human capital and hetero-

geneity in abilities is able to quantitatively account for the hump shaped profile of average

earnings and an increase in the earnings dispersion and skewness over the life cycle. More-

over, the stochastic process for earnings generated by the model is consistent with both

leading statistical models, the RIP (restricted income profile) models (see e.g. MaCurdy

(1982), Storesletten, Telmer, and Yaron (2004)) and the HIP (heterogeneous income profile)

models (see e.g. Lillard and Weiss (1979), Guvenen (2007)).2 Finally, the framework is also

consistent with the increased dispersion in consumption over the life cycle, as documented

by Aguiar and Hurst (2012) or Primiceri and van Rens (2009). Our paper takes the economy

1Kapička (2006) analyzes the optimal steady state allocations in a similar environment with unobservable
human capital and a restriction that the government can only use current income taxes and agents cannot
borrow or save. See also Diamond and Mirrlees (2002) who analyze unobservable human capital investments
in a static framework.

2The difference between RIP and HIP models is that in HIP models people face heterogeneous life-cycle
earning profiles, while in RIP models individuals face similar life-cycle earning profiles.
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with risky human capital and heterogeneity in abilities as a starting point for the optimal

taxation analysis.

2 The Model

Consider the following life-cycle economy. Agents live for J > 1 periods. They like to

consume, dislike working and exerting learning effort, and have preferences given by

E
J∑
j=1

βj−1 [U(cj)− V (`j, ej)] , 0 < β < 1, (1)

where j is age, cj is consumption, `j is labor, and ej is learning effort. The function U is

strictly increasing, strictly concave, and differentiable. The function V is strictly increasing,

strictly convex, and differentiable in both arguments.

An agent’s earnings yj are determined by the agent’s ability a, current human capital hj,

and current labor supply `j:

yj = ahj`j (2)

Ability is constant over an agent’s lifetime and is known to the agents at the beginning of

period 1. Ability and initial human capital h1 are allowed to be correlated, and their joint

distribution has density q(a, h1). The ability has a continuous support A = (a, a), with a

possibly being infinite. Human capital in the first period, as well as in all other periods, has

a continuous support H = (h, h), with h possibly infinite.

Human capital next period hj+1 depends on idiosyncratic human capital depreciation

shock zj+1, current human capital hj, and on current learning effort ej:

hj+1 = exp(zj+1)F (hj, ej) (3)

where the function F is strictly increasing, strictly concave, and differentiable in both argu-

ments. The idiosyncratic human capital shock is serially uncorrelated, but its density can

depend on age j. As is standard in the moral hazard literature, it is useful to transform

the state-space representation of the problem to work directly with the distribution induced
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over hj. To that end, we construct a probability density function of human capital in period

j + 1 conditional on fj = F (hj, ej), and denote it by pj+1(hj+1|fj).
This economy is identical to Huggett, Ventura, and Yaron (2011), with two exceptions.

First, this model includes leisure. That is essential for thinking about optimal taxation.

Second, the ability a affects earnings directly, rather than indirectly through the human

capital production function. That is irrelevant in the incomplete markets economy studied

by Huggett, Ventura, and Yaron (2011) if the human capital production function takes

the Ben-Porath (1967) form.3 However, both formulations have different implications in a

Mirrleesean economy with private information and observable human capital where it makes

a difference whether h or ha is observed. The formulation chosen in this paper has the

advantage that it is entirely consistent with the existing optimal taxation literature.

3 Optimal Taxation in a Two-Period Model

This section solves for optimal allocations in a two-period model. We also simplify the

model by assuming that h1 is the same for everyone in the economy. To reduce notation, the

probability density of the second period human capital will be written directly as a function

of the first period effort, p(h2|e).

3.1 Efficient Allocations

The information structure is as follows: ability a, labor supply `1, `2, learning effort e1, and

human capital shocks z2 are private information of the agent. Consumption c1, c2, savings

k2, earnings y1, y2, and human capital h1, h2, are publicly observable. Agents report their

ability level to the social planner in the first period. An agent’s true ability is denoted by a

whereas â denotes the ability report.

An allocation (c,y) consists of consumption scheme c = {c1(â), c2(â, h2)} and earnings

scheme y = {y1(â), y2(â, h2)}. Consumption and earnings scheme in the first period are

conditional on ability report â ∈ A. In the second period they are both conditional on

3To see that both formulations are isomorphic, let F (h, e) = h+(eh)α. Redefine human capital as follows:
Let h̄ = ha and ā = a1−α. Then the law of motion for human capital is F̄ (h, e) = h̄ + ā(eh̄)α, and the
earnings are y = h̄`, identical to the ones in Huggett, Ventura, and Yaron (2011).
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the ability report in the first period and realization of human capital in the second period,

h2 ∈ H.

Define lifetime utility of an a-type agent who reports ability â and exerts effort e as

W (â, e|a),

W (â, e|a) ≡ U(c1(â))− V
(
y1(â)

ah1
, e

)
+ β

∫
H

[
U(c2(â, h2))− V

(
y2(â, h2)

ah2
, 0

)]
p(h2|e)dh2

Effort in the second period is trivially equal to zero. The first period effort e∗1(â|a)

maximizes the lifetime utility of an a−type that reports â and is given by

e∗1(â|a) ≡ arg max
e

W (â, e|a). (4)

By the revelation principle we restrict attention to the allocations that are incentive

compatible, i.e. where the agent prefers to tell the truth about her ability:

W (a, e∗1(a|a)|a) ≥ W (â, e∗1(â|a)|a) ∀a, â ∈ A (5)

To reduce notational complexity we will define the utility maximizing effort plan conditional

on truthtelling by e1(a) = e∗1(a|a), and let W (a) = W (a, e∗1(a|a)|a) be the corresponding

lifetime utility.

An allocation is feasible if it satisfies the resource constraint,∫
A

[
c1(a)− y1(a) +R−1

∫
H

[c2(a, h2)− y2(a, h2)] p(h2|e1(a)) dh2

]
q(a) da ≤ 0. (6)

The social welfare function is simply the expected utility of someone who does not yet

know his ability:

W =

∫
A

W (a)q(a) da (7)

Definition 1. An allocation is constrained efficient if it maximizes welfare (7) subject to

the resource constraint (6) and the incentive compatibility constraint (5), where the learning

effort is given by (4).
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To reduce the complexity of the problem, we will assume that R = β−1.

3.1.1 First-Order Approach

The first-order approach replaces the incentive constraint (5) with two conditions. The first

one is the first-order condition in effort and says that, at the optimum, the marginal costs

of learning effort (given by the disutility from spending an additional unit of time by effort)

must be equal to the expected marginal benefit of learning effort (given by the additional

utility arising from the fact that the distribution of future human capital shocks is now more

favorable):

Ve

(
y1(a)

ah1
, e1(a)

)
= β

∫
H

[
U(c2(a, h2))− V

(
y2(a, h2)

ah2
, 0

)]
pe(h2|e1(a)) dh2 (8)

The second one is an envelope condition governing how the lifetime utility needs to vary

with ability in order to deter the agent from misreporting his type. Let ã stand for a dummy

variable that distinguishes the variable of integration from the limit of integration, and let

W (a) denote the lifetime utility of the least able agent. The envelope condition is,

W (a) = W (a)+

∫ a

a

{
V`

(
y1(ã)

ãh1
, e1(ã)

)
y1(ã)

ãh1

+ β

∫
H

V`

(
y2(ã, h2)

ãh2
, 0

)
y2(ã, h2)

ãh2
p(h2|e1(ã)) dh2

}
dã

ã
. (9)

The envelope condition states that the variation in lifetime utility for an agent a is the

lifetime utility of the least able agent plus the informational rent the agent obtains from

having a given ability level. The least able agent has no informational rent.

Replacing the incentive constraint with the first order condition in effort and the envelope

condition leads to a relaxed planning problem:

Definition 2. An allocation solves the relaxed planning problem if it maximizes welfare (7)

subject to the resource constraint (6), the first-order condition in effort (8) and the envelope

condition (9) .

For now, we assume that the first-order approach is valid and the set of constrained
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efficient allocations are identical to the set of allocations that satisfy the relaxed planning

problem. We return to the problem of validity of the first-order approach in Section 3.1.2.

Let λ, φ(a)q(a) and θ(a)q(a) be the Lagrange multipliers on the resource constraint (6),

the first order condition (8) and on the envelope condition (9). We show in Appendix A that

the planning problem can be written as a saddle point of the Lagrangean:

max
c,y,e

min
λ,θ,φ
L,

where

L =

∫
A

{(
1 + θ(a)

)
W (a)− λ

[
c1(a)− y1(a) + β

∫
H

[c2(a, h2)− y2(a, h2)] p(h2|e1(a)) dh2

]
−Θ(a)

[
V`

(
y1(a)

ah1
, e1(a)

)
y1(a)

ah1
+ β

∫
H

V`

(
y2(a, h2)

ah2
, 0

)
y2(a, h2)

ah2
p(h2|e1(a)) dh2

]

− φ(a)
Ve

(
y1(a)
ah1

, e1(a)
)

Fe (h1, e1(a))
+ β

∫
H

Φ(a, h2)

[
U(c2(a, h2))− V

(
y2(a, h2)

ah2
, 0

)]
p(h2|e1(a)) dh2

}
q(a) da.

where Φ(a, h2) is related to the multiplier on the the first-order condition in effort (8)

Φ(a, h2) = φ(a)
pf (h2|e1(a))

p(h2|e1(a))
(10)

and Θ(a) is the cross-sectional cumulative of the multipliers on the envelope condition (9):

Θ(a) =
1

aq(a)

∫ a

a

θ(ã)q(ã) dã. (11)

Both Φ and Θ have a direct economic interpretation: Φ(a) indicates how costly it is for

the social planner to respect the first-order condition in effort. Θ(a) indicates how much

the planner desires to redistribute resources across agents, and is a key in determining how

much to distort labor supply of a a−type agent. Note also that the Lagrangean makes it

easy to pinpoint the contribution of both frictions that are present in the model. In the

absence of the moral hazard friction one would set Φ = φ = 0. In the absence of the private

information friction one would set θ = Θ = 0. The dynamic program can therefore be easily
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adapted to “shut down” either one of those frictions to study its contribution to the optimal

tax problem.

Appendix A also shows a recursive formulation of the Lagrangean that is useful for

numerical simulations.

3.1.2 Validity of the First-Order Approach

The first-order approach might fail either because the first-order condition (8) fails to detect

a utility maximizing schooling choice, or because the envelope condition (9) fails to detect

the utility maximizing report. We will now show the conditions for sufficiency of (8) and

(9). For the following proposition, let P (h|f) =
∫ h
h
p(h̃|f) dh̃.

Proposition 1. Suppose that e∗(â|a) satisfies (8), and that

i.
∫ h
h
P (h̃|f) dh̃ is nonincreasing and convex in f for each h.

ii.
∫
H
hp(h|f) dh is nondecreasing concave in f .

iii. U(c2(â, h))− V
(
y2(â,h)
ah

, 0
)

is nondecreasing and concave in h.

Then (4) holds.

The proof is omitted, because it follows directly from Jewitt (1988) (Theorem 1). It shows

that under the conditions of the proposition the objective function is strictly concave in e,

implying sufficiency of the first-order conditions. The main difference from Jewitt (1988) is

that it must be assumed that the second period utility is nondecreasing and concave in h2. It

cannot be inferred from the primitives because if labor supply is increasing in h2 sufficiently

fast, the second period utility may decrease in h2.

The following result shows that if both earning and effort is monotone in the report then

the agent prefers to report the ability truthfully:

Proposition 2. Suppose that the allocation satisfies (9), and that

i. e∗(â|a), y1(â) and y2(â, h2) are all nondecreasing in â for each h2.

ii. y2(â,h2)
h2

is nondecreasing in h2 for each â.

11



Then (5) holds.

Proof. The proof is similar to the proof of Mirrlees (1986) showing that, in a static environ-

ment, increasing income is sufficient for the first order approach to be valid. Suppose that

an allocation satisfies (9). Assume that â < a. Then (9) implies that (bold symbols indicate

changes from the previous equation)

W (a)−W (â)

=

∫ a

â

{
V`

(
y1(ã)

ãh1
, e∗1(ã|ã)

)
y1(ã)

ãh1
+ β

∫
H

V`

(
y2(ã, h2)

ãh2
, 0

)
y2(ã, h2)

ãh2
p(h2|e∗1(ã|ã)) dh2

}
dã

ã

≥
∫ a

â

{
V`

(
y1(â)

ãh1
, e∗1(â|ã)

)
y1(â)

ãh1
+ β

∫
H

V`

(
y2(â, h2)

ãh2
, 0

)
y2(â, h2)

ãh2
p(h2|e∗1(ã|ã)) dh2

}
dã

ã

≥
∫ a

â

{
V`

(
y1(â)

ãh1
, e∗1(â|ã)

)
y1(â)

ãh1
+ β

∫
H

V`

(
y2(â, h2)

ãh2
, 0

)
y2(â, h2)

ãh2
p(h2|e∗1(â|ã)) dh2

}
dã

ã

= W (â, e∗1(â|a)|a)−W (â).

The first equality applies (9). The first inequality follows from the assumption that e∗(â|a),

y1(â) and y2(â, h2) are all increasing in â. The second inequality follows from the fact that
y2(â,h2)
h2

increases in h2 for all â, that the distribution p is such that, for any increasing

function f(h),
∫
H
f(h)p(h|e) dh increases in e, and that e∗(â|a) increases in â again. Finally,

the last equality follows from the fundamental theorem of calculus. The proof is similar for

â > a.

Taken together, Propositions 1 and 2 give a set of monotonicity conditions that ensure

validity of the first order approach. They can be checked numerically by computing ex-post

the schooling plan e∗(â|a) and verifying the monotonicity and concavity requirements. It is

also worth mentioning that those conditions are sufficient, but not necessary. If they fail,

one may still be able to verify incentive compatibility by checking directly the conditions (4)

and (5).
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3.2 Theoretical Implications

We will now characterize the properties of the efficient allocation, and also the properties

of the intratemporal and intertemporal wedges. We will assume that the distribution of the

second period human capital satisfies the Monotone Likelihood Ratio Property:

Assumption 1 (MLRP).
pf (h|f)
p(h|f) is strictly increasing in h for all f .

We will also assume that the elasticity of labor supply is not increasing in labor supply,

for a given effort.

Assumption 2. The elasticity of labor supply γ(`, e) = V`(`,e)
`V``(`,e)

is nonincreasing in `.

We first show that, under those conditions, the Lagrange multiplier on the first-order

condition in effort is nonnegative:

Lemma 1. Suppose that MLRP and Assumption 2 holds. Then φ(a) > 0.

Proof. The proof shows that the right-hand side of (12) is negative due to the fact that

expected continuation utility decreases in future human capital realizations.

Consider a doubly relaxed problem where equation (8) holds as the following inequality:

Ve (`1(a), e1(a))

Fe (h1, e1(a))
≥ β

∫
H

[U(c2(a, h2))− V (`2(a, h2), 0)]
pf (h2|e1(a))

p(h2|e1(a))
dh2 (12)

We will now prove that the constraint (12) is slack. In the absence of (12) one obtains that

c2(a, h2) is independent of h2. The first-order condition in `2(a, h2) is

1 + θ(a) =
λah2

V` (`2(a, h2))
−Θ(a)

(
1

γ(`2(a, h2), 0)
+ 1

)
,

If γ(`, 0) is nonincreasing in ` then `2(a, h2) is strictly increasing in h2. Since Assumption

1 holds, the right-hand side of (12) is strictly negative. Since the left-hand side of (12) is

nonnegative, (12) holds as a strict inequality. Hence, for the first order condition in effort

constraint to hold, the opposite inequality must be imposed. From the Kuhn-Tucker theorem

we have φ(a) > 0.
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A strictly positive multiplier φ implies that the social planner would, in the absence

of the constraint (8), increase private marginal costs of effort above the private marginal

benefits of effort. In fact, as the proof shows, while the marginal costs would be positive, the

marginal benefits of effort would be negative: people with higher human capital would see

no consumption increase, but would be required to work more. The moral hazard friction

prevents the social planner from achieving such allocations.

The following proposition characterizes the consumption allocation. It’s second part

draws on the result of Lemma 1.

Proposition 3. Consumption c satisfies the Inverse Euler Equation:

1

U ′(c1(a))
=

∫
H

1

U ′(c2(a, h2))
p (h2|F (h1, e1(a))) dh2 ∀a ∈ A (13)

If MLRP holds then c2(a, h2) is also strictly increasing in h2.

Proof. The first-order conditions in consumption are

1

U ′(c1(a))
=

1 + θ(a)

λ
(14)

1

U ′(c2(a, h2))
=

1 + θ(a) + Φ(a, h2)

λ
(15)

Take the expectation of (15) and note that
∫
H
pf (h2|F (h1, e1(a))) dh2 = 0. If MLRP holds

then φ > 0 by Lemma 1, and so Φ(a, h2) is strictly increasing in h2. The result then follows

from (15).

The first part of the proposition is relatively standard. It would hold in the absence of

the moral hazard friction as well. In that case, however, the second period consumption

would be deterministic, conditional on ability. The second part of the proposition shows

that with moral hazard this is no longer the case, provided that MLRP holds. Conditional

on ability, there is a dispersion in consumption in the second period.
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3.2.1 Wedges

Define the intratemporal wedge τj as the gap between the marginal product of labor and the

intratemporal marginal rate of substitution. Similarly, define the intertemporal wedge δ as

the wedge between the current marginal utility of consumption and the expected marginal

utility of consumption tomorrow:

ahj(1− τj(a, hj)) =
V`
(
`j(a, h

j), ej(a, h
j)
)

U ′(cj(a, hj))
, for j = 1, 2

U ′(c1(a)) = (1− δ(a))

∫
H

U ′(c2(a, h2))p (h2|F (h1, e1(a))) dh2.

Proposition 3 immediately implies that δ(a) is strictly positive for each ability level a. The

first-order conditions in labor imply that the intratemporal wedge τ satisfies

1

U ′(c1(a))

τ1(a)

1− τ1(a)
=

(
1 +

1

γ(`1(a), e1(a))

)
Θ(a) +

φ(a)

λ

V`e (`1(a), e1(a))

V` (`1(a), e1(a))

1

Fe (hj, e1(a))

1

U ′(c2(a, h2))

τ2(a, h2)

1− τ2(a, h2)
=

(
1 +

1

γ(`2(a, h2), 0)

)
Θ(a).

In what follows, we characterize the limiting intratemporal wedge and its dependence on

realized human capital shock.

Proposition 4.

i. Suppose that lima→a Θ(a) = 0. Then

lim
a→a

τ1(a) Q 0 if V`e Q 0

lim
a→a

τ2(a, h2) = 0 ∀h2 ∈ H.

ii. Suppose that MLRP and Assumption 2 holds. Then τ2(a, h2) is strictly decreasing in

h2.

The proof follows directly from the first order conditions in labor, from Lemma 1, and

from Proposition 3. The implication of the first part is that the “no distortion at the top”

result from Mirrlees (1971) does not apply whenever the utility is not additively separable in
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labor and effort. The intuition is that nonseparability gives the planner the option to change

incentives to exert effort by changing first period labor supply. If V`e > 0, discouraging labor

supply in the first period increases incentives to exert effort. Hence it is optimal to do so,

even for the top agent. This channel is absent in the second period where the “no distortion

at the top” result applies. The second part of the proposition shows that, under the stated

conditions, the second period wedge is decreasing in the human capital shock. It is easy to

see that if the support is unbounded and U ′(c2(a, h2)) converges to infinity as h2 converges to

infinity, then the second period tax wedge converges to zero in h2 as well. Those conditions

will be satisfied, for example, if the distribution of h2 is lognormal and the utility function

U is of the CRRA form.

Grochulski and Piskorski (2010) also obtain that the “no distortion at the top” does not

apply, but their argument is different. In their model, the high ability agents always face a

negative marginal tax rate, because that helps to separate the truthtellers from deviators:

deviators underinvest in human capital, have lower productivity, and are hurt by the negative

marginal tax at the top more than truthtellers. This mechanism does not appear in our model

because human capital realizations are observable. On the other hand, our mechanism is

absent in Grochulski and Piskorski (2010), who do not allow for simultaneous labor supply

and investment in human capital. Note also that the result is different from Kapička (2008)

where human capital is unobservable but riskless. The absence of risk means that there is

no scope for insurance against human capital risk. If the “top” agent faces a zero marginal

tax she will choose the efficient amount of learning effort, because she bears all the costs and

benefits of the investment (the Lagrange multiplier φ is zero for the top agent, rather than

being strictly positive). As a result, it is optimal to have a zero marginal tax on the “top”

agent.4

If labor supply and learning effort are additively separable and labor supply has a constant

elasticity then we have the following sharp characterization of the intratemporal wedges:

4There are additional arguments for violation of the no distortion on the top result in the literature:
Stiglitz (1982) obtains a negative tax on the top when skilled and unskilled labor are imperfect substi-
tutes. Slav́ık and Yazici (2012) establish the same result when there is capital-skill complementarity. Those
arguments rely on general equilibrium effects that are absent in our paper.
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Proposition 5. Suppose that γ is a constant and that V`e = 0. Then

1

τ1(a)
=

∫
H

1

τ2(a, h2)
p(h2|h1, e1(a)) dh2.

Proof. The expression for wedges reduces to

1

U ′(c2(a, h2))

τ2(a, h2)

1− τ2(a, h2)
=

(
1 +

1

γ
(
`2(a, h2), 0

)) Θ(a)

λ
.

To prove the second part, note that if γ is a constant and V`e = 0 then the intratemporal

wedges satisfy
τ1(a)

1− τ1(a)

1− τ2(a, h2)
τ2(a, h2)

=
U ′(c1(a))

U ′(c2(a, h2))
.

Since (13) holds,
1− τ1(a)

τ1(a)
=

∫
H

1− τ2(a, h2)
τ2(a, h2)

p(h2|h1, e1(a)) dh2.

Rearranging, the result follows.

The result is due to several facts. First, the tax revenue of an a−type agent is proportional

to
τj(a,hj)

1−τj(a,hj) for j = 1, 2 (Saez (2001)). Second, if the assumptions of Proposition 5 hold then

(since the ability shock is permanent) the social planner wants to keep the tax revenue

valued at the utility cost 1
U ′(cj(a,hj))

constant over time and state. Hence the expression

1
U ′(cj(a,hj))

τj(a,hj)

1−τj(a,hj) is constant over time and state. Since 1
U ′(cj(a,hj))

follows a random walk,

the result follows. Jensen’s inequality then implies that the average intratemporal wedge is

increasing over time:

Corollary 3.

τ1(a) <

∫
H

τ2(a, h2)p (h2|F (h1, e1(a))) dh2. (16)

4 Implementation

In this section we decentralize the efficient allocations through a tax system. We describe

the tax system in two steps. In the first one, we follow Werning (2011) to augment the

direct mechanism and allow the agents to borrow and save, but design the savings tax in
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such a way that the agents choose not to do so. In the second step, we design an indirect

tax mechanism that implements the efficient allocation.

In the first step, define the tax on savings as follows. Enlarge the direct mechanism by

allowing the agent to save and modify the consumption allocation:

c1 +m(x) ≤ c1(â) (17)

c2 ≤ c2(â, h2) + x ∀h2, (18)

where x are after-interest savings, and m(x) represents a transformation of the nonlinear tax

of savings. We also set m(0) = 0. That is, an agent who follows the allocation chosen by the

planner pays no tax. The value m(x) is the amount by which current consumption must be

reduced in order to increase future consumption by x. As such, it can be easily transformed

to a more usual tax on interest income τ k(s), where an agent reducing current consumption

by s increases future consumption by
[
1 + r

(
1− τ k(s)

)]
s. Let

Ŵ (x;m|a) = max
â

{
U(c1(â)−m(x))− V

(
y1(â)

ah1
, e

)

+ β

∫
H

[
U(c2(â, h2) + x)− V

(
y2(â, h2)

ah2
, 0

)]
p(h2|e)dh2

}

be the lifetime utility from the utility maximizing report, conditional on savings being x.

Now define, for each ability level a, a function m∗(·, a) to be such that the agent is indifferent

among all the savings levels:

Ŵ (x;m∗(·, a)|a) = W (a) ∀x.

Differentiating the function M∗ and evaluating at x = 0, one obtains

m∗x(0, a) =
1

1− δ
m∗a(0, a) = 0
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That is, the derivative with respect to the savings is equal to the inverse of the intratemporal

wedge, and the derivative with respect to one’s type is always zero, when evaluated at zero

savings.5 The second derivative follows simply from the fact that m∗(0, a) = 0 for all a.

In the second step consider a tax system consisting of income tax income functions

T = (T1(y1), T2(y1, y2, h2)) and a savings tax M(x, y) satisfying M(0, y) = 0. While the

first period income tax depends only on the current income, the second period income tax

depends on the second period human capital realization, and can potentially depend on the

history of incomes. The agent faces the following budget constraints:

c1 +M(x, y1) ≤ y1 − T1(y1) (19)

c2 ≤ x+ y2 − T2(y1, y2, h2) ∀h2. (20)

A consumer of a given ability a maximizes the expected utility

U(c1)− V
(
y1
ah1

, e

)
+ β

∫
H

[
U(c2(h2))− V

(
y2(h2)

ah2
, 0

)]
p(h2|e)dh2 (21)

subject to the budget constraints (19) and (20). The solution to this market problem for all

abilities is given by (c̃, ỹ, x), where (c̃, ỹ) is an allocation and x(a) are savings. We prove

the following version of the taxation principle (see Hammond (1979)):

Proposition 6. If an allocation (c,y) satisfies the incentive constraint (5) then there exists

a tax system (T ,M) such that M(0, y) = 0 for all y, and (c,y, 0) solves the market problem.

Conversely, let (T ,M) be a tax system such and (c,y, x) solves the market problem.

Then the allocation (c,y) is incentive compatible.

Proof. Suppose that an allocation (c,y) satisfies the incentive constraint (5). Define the tax

5If one converts m∗ back to a nonlinear tax on savings τk(s), then τk(0) = δ(1+r)
r .
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functions to be such that they satisfy

T1 (y1(a)) = c1(a)− y1(a)

T2 (y1(a), y2(a), h2) = c2(a, h2)− y2(a, h2)

M(x, y1(a)) = m∗(x, a).

For other values in the domain set the taxes T1 and T2 high enough so that no agent chooses

such values. Let

W̃ (x, â|a) = U(c1(â)−m∗(x))− V
(
y1(â)

ah1
, e

)
+ β

∫
H

[
U(c2(â, h2) + x)− V

(
y2(â, h2)

ah2
, 0

)]
p(h2|e)dh2

By the definition of m∗,

W (a|a) = W̃ (0, a|a) ≥ max
x

W̃ (x, â|a) ≥ W̃ (0, â|a) = W (â|a) ∀â ∈ A.

Choosing (c,y, 0) yields lifetime utility W (a|a). Any other choice yields W̃ (x, â|a) or lower.

Hence (c,y, 0) is the solution to the market problem.

Conversely, take any tax system (T ,M), and let (c,y, x) be the solution to the market

problem. Then a type a agent prefers (c(a),y(a), x(a)) to (c(â),y(â), x(â)). The allocation

(c,y) is thus incentive compatible.

It follows from the Proposition that one can take the efficient allocation and find a

tax system (T ∗,M∗) that implements the efficient allocation. It is easy to show that the

marginal income taxes evaluated at the optimal allocation are equal to their respective

intratemporal wedges τ1 and τ2, and that the marginal tax on savings is equal to the inverse

of the intertemporal wedge 1
1−δ .
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5 Quantitative Analysis

The benchmark model is the decentralized incomplete markets economy with observed U.S.

capital and labor income tax rates. The benchmark model allows us to calibrate the initial

human capital level and the parameters of the ability distribution. We then calculate the

constrained efficient outcomes by replacing the benchmark tax system for an optimal tax

system, while keeping all other parameters of the benchmark model unchanged.

5.1 Calibration

Parameters are set in two steps. First, standard parameters or those for which there are

available estimates are set before solving the model. The remaining parameters are set to

match equilibrium outcomes. Tables 1 and 2 summarize the calibration.

Table 1: Parameters Set Exogenously

Definition Symbol Value Source/Target

Number of periods J 2 20 years per period
CRRA parameter ρ 1 Browning, Hansen, and Heckman (1999)

Frisch elasticity of labor γ 0.5 Chetty, Guren, Manoli, and Weber (2011)
Elasticity of effort ε 0.5 Same as Frisch elasticity

Discount factor β 0.442 0.96 annual
Interest rate r 1.19 0.04 annual

HC technology α 0.7 Browning, Hansen, and Heckman (1999)
Capital income tax rate τ̄k 0.37 McDaniel (2007)

Labor income tax rate τ̄` 0.26 McDaniel (2007)
Shock distribution (µz, σz) (-0.58, 0.496) Huggett, Ventura, and Yaron (2011)

Table 2: Calibrated Parameters

Definition Symbol Value Target Moment Model U.S. Data Source

Initial human capital h1 0.580 y1/y2 0.868 0.868 HVY (2011)
St. dev. log-ability σa 0.620 Earnings Gini 0.346 0.345 HVY (2011)

We set J = 2 periods. A model period is 20 years. The first period represents agents

21



between 20 and 40 years of age, and the second period represents agents between 40 and 60

years of age.

Preferences

The instantaneous utility function for consumption is CRRA,

U(c) =
c1−ρ

1− ρ
,

as in Huggett, Ventura, and Yaron (2011). The value of the parameter controlling intertem-

poral substitution and risk-aversion is set to ρ = 1, within the range of estimates surveyed

by Browning, Hansen, and Heckman (1999). Preferences are additively separable in labor

and effort with constant elasticities,

V (`, e) =
`1+1/γ

1 + 1/γ
+

e1+1/ε

1 + 1/ε
.

The Frisch elasticity of labor supply is set to γ = 0.5, consistent with micro estimates

surveyed in Chetty, Guren, Manoli, and Weber (2011). The elasticity of learning effort is

set to ε = 0.5, equal to the Frisch elasticity. Agents’ discount factor is set to β = (0.96)20 =

0.442.

Technology

The human capital production function

F (h, e) = h+ (eh)α

is of the Ben-Porath form. The value of the parameter α = 0.7 is the same used in Huggett,

Ventura, and Yaron (2011) and in the middle of the range of estimates surveyed by Browning,

Hansen, and Heckman (1999).

The shock process is assumed to be i.i.d. and the shocks are drawn from a truncated nor-

mal distribution, z ∼ N(µz, σz). The human capital shock process is estimated in Huggett,

Ventura, and Yaron (2011). The Ben-Porath functional form implies that towards the end
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of the lifetime agents accumulate little human capital and the changes in human capital are

mostly due to shocks. Hence, we can approximate the parameters from the shock process

by assuming older workers in the data exert zero learning effort.

The parameters of the shock distribution are calibrated as follows. Wages are calculated

from the Panel Study of Income Dynamics (PSID) for males between 55 and 65 years of age.6

Huggett, Ventura, and Yaron (2011) estimate the parameters of the shock process from a

log-wage difference regression. It is not immediately clear that we can use the same log-wage

difference regression since labor income is also a product of ability in our model. However,

since abilities are permanent, log-wage differences cancel out abilities from the regression.

In particular, consider a multiperiod version of our model where each period is a year. Also

assume that there is zero investment in human capital from date t to date t+ n. Difference

of log-wages yields,

wt+n = aht+n = a exp(zt+n)F (ht+n−1, 0) = a
n∏
i=1

exp(zt+i)ht

lnwt+n = ln a+
n∑
t+i

zt+i + lnht

∆ lnwt+n = lnwt+n − lnwt+n−1 + ζt+n − ζt =
n∑
t+i

zt+i + ζt+n − ζt

where ζt+n − ζt are measurement error differences. The last equation is the regression

equation. It shows that differences in log-wages are solely attributed to shocks and measure-

ment error. Also notice that the the model implies that wages are not observable. However,

differences in log-wages are observable since abilities do not enter the equation.

Let superscript a denote values at an annual frequency, as opposed to a 20-year frequency.

Huggett, Ventura, and Yaron (2011) estimate σaz = 0.111 and µaz = −0.029. We transform

the shock process to its 20-year period equivalent, σz =
√

20(σaz )
2 = 0.496 and µz = 20µaz =

−0.58. These estimates imply that, in 20 years, a one-standard deviation shock moves wages

6Huggett, Ventura, and Yaron (2011) calculate real wages as total male labor earnings divided by total
hours for male head of household, using the Consumer Price Index to convert nominal wages to real wages.
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by about 49.6% and human capital depreciates on average 36.69%.7

Benchmark Tax System

We approximate the U.S. tax system with a flat tax on capital income and a flat tax on

labor income,

T (kj, yj, hj) = (1− τ̄k)rkj + (1− τ̄l)yj for j = 1, 2.

We calculate the values of the tax rates and interest rate in three steps. First, we obtain

the mean average tax rates from McDaniel (2007) for the 1969-2004 period. Second, we

normalize tax rates by the average consumption tax. This is enough to obtain the value of

the labor income tax rate of τ̄l = 0.26 and the annual capital income tax rate τak . Third, the

effective 20-year capital income tax rate and interest rate are the solution to the following

two equations:

(1 + ra(1− τak ))20 =1 + r(1− τ̄k) (22)

(1 + ra)20 =1 + r (23)

The annual interest rate ra = 0.04 is set to the historical risk-free rate of return in the

U.S. The effective 20-year tax rate on capital income is τ̄k = 0.37. The effective 20-year

interest rate is r = 1.19. Tax revenues are transferred lump-sum back to the agents.

Initial Conditions

Following Huggett, Ventura, and Yaron (2006) and Huggett, Ventura, and Yaron (2011),

we posit that the ability distribution is log-normally distributed, q(a) = LN(µa, σ
2
a). The

initial human capital, h1, is the same for all agents. We set µa, σ
2
a, and h1 so that the

equilibrium distribution of earnings matches data earnings moments. Huggett, Ventura, and

Yaron (2011) estimate age profiles of mean earnings from the PSID 1969-2004 family files.

7Since shocks enter multiplicative, the 20-year shock process is distributed exp(z) = LN(20µaz , 20(σaz )2),
or LN(−0.58, 0.2464). As an intuitive check, the average depreciation rate of human capital in Huggett,

Ventura, and Yaron (2011) is 1 − exp(µaz +
(σa

z )
2

2 ) = 2.26% per year. This implies a 20-year depreciation

rate of 1− (1− .0226)20 = 36.69%. The shock process has to be such that 63.3% = exp(µz +
σ2
z

2 ), which is
consistent with our numbers.
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We target two moments: The ratio of mean earnings of younger workers (ages 23 to 40)

to mean earnings of older workers (ages 40 to 60) and the earnings Gini coefficient for all

age groups. Table 2 displays the results. Parameters values µa = −0.125, σ2
a = 0.68, and

h1 = 0.59 best approximate the model to the data targets.

5.2 Findings

We focus on four main findings. First, it is efficient to provide consumption insurance for low

ability agents and increase consumption risk for high ability agents relative to the benchmark.

Second, the increase in the intratemporal wedge is the highest for high ability agents. Third,

the intertemporal wedge increases with ability. Fourth, implementing an optimal tax system

brings large welfare gains for the overall economy. However, welfare gains are distributed

unevenly across the economy. High ability agents lose a significant amount of welfare.

Incentives for High Ability, Insurance for Low Ability

Figure 1 shows the variance of log-consumption in the second period for the benchmark

economy and the constrained efficient economy.

In the benchmark, variance of second period log-consumption is slightly increasing in

ability. As seen in Figure 2a, higher ability agents exert more learning effort. Consequently

high ability agents face a higher expected human capital as compared to low ability agents,

as seen in Figure 2b.

In the constrained efficient economy, the social planner finds it optimal to increase the

variance of log-consumption with ability. In contrast to the benchmark economy, low-ability

agents are more insured across realizations of human capital shocks, whereas high-ability

agents face a significantly higher amount of uncertainty. The effort profile shown in Figure

2a provides insight as to what the social planner accomplishes through this variance profile.

Increasing the uncertainty of second period consumption for high agents (as compared to

the benchmark) makes these agents exert higher learning effort as a form of self-insurance.

Figure 2b shows, in turn, that high-ability agents face a more favorable distribution of human

capital shocks compared to other agents and also as compared to the benchmark. At the

bottom end of the distribution, the social planner finds it optimal to provide consumption
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Figure 1: Variance of log-consumption in the second period.

insurance. Low ability agents, in turn, exert little effort as they see little necessity to

accumulate human capital. Consequently, high ability agents increase their expected human

capital in the constrained efficient scenario by more than what they were increasing in the

benchmark.

Wedges

Figure 3a shows the intratemporal wedge in the second period as a function of human capital.

The wedges are shown for three selected ability levels, low, medium and high. In all cases the

intratemporal wedge is very high for low human capital realizations and then decreases with

human capital. Recall from Propositions 3 and 4 that the intratemporal wedge decreases

with human capital so that consumption increases with human capital realizations. The

decrease is most rapid for higher ability levels.

The intratemporal wedge in the first period and the expected intratemporal wedge in the

second period are shown in Figure 3b. The figure shows that the expected intratemporal
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Figure 2: Effort and Human Capital

wedge is higher than the intratemporal wedge in the first period. This confirms the second

theoretical finding in Proposition 4. The difference is most pronounced for higher ability

agents, where the agents expect second period intratemporal wedge to be about 2% higher

than in the first period. Overall, the intratemporal wedge in period 1 decreases with abilities

and converges to zero due to the fact that abilities are lognormally distributed.

The intertemporal wedge is shown in Figure 4. The figure shows that the intertemporal

wedge is strictly increasing in ability. This result stands in contrast to the previous lit-

erature (e.g. Albanesi and Sleet (2006)). The planner discourages savings of high ability

agents to increase the incentives of high ability agents to self-insure through human capital

accumulation.

Consumption Profiles and Redistribution

As stated in Proposition 3, the social planner provides higher consumption in good states

of the world and low consumption in bad states. However, Figure 5 shows that, in the

27



1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Human Capital h2

W
ed

ge

Low Ability

Medium Ability

High Ability

(a)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ability a
W

ed
ge

Intratemporal wedge, first period

Expected intratemporal wedge, second period

(b)

Figure 3: Intratemporal Wedge

constrained efficient economy low ability agents receive higher consumption in all states of the

world relative to the benchmark. As abilities increase, the constrained efficient consumption

allocations become flatter relative to the benchmark. The highest ability level faces the

largest decrease in consumption relative to the benchmark, with close to zero consumption

for low realizations of human capital. Another aspect that stands out is the concavity of the

consumption profile for high ability agents. This concavity indicates that it is efficient to

punish low realizations more than reward good realizations.

Figures 6 and 7 show that the distribution of consumption and earnings move in oppo-

site directions. Relative to the benchmark, the labor earnings distribution becomes more

unequal while the consumption distribution becomes more equal within each period. In the

constrained efficient economy, it is optimal to concentrate labor earnings - equivalent to out-

put in the model - at the top of the distribution and enact a tax system that redistributes

earnings enough to reduce consumption inequality compared to the benchmark. However,

overall labor earnings, and consequently output, decreases in the economy. Redistribution

comes at the expense of lower output.
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These results are indicative that a significant amount of welfare gains are due to redistri-

bution. Consumption is reallocated from low marginal utility agents (high-ability) to high

marginal utility agents (low-ability). Effort (and labor) is reallocated from low marginal

product agents (low-ability) to high marginal product agents (high-ability).

In order to get a sense of the amount of redistribution that happens in the constrained

efficient economy, we plot consumption as a percentage of labor earnings for each ability type.

The results, plotted in Figure 8, reveal that there is a substantive amount of redistribution

in the efficient scenario. The lowest ability agent in the economy, the zero percentile agent,

consumes between 45,000%-76,000% more than he earns. In contrast, the agent in the

97 percentile of the ability distribution consumes only 43 to 34 percent of what he earns,

indicating overall earnings taxes of 57 to 64 percent.
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Figure 5: Second Period Consumption Profiles

Welfare

In this section we explore the welfare gains for the benchmark economy from switching to

the efficient tax system. We are interested in the overall welfare gain and in the welfare

change for each ability type.

The overall welfare gain is defined as the percentage increase in period consumption that

would make the representative agent indifferent between the benchmark allocation and the

constrained efficient allocation, keeping labor and effort unchanged. Specifically, the welfare

gain is the η that solves,

W ((1 + η)cB1 , (1 + η)cB2 , l
B
1 , l

B
2 , e

B
1 ) = WCE.

where the B superscript denote benchmark allocations. We find that the welfare gains of

switching to an optimal tax system are equivalent to a η = 11% increase in consumption

every period and state of the world.

The change of welfare across types is illustrated in Figure 9. The large welfare gains accrue
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Figure 6: Distribution of Consumption, by ability percentiles.

at the bottom of the ability distribution. In contrast, the top abilities lose a substantial

amount of welfare compared to the benchmark economy. However, it is worth noting that

welfare is still increasing with ability in the constrained efficient economy. Monotonicity of

welfare on ability is a direct consequence of restricting allocation to those that are locally

incentive compatible, so that the envelope condition (9) holds. The implication is that, by

construction, welfare is monotonically increasing in ability.

6 Conclusion

This paper addresses two questions: What are the features of an optimal tax system? What

are the welfare gains for the U.S. from switching to an optimal tax system? We answer these

questions in a Mirrleesian life-cycle economy in which agents are heterogeneous in their

ability to produce output, can invest in human capital to augment their productivity, and

the rates of return to human capital evolve stochastically. The model is sufficiently rich to

be useful for policy analysis, and we show that it is also tractable enough for the normative
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Figure 7: Distribution of Earnings, by ability percentiles.

analysis.

We highlight five main findings. First, the “no distortion at the top” result from Mirrlees

(1971) might not apply when taxing labor encourages human capital accumulation. Second,

it is efficient to design the tax system so that consumption risk is increasing in ability. This

finding has the interpretation of focusing incentives of exerting effort in high ability agents

while providing insurance for low ability agents. Third, under certain conditions, the average

intratemporal wedge is increasing over an agent’s lifetime. Fourth, the intertemporal wedge

is increasing in ability. Finally, there are large welfare gains from switching to an optimal

tax system in the benchmark.

There are reasons to believe that welfare gains might not be as large in practice. First,

separability of labor and effort in the utility function implies that the social planner is able

to incentivize high-ability agents to supply high labor and exert high effort. In reality, it

is likely that there are complementarities in labor and effort. Second, approximating the

U.S. tax function with flat taxes results in a highly unequal distribution of consumption in

the benchmark. Replacing flat taxes with a more realistic progressive taxation benchmark
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Figure 8: Consumption as a % of labor earnings, by ability percentiles

will likely drive down the welfare gains. Third, a two-period model does not leave room for

self-insurance through precautionary savings. Consumption in the second period is simply

a residual. Extending the model to more than two periods might allow agents to better

self-insure through savings. Fourth, ability is perfectly correlated with labor earnings in the

two-period model. This implies that the agents with high marginal utility of consumption

have low marginal product of labor. Adding dispersion in initial human capital or extending

the model to more than two-periods will affect this correlation and might reduce the welfare

gains of redistribution.

We are currently working on extending the model to more than two periods in order to

obtain more precise policy prescriptions. So far, we have been able to show that at least two

of the main results from the two-period model extend to a finite number of periods: There

is a positive distortion at the top with labor and learning effort complementarities, and the

intratemporal wedge is increasing over the lifetime.
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Appendix A A Lagrangean Solution Method

Recall that λ, φ(a)q(a) and θ(a)q(a) are the Lagrange multipliers on the resource constraint

(6), the first order condition (8) and on the envelope condition (9). After combining lifetime

utility W (a) from the objective function and the envelope condition, the Lagrangean is

L =

∫
A

{(
1 + θ(a)

)
W (a)− θ(a)W (a)

− λ
[
c1(a)− y1(a) + β

∫
H

[c2(a, h2)− y2(a, h2)] p(h2|e1(a)) dh2

]
− θ(a)

∫ a

a

[
V`

(
y1(ã)

ãh1
, e1(ã)

)
y1(ã)

ãh1
+ β

∫
H

V`

(
y2(ã, h2)

ãh2
, 0

)
y2(ã, h2)

ãh2
p(h2|e1(ã)) dh2

]
dã

ã

− φ(a)

[
Ve

(
y1(a)

ah1
, e1(a)

)
− β

∫
H

[
U(c2(a, h2))− V

(
y2(a, h2)

ah2
, 0

)]
pe(h2|e1(a)) dh2

]}
q(a) da

The first-order condition in W (a) implies∫
A

θ(a)q(a) da = 0. (A-1)

Integrating the Lagrangean by parts, using (A-1), and rearranging terms, one obtains

L =

∫
A

{(
1 + θ(a)

)
W (a)− λ

[
c1(a)− y1(a) + β

∫
H

[c2(a, h2)− y2(a, h2)] p(h2|e1(a)) dh2

]
−Θ(a)

[
V`

(
y1(a)

ah1
, e1(a)

)
y1(a)

ah1
+ β

∫
H

V`

(
y2(a, h2)

ah2
, 0

)
y2(a, h2)

ah2
p(h2|e1(a)) dh2

]
− φ(a)

[
Ve

(
y1(a)

ah1
, e1(a)

)
− β

∫
H

[
U(c2(a, h2))− V

(
y2(a, h2)

ah2
, 0

)]
pe(h2|e1(a)) dh2

]}
q(a) da

where Θ(a) is the cross-sectional cumulative of the Lagrange multipliers on the envelope

condition:

Θ(a) =
1

aq(a)

∫ a

a

θ(ã)q(ã) dã. (A-2)
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Finally, take the expectation of the first order condition in effort and divide it by

Fe (h1, e1(a)). Rearranging the terms involving φ, one obtains

L =

∫
A

{(
1 + θ(a)

)
W (a)− λ

[
c1(a)− y1(a) + β

∫
H

[c2(a, h2)− y2(a, h2)] p(h2|e1(a)) dh2

]
−Θ(a)

[
V`

(
y1(a)

ah1
, e1(a)

)
y1(a)

ah1
+ β

∫
H

V`

(
y2(a, h2)

ah2
, 0

)
y2(a, h2)

ah2
p(h2|e1(a)) dh2

]

− φ(a)
Ve

(
y1(a)
ah1

, e1(a)
)

Fe (h1, e1(a))
+ β

∫
H

Φ(a, h2)

[
U(c2(a, h2))− V

(
y2(a, h2)

ah2
, 0

)]
p(h2|e1(a)) dh2

}
q(a) da

where

Φ(a, h2) = φ(a)
pf (h2|e1(a))

p(h2|e1(a))
(A-3)

The expression for Φ is simplified by the property

pe(h2)(h2|e1(a)) = pf (h2|e1(a))Fe (h1, e1(a)) .

A Recursive Formulation

The above problem can be solved using the following three-step procedure adapted from

Boháček and Kapička (2008) and Kapička (2008). First, fix a Lagrange multiplier λ. Second,

fix a function θ(a, h1) and compute the cumulative Lagrange multiplier Θ(a, h1) using (A-

2). Conditional on those values, the problem has a recursive representation that uses the

recursive Lagrangean method of Marcet and Marimon (2009). Denote Φ to be the costate

variable corresponding to the cumulative Lagrange multiplier on the first-order condition (8)

in effort. Let Ωj(h,Φ; a, h1) be the value of having human capital h and a costate variable

Φ at the beginning of period j for an agent with ability a and initial human capital h1. It

can be shown that Ωj is given by

Ωj(h,Φ; a, h1) = max
c,l,e

min
φ

{
[1 + θ(a, h1) + Φ] [U(c)− V (`, e)]− λ (c− ahl)− φ Ve (`, e)

Fe (h, e)

− V` (`, e) lΘ(a, h1) + β

∫
H

Ωj+1 [h′,Φ′(h′); a, h1] pj+1(h
′|F (h, e)) dh′

}
(A-4)
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where the law of motion for Φ is

Φ′(h′) = Φ + φ
pf,j+1 (h′|F (h, e))

pj+1 (h′|F (h, e))
.

The dynamic program is initiated at (h,Φ) = (h1, 0), and is terminated with ΩJ+1 = 0.

Once the problem is computed, one updates the θ function by using a period 1 first order

condition in consumption. This generates a new function Tθ:

Tθ(a, h1) =
λ

U ′ (c1(a, h1))
− 1

The iterations proceed until T converges. Finally, one iterates on the Lagrange multiplier λ

until the resource constraint (6) clears.

The dynamic program (A-4) is at the heart of this computational procedure. It has four

state variables, but it is worth noting that only two of them (h and Φ) are changing over time;

the other two (a and h1) are constant. Also, h1 enters the problem only through θ and Θ,

which will somewhat simplify the computational procedure. Furthermore, the optimization

problem itself is relatively simple, as it features no constraints (apart from nonnegativity

constraints on c, ` and e) and only four variables. It is therefore expected that, despite its

complexities, it will be feasible to solve the problem numerically.
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