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Abstract

We develop a model where a genetic test reveals whether an individual has a low or
high probability of developing a disease. Testing is not mandatory, but agents have to
reveal their test results to the insurers, facing a discrimination risk. A costly prevention
e¤ort allows agents with a genetic predisposition to decrease their probability to develop
the disease. We study the individual decisions to take the test and to undertake the
prevention e¤ort as a function of the e¤ort cost and of its e¢ ciency. If e¤ort is observable
by insurers, agents undertake the test only if the e¤ort cost is neither too large nor too
small. If the e¤ort cost is not observable by insurers, moral hazard increases the value
of the test if the e¤ort cost is low. We o¤er several policy recommendations, from the
optimal breadth of the tests to policies to do away with the discrimination risk.

JEL Codes: D82, I18.
Keywords: discrimination risk, informational value of test, personalized medecine.



1 Introduction

There is evidence that, for many important health risks, individuals di¤er signi�cantly
in how much they would bene�t from prevention. Sizeable welfare gains would be
reaped by identifying the individual characteristics associated with a larger e¢ ciency of
prevention. One way to uncover those characteristics is through genetic tests. The main
thesis of �personalized medicine� (see Collins [2010] and Davies [2010] among others)
is precisely that genetic testing provides cheap and reliable information on health risks
that can be used to individually tailor prevention. �There are many diseases such as
cystic �brosis or PKU, for which a particular biochemical or DNA test result makes a
very strong prediction about the likelihood of illness, and interventions are available�
(p. 802).1 There is actually a whole range of such prevention activities: �institution of
drug therapies; (...) special diets; (...) surgery or other options�(p. 815).

The objective of our paper is to assess the impact of a (genetic) test on both the
private health insurance market and on welfare. More precisely, we aim at understanding
under what circumstances such a test would be voluntarily taken, what the consequences
of the availability of testing would be on the extent to which individuals undertake
prevention e¤orts, and whether such a test would increase welfare.

We develop a model where a fraction of agents have a higher probability of developing
a disease than the rest of society. People are born uninformed about their individual
probability level, but can undertake a (genetic or other2) test in order to assess (without
any error) whether they have a low or high disease probability (in the former case, we
talk about a negative test, versus a positive test in the latter case). After the testing
phase, agents decide whether to undertake a costly (primary) prevention e¤ort in order
to decrease the probability of occurrence of the disease. We assume that prevention
reduces the probability of illness only for individuals whose genes predispose them to
the disease. One can give several examples of tests/illnesses with such features, ranging
from prophylactic mastectomy in case of mutated BRCA1 gene, to �intense medical
surveillance and removal of polyps (that) can be lifesaving for those at high risk� of
colon cancer (p. 1853). One reason why prevention e¤ort may be e¢ cient only if an
individual has a positive test is that �it is a combination of the genes that you have
inherited and the environment that you live in that determines the outcome�. Hence
the common saying, �genes load the gun, and environment pulls the trigger�(p. 1098).
For instance, for macular degeneration, �it became clear that almost 80 percent of the
risk could be inferred from a combination of (...) two genetic risk factors, combined
with just two environmental risk factors (smoking and obesity)�(p. 1169).

1All quotations in the Introduction are taken from Collins(2010), the page numbers refer to the
kindle edition.

2Alternatively, the �test� could be an exploration of family history, which Collins (2010, p. 1084)
indeed dubs a �free genetic test�.
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We study perfect competition between pro�t-maximizing health insurers who can-
not force individuals to undertake the test, and/or the prevention e¤ort, but who do
observe the tests results. This corresponds to the situation labeled �disclosure duty�
by Barigozzi and Henriet (2011), and to the legal environment in New Zealand and the
United Kingdom. We also assume, in line with existing conditions, that genetic insur-
ance (i.e., insurance against the risk of a positive test) is not available in the market.
Taking the test then means abandoning the sure pay-o¤ associated with the pooling
insurance contract (based on average probability) developed for uninformed agents for
an actuarially fair lottery between the (separating) contracts devised for agents with low
and high probabilities. Risk-averse agents dislike this so-called discrimination risk and
would never undertake a test that would not allow them to better adapt their prevention
e¤ort to their individual circumstances.

The availability of a prevention strategy tailored for high risk agents gives stronger
incentives to undertake the test. Whether such individuals make the prevention e¤ort
and thus decrease their disease probability is also of interest to the insurers. An open
question is whether this prevention e¤ort is observable by insurers. Prevention is easily
observable when it takes the form of surgery, or even drug therapy. It is much more
di¢ cult to observe if it consists of lifestyle changes such as dietary modi�cations or
exercise. We then cover the two cases in the paper. Throughout our analysis, we stress
two dimensions of the prevention e¤ort: its cost for the agent, and its e¤ectiveness, i.e.
the amount by which it reduces the disease probability of someone who is genetically
predisposed to the disease.

We �rst study the benchmark situation where the e¤ort is observable, veri�able and
contractible by the insurers. Our main result is that agents undertake the test only for
intermediate values of the cost of prevention e¤ort. When this cost is low, uninformed
people make the prevention e¤ort, so that a (negative) genetic test allows insurees to
forego the (cost of the) prevention e¤ort. The value of the test, de�ned as the di¤erence
in ex ante utility between taking the test or not, is then increasing with the e¤ort cost,
and may become positive if both the cost and e¢ ciency of e¤ort are not too low. For
intermediate values of the e¤ort cost, agents undertake the prevention e¤ort only if
they obtain a positive test. The test value is then decreasing in the e¤ort cost. Finally,
when the e¤ort cost is high, even a positive test does not induce agents to undertake
prevention, so that the discrimination risk translates into a negative test value. As
is intuitive, the value of the test increases with the e¢ ciency of the prevention e¤ort,
whatever its cost.

We then turn to the case where e¤ort is not observable. Insurers face a moral hazard
problem that they solve by o¤ering partial coverage, since full coverage induces agents
not to provide any e¤ort.3 A naïve intuition would suggest that this under-provision,

3For instance, Dave and Kaestner (2006) ��nd evidence that obtaining health insurance reduces
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by decreasing the utility level with prevention, also reduces the value of the test. This is
indeed the case for intermediate values of the e¤ort cost, when the e¤ort is undertaken
only in the case of a (positive) test. But this intuition is misleading when the e¤ort
cost is low enough that prevention is undertaken by uninformed agents. In that case,
the value of the test is actually larger with than without moral hazard, because moral
hazard decreases utility more when the test is not taken (and e¤ort is provided) than
when it is taken (and e¤ort is provided only in the case of a positive test). The driving
force behind this result is that insurers have to ration coverage more to uninformed
agents than to those with a positive test in order to induce them to make the e¤ort.
Comparing further the cases with and without moral hazard, we also �nd occurrences
where the test is undertaken for lower values of the e¢ ciency of e¤ort when this e¤ort
is unobservable than when it is observed by insurers.

Finally, we assess the impact of the various assumptions of our model on welfare and
provide several policy recommendations regarding the desirability of targeted genetic
tests, of policies to increase prevention by all, of di¤erent ways to eliminate the discrim-
ination risk associated to testing, and of enlarging the disclosure duty to the prevention
e¤ort.

Related literature
The seminal paper by Hirshleifer (1971) establishes the negative value of the infor-

mation brought by a test when health risk is exogenous and when individuals face a
discrimination risk. The information value may become positive if insurers do not ob-
serve the consumers�information status (Doherty and Thistle, 1996), if agents exhibit
a �repulsion from chance� (Hoel et al., 2006) or if insurance embodies redistribution
(Rees and Apps, 2006).

Several papers have added prevention choice to this setting. As pointed out in
Ehrlich and Becker (1972), preventive actions can be primary or secondary. Secondary
prevention (or self-insurance) is analyzed in Barigozzi and Henriet (2011) and Crainich
(2011). Barigozzi and Henriet (2011) compare several regulatory approaches used in
practice, from laissez-faire to the prohibition of tests. They show that policyholders
are better o¤ under the �disclosure duty�regulation studied in our paper, because this
regulation does not create an adverse selection problem while allowing insurees to use
the information provided by the test to self-insure against the damage.4 Crainich (2011)
points out that the consequences of regulating the insurers�access to genetic information
crucially depend on the nature of the equilibrium in the health insurance market �
whether pooling or separating. Crainich (2011) also provides conditions ensuring that

prevention and increases unhealthy behaviors among elderly men.�
4Hoy and Polborn (2000) and Strohmenger and Wambach (2000) also study the impact of genetic

tests on the health insurance market in the presence of adverse selection.
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the genetic insurance market suggested by Tabarrok (1994) induces the optimal level of
secondary prevention. We come back to this important point in section 6.

Primary prevention is considered in Doherthy and Posey (1998) and Hoel and Iversen
(2002). Both papers assume that policyholders are not required to inform insurers about
their test results and thus focus on the interplay between risk discrimination and adverse
selection. Our framework is closer to Hoel and Iversen (2002). We share the assumption
that only high risk people can reduce their disease probability thanks to primary pre-
vention actions, but we di¤er when they assume that uninformed policyholders never
undertake prevention. Also, Hoel and Iversen (2002) considers both compulsory and
voluntary (supplementary) health insurance.

The main di¤erence between our paper and the articles above is that we assume
that primary prevention (especially when it consists of lifestyle improvements such as
exercising or eating healthy food) is not observable by insurers, which gives rise to a
moral hazard problem solved by providing partial insurance coverage, and thus a¤ects
the value of the genetic test.5

2 Setting and notation

The economy is composed of a unitary mass of individuals. Each individual develops a
disease with some probability, with sickness modeled as the occurrence of a monetary
damage of amount d. A fraction � of individuals are of type H and have a high proba-
bility, p0H , of incurring the damage (with 0 < � < 1), while the remaining fraction 1��
is of type L and has a lower probability, p0L (with 0 < p0L < p0H < 1). Therefore, the
average probability of illness in society is given by p0U = �p

0
H + (1� �)p0L.

Individuals are uninformed of their type unless they take a genetic test. The test
is assumed to be costless and perfect, revealing with certainty the individual true type,
L or H.6 Individuals choose whether to test and also whether to exert some primary
prevention e¤ort. We assume that the prevention decision is binary and that the e¤ort
cost (normalized to zero if no e¤ort is undertaken) � is measured in utility terms. The
assumption of a utility (rather than monetary) cost �ts better behavior modi�cation
e¤orts (the type of prevention that is the most di¢ cult to observe for insurers) and
is innocuous in our binary setting.7 We further assume that prevention has no e¤ect

5A recent exception is the paper by Filipova and Hoy (2009), which focuses on the moral hazard
risk of over-consumption of surveillance when �nancial costs are absorbed by the insurance pool. They
concentrate on the consequences of information on prevention, while we endogenize both the prevention
and testing decisions.

6With a slight abuse of terminology, we denote an uninformed agent as having type U .
7This would not be true if the prevention choice were continuous: a monetary cost would then

generate income e¤ects (with the well known complications detailed in Dionne and Eeckhoudt [1985])
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for a low probability individual, while it decreases the disease probability of type H
individuals to p1H , with p

0
H > p1H � p1L = p0L = pL, where pij denotes the disease

probability of an agent of type j 2 fL, H; Ug who is (resp., is not) making a prevention
e¤ort, denoted by i = 1 (resp., i = 0). We capture the prevention e¢ ciency through
� = p0H � p1H . The parameter � can take any value between zero (prevention has no
impact, p1H = p

0
H) and �� = p0H � pL (prevention decreases the probability of a type H

agent to the level of a low probability agent, p1H = pL). The two characteristics of the
prevention technology, its cost � and e¢ ciency �, will play an important role in our
analysis.

The timing of the model consists in �ve sequential stages: (1) a competitive fringe
of insurers o¤er insurance contracts, (2) agents decide whether to take the test or not,
and observe its result, (3) they choose one insurance contract (4) they exert or not some
prevention e¤ort and (5) the damage occurs or not, and the corresponding payo¤s are
realized.

We compute and compare the equilibrium allocations depending upon what is ob-
served by the insurers. Section 3 studies the case where the prevention e¤ort is ob-
servable and contractible by insurers. Section 4 assumes that e¤ort is not observ-
able/contractible, so that insurers face a moral hazard problem. Section 5 compares
the results obtained in the two previous sections to shed light on the impact of in-
troducing moral hazard on testing and prevention. Section 6 investigates the welfare
characteristics of the equilibrium and discusses the role of the discrimination risk and
how to move closer to the �rst-best allocation. Section 7 concludes and presents policy
recommendations.

3 Perfect information

In this section, insurers can observe all relevant information. This allows them to
condition the contracts they o¤er on whether a test has been taken, its results and
whether e¤ort is provided or not. We start by describing the contracts o¤ered by the
insurers, and then move to the individuals�decisions of whether to test and to make a
prevention e¤ort.

3.1 Contracts o¤ered by the insurers

Competition forces insurers to o¤er actuarially fair contracts, so that individuals favor
full insurance. The insurance contract devised for an agent of type j 2 fL, H; Ug as a
function of his e¤ort decision (i 2 f0; 1g) is denoted by (�ij ; Iij) and characterized by a

that are assumed away in our formulation.
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premium in case of health,
�ij = p

i
jd;

and an indemnity (net of the premium) in case of sickness,

Iij = (1� pij)d:

The expected utility of an agent buying the contract devised for his type j and e¤ort
decision i is

U ij = (1� pij)v(y � �ij) + pijv(y � d+ Iij)� �i

= v(y � pijd)� �i � v(cij)� �i;

where v(:) is a classical von Neumann Morgenstein utility function (v0(:) > 0; v00(:) < 0)
with y the individual�s exogenous income, cij his consumption level, and where �

1 = �

while �0 = 0.
By assumption, prevention has costs but no bene�t when the individual is revealed

by the test to be of a low type, so that the only contracts o¤ered to type L agents entail
no prevention e¤ort. Insurers may then o¤er at most �ve contracts.

We now turn to the choice of a contract by the agent, i.e. whether they take the
test and perform some prevention.

3.2 Prevention and Health Insurance Decisions

We proceed backwards and �rst look at the prevention decision of agents who have
taken the test. These agents know with certainty whether they are of type L (negative
test) or H (positive test). Agents of type L have no incentive to perform the e¤ort and
so buy the contract (�0L; I

0
L) giving them a utility level of U0L. Agents of type H have

the choice between two contracts (with and without e¤ort) and buy the contract with
e¤ort provided that

U1H > U0H

, v(c1H)� � > v(c0H)

, � < �max � v(c1H)� v(c0H): (1)

This condition imposes an upperbound on the cost of e¤ort. Observe that, if this condi-
tion is satis�ed, then no insurance �rm proposes the contract (�0H ; I

0
H) at equilibrium.

If one �rm were to do so, then another �rm would propose the contract (�1H ; I
1
H � ")

with " small, would attract all type H agents, and would make a strictly positive pro�t.
We now look at agents who have not taken the test. These agents do not know

their true type, but only that they are of average type U . They choose the contract
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specifying e¤ort if

U1U > U0U ;

, � < �min � v(c1U )� v(c0U ):

The same reasoning as above shows that, if it is individually optimal for an individual
who has not taken the test to make a protection e¤ort (resp., not to make an e¤ort), then
only the corresponding contract (�1U ; I

1
U ) (resp., the contract (�

0
U ; I

0
U )) will be o¤ered

at equilibrium by private �rms to this individual.
There are two reasons why �min < �max if � > 0. First, e¤ort is always e¤ective

if type H but not always if type U , with the same cost in both cases. Second, type H
individuals pay a higher premium than type U agents, so that their marginal utility is
higher. Type H thus gain more than average type U from the lower premium made
possible by the prevention e¤ort. It is easy to see that, if condition (1) is not satis�ed,
then no agent chooses to exert e¤ort at equilibrium, and our model boils down to a
special case of Hoel et al. (2002). We then have the following result:

Result 1 The prevention decision of agents depends on the e¤ort cost � as follows:
a) � < �min: uninformed individuals and agents with a positive test undertake e¤ort,
b) �min < � < �max: only agents with a positive test undertake e¤ort,
c) � > �max: no one undertakes e¤ort.

We proceed backward and solve the testing decision of agents.

3.3 To test or not to test

Whether taking the test is worth its while depends on the value of �, which determines
under what circumstances an individual makes a prevention e¤ort. We cover in turn the
three cases covered by Result 1. In all cases, we de�ne as the value of the test, denoted
by 	(�;�), the di¤erence between the utility the agent gets with and without taking
the test (anticipating in both cases the contract he will buy and whether he will make
the prevention e¤ort). An individual takes the test if and only if its value is positive.

3.3.1 No one undertakes prevention: � � �max
Result 2 When � � �max, 	(�;�) � 	0 < 0, 8(�;�) so that the test is not taken.

This is the well known (Hirshleifer, 1971) result of the negative value of a genetic
test, whose results are observable and contractible, in the absence of prevention. The
intuition is that taking the test is like buying a lottery, with a good outcome with
probability 1 � � and a bad outcome with probability �. By not taking the test, the
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individual obtains a sure payo¤ (since he is perfectly insured) at an actuarially fair
rate. Any risk averse agent hence prefers the sure and actuarially fair payo¤ to the
lottery. This drawback of the test is called the discrimination risk. Observe that 	 is
independent of both the cost and e¤ectiveness of prevention, as long as the cost � is
larger than the threshold �max.

We now move to the polar case where e¤ort is undertaken even when individuals do
not test.

3.3.2 Types U and H undertake prevention: � � �min
The value of the test is given by

	(�;�) = �U1H + (1� �)U0L � U1U
= (1� �)��

�
v(y � p1Ud)�

�
�v(y � p1Hd) + (1� �)v(y � pLd)

��
: (2)

The �rst term in (2) measures the gain from the test, which allows agents to forgo
the prevention e¤ort cost � if the test proves negative (i.e., with probability 1 � �)
while the terms between brackets represent the drawback from taking the test, i.e. the
discrimination risk.

We then obtain

Result 3 When � � �min, the value of the test, 	(�;�), is positive provided that the
prevention e¤ort�s cost � and e¢ ciency � are large enough. Formally,
a) there exists a unique value of �, denoted by ~�, such that 0 < ~� < �� and 	(�min; ~�) =
0;
b) for all � � ~�, there exists a unique value of �, denoted by ~�1(�), such that
0 � ~�1(�) � �min and 	(~�1(�);�) = 0;
c) 	(�;�) > 0 for all � > ~� and ~�1(�) < � < �min;
d) for all � � ~�, ~�1(�) decreases with �;
e) ~�1( ��) = 0.

The value of the test increases both with the cost of prevention e¤ort (since a
negative test allows the testee not to make the e¤ort) and with its e¢ ciency (a larger
� moves p1H closer to pL and reduces the discrimination risk). When the e¢ ciency of
prevention is low, the value of the test remains negative for all values of � � �min: the
gain from taking the test is too low to compensate agents for the attached discrimination
risk. When � is high enough, 	 becomes positive provided that the e¤ort cost is large
enough. Formally, we identify thresholds on e¤ort e¢ ciency, ~�; and cost, ~�1, above
which the value of the test is positive. The threshold cost decreases with prevention
e¢ ciency: the value of the test increases with �, so that it remains positive for lower
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values of � as � increases. When � reaches ��, the value of the test is positive for all
values of � � �min.

We move to the intermediate case, where e¤ort is undertaken if and only if the
policyholder is of type H.

3.3.3 Only type H agents undertake prevention: �min < � < �max

In such a case, the value of the test is given by

	(�;�) = �U1H + (1� �)U0L � U0U ;
= �(v(y � p1Hd)� �) + (1� �)v(y � pLd)� v(y � p0Ud): (3)

Taking the test results in the agents making the prevention e¤ort whenever their test
is positive. Equation (3) shows that the discrimination risk associated with testing is
mitigated by the lower premium, thanks to prevention, when the test is positive. The
value of the test increases with prevention e¢ ciency �, but decreases with the cost
of e¤ort �. This latter result is in stark contrast with the one obtained when even
uninformed types undertake prevention.

Result 4 When �min � � < �max, the value of the test is positive provided that the
prevention e¢ ciency � is large while the e¤ort cost � is small. Formally,
a) for all � � ~� (as de�ned in Result 3), there exists a unique value of �, denoted by
~�2(�), such that �min � ~�2(�) < �max and 	(~�2(�);�) = 0;
b) 	(�;�) > 0 for all � > ~� and �min < � < ~�2(�);
c) for all � � ~�, ~�2(�) increases with �;
d) ~�1( ~�) = ~�2( ~�) = �min and �min < ~�2( ��) < �max.

The value of the test is positive provided that prevention is su¢ ciently e¤ective (same
threshold ~� as in Result 3) and that the cost of e¤ort is not too large. As e¤ectiveness
increases, the threshold cost ~�2 below which the value of the test is positive increases,
so that the test is undertaken for larger values of �.

To summarize, when e¤ort is observable and contractible by insurers, the genetic
test is undertaken at equilibrium provided that the prevention e¢ ciency is large enough
(� > ~�) while its cost takes intermediate values (~�1(�) < � < ~�2(�)). The interval
of e¤ort costs compatible with test taking enlarges as prevention e¢ ciency increases.
Figure 1 provides a graphical illustration of the value of the test as a function of the
prevention cost for four di¤erent values of the prevention e¢ ciency. Throughout the
paper, graphical illustrations are based on the following assumptions: v(c) =

p
c, y = 5;

d = 3; � = 0:3; pL = 0:1, p0H = 0:6, so that �� = 0:5.
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Insert Figure 1 around here

Figure 2 depicts the thresholds ~�1, �min, ~�2 and �max as functions of �. With this
numerical example, the value of ~� is 0.04. The area between the curves ~�2(�) and
~�1(�) represents the combinations of prevention cost and e¢ ciency for which agents
take the test, and where they make an e¤ort only if this test is positive. Outside of this
region, no individual takes the test. Combinations of (�;�) located below the �min and
~�1(�) curves are such that everyone makes the prevention e¤ort, while combinations
above the �min and ~�2(�) curve are such that no prevention e¤ort is made by anyone.

Insert Figure 2 around here

We now move to the case where both the test and its results are observable and
contractible, but where the prevention e¤ort is not.

4 Unobserved prevention e¤ort

Insurers now face a moral hazard problem, since the prevention e¤ort has to be induced
by adequately crafting the insurance contracts. We proceed as in section 3 and we �rst
study the contracts proposed by the insurers before moving to the choice of prevention
e¤ort and of testing by the agents.

4.1 Contracts o¤ered by the insurers

Contracts without prevention e¤ort, (�0j ; I
0
j ), j 2 fL, H; Ug, are unchanged, compared

to the previous section. We then consider the contract (�1j ; I
1
j ) o¤ered to a type j =

fH;Ug who the insurer would like to induce to make an e¤ort. For such an individual
to make an e¤ort, the following incentive compatibility (IC hereafter) constraint must
be satis�ed:

(1� p1j )v(b1j ) + p1jv(d1j )� � � (1� p0j )v(b1j ) + p0jv(d1j ); (4)

where b1j and d
1
j denote the consumption level of a type j = fH;Ug buying the (�1j ; I1j )

contract in case they are lucky and in case the damage occurs, respectively�i.e., b1j =
y � �1j and d1j = y � d+ I1j .

The IC constraint (4) states that the individual, when buying the contract (�1j ; I
1
j ),

is at least as well o¤making an e¤ort (the LHS of (4)) than pretending to make one (the
RHS of (4)). This IC constraint is incompatible with the provision of full coverage, since
in that case consumption levels are equalized across states of the world (b1j = d

1
j ). As
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pointed out by Shavell (1979), the only way for the insurer to induce e¤ort making is to
restrict the coverage o¤ered to the individual (the competition between insurers ensures
that the contracts remain actuarially fair). We rewrite the contracts as �1j = �jp

1
jd and

I1j = �j(1 � p1j )d, where �j is the (maximum) coverage rate o¤ered to individuals of
type j = fH;Ug in order to induce them to make an e¤ort. The value of �j is implicitly
obtained by solving the IC constraint (4) with equality, and we obtain

� = �(v(b1H)� v(d1H)); (5)

for j = H and
� = ��(v(b1U )� v(d1U )); (6)

for j = U . The IC constraint equalizes the cost and bene�t of e¤ort making when buying
the contract (�1j ; I

1
j ), the latter being the product of the e¢ ciency of the prevention e¤ort

(� and �� in the case of types H and U , respectively) and the utility gap between the
two states of the world (sick or healthy). We have that b1j > d

1
j : the insured is better

o¤ if the damage does not occur, which gives him the exact incentive needed to support
the prevention e¤ort cost �.

We obtain the following useful lemma.

Lemma 1 a) �U < �H < 1.
b) �H and �U are decreasing in �. There exists a maximum value of �, denoted by ��H
(respectively, ��U ) such that e¤ort by type H (resp., U) may be induced only if � � ��H
(resp., � � ��U ). Moreover, ��U < ��H .

Two e¤ects push towards a larger coverage rate for type H than for type U . First,
the expected e¤ectiveness of the prevention e¤ort is larger for type H than for type
U , since for the latter there is a probability 1 � � that the e¤ort is actually worthless.
Second, the utility gap between the good and bad states of the world is larger for type
H than for type U for a given coverage level, because the insurance premium is larger
for H than for U . Also, as the cost of e¤ort increases, insurers have to increase this
utility gap, and hence to reduce the coverage �i o¤ered to an individual of type i.
At the limit, this coverage tends toward zero, determining the maximum value of the
e¤ort cost, ��i, compatible with inducing prevention e¤ort for type i. Intuitively, this
maximum prevention cost ��i is lower for type U (when e¤ort works with probability �)
than for type H.8

8The bene�t of prevention (the RHS of (5) and (6)) need not increase with prevention e¢ ciency,
because a larger value of � decreases the utility gap between states of the world for a given coverage
level. The non monotonic relationship between the prevention e¢ ciency � and the level of coverage �
in ex ante moral hazard models has been pointed out in Bardey and Lesur (2005).
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Figure 3 illustrates Lemma 1 for our numerical example.

Insert Figure 3 around here

We now proceed backward, starting with the prevention choice of agents.

4.2 The choice of prevention

An individual of type H chooses the contract inducing e¤ort (with the corresponding
expected utility level denoted by U1MH

H ) rather than (�0H ; I
0
H) if

9

U1MH
H > U0H

, � < �MH
max � (1� p1H)v(b1H) + p1Hv(d1H)� v(c0H):

Likewise, the condition under which it is optimal for an uninformed individual to
exert a prevention e¤ort is

U1MH
U > U0U ;

, � < �MH
min � (1� p1U )v(b1U ) + p1Uv(d1U )� v(c0U ):

The following result parallels Result 1.

Result 5 Uninformed agents undertake the e¤ort provided that � � �MH
min < min[�min;

��L],
while type H agents do so provided that � � �MH

max < min[�max;
��H ].

The maximum values of the prevention cost inducing (uninformed or type H) agents
to make a prevention e¤ort decrease when this e¤ort is not observable by the insurers.
The intuition for this result rests on the observation that contracts intended for e¤ort-
making agents are actuarially fair both with and without moral hazard, and di¤er only
in the lower coverage rates o¤ered with moral hazard. Introducing moral hazard then
degrades the utility obtained by e¤ort-making agents, decreasing the maximum values
of the e¤ort cost compatible with exercising prevention.

Moving backward again, we study the incentive to take the genetic test.

4.3 To test or not to test

The value of the test depends on whether e¤ort is undertaken at equilibrium �i.e., on
how � compares with �MH

min and �
MH
max . In the case where � � �MH

max, we obtain that
	MH(�;�) = 	(�;�) = 	0 < 0 (since we are back to the case where no prevention
e¤ort is undertaken), so that the test is not taken. We now consider the other two
possibilities.

9Recall that, at equilibrium, competition among insurers ensures that only the utility-maximizing
contract (given the observability constraints) is o¤ered to types j = fH;Ug.
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4.3.1 Types U and H undertake prevention: � � �MH
min

Individuals take the test if

	MH(�;�) = �U1MH
H + (1� �)U0L � U1MH

U > 0

, �
�
(1� p1H)v(b1H) + p1Hv(d1H)� �

�
+ (1� �)v(c0L)�

�
(1� p1U )v(b1U ) + p1Uv(d1U )� �

�
> 0:

We �rst present the following lemma.

Lemma 2 When � � �MH
min , we have that

a)
@	MH(�;�)

@�
> 1� � if �! ��;

b) 	MH(0;�) = 	(0;�) for all �:

As was already the case when e¤ort was observable (see (2)), raising the cost of e¤ort
increases the value of the test by the probability that the test is negative (and the e¤ort
useless), 1� �. With moral hazard, insurers moreover react to a larger cost of e¤ort by
decreasing the coverage rates o¤ered to both types U and H agents, thereby decreasing
the utility levels they both attain. It is unclear in general how the di¤erence of utility
levels between types U andH varies with these lower coverage rates, because those types
di¤er both in coverage (�U < �H) and in probability (p1H � p1U ). When � ! ��, the
probabilities of both types converge when they undertake prevention, while the coverage
rate remains lower for type U than for type H (because prevention is e¤ective only with
probability � for type U). We then obtain that a larger e¤ort cost degrades more the
utility of type U than of type H, because there is a larger utility gap between states of
the world for type U (formally, d1U < d

1
H < c

1
H < c

1
U < b

1
H < b

1
U ), who then su¤ers more

at the margin from the decrease in coverage rate. This in turn increases the value of
the test, compared to the case where prevention is observable. Part b) of Lemma 2 is
straightforward since the unobservability by insurers of the prevention e¤ort does not
matter when this e¤ort is costless.

We then obtain the following result.

Result 6 When � � �MH
min , the value of the test is positive provided that the prevention

e¢ ciency � and the e¤ort cost � are large enough. Formally, assume that � is large
enough. We then have that
a) there exists a (unique) value of �, denoted by ~�

MH
1 (�), such that ~�

MH
1 (�) < �MH

min

and 	MH(~�
MH
1 (�);�) = 0. Moreover, ~�

MH
1 ( ��) = 0;

b) 	MH(�;�) < 0 for � < ~�
MH
1 (�) and 	MH(�;�) > 0 for � > ~�

MH
1 (�).
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This result is similar to the one obtained without moral hazard (Result 3): Lemma
2 implies that the value of the test is larger with than without moral hazard when
� � �MH

min and � ! ��, so that we can identify a threshold e¤ort cost level above
(respectively, below) which agents do (resp., do not) undertake the test.10 Observe that
Result 6 concentrates on large values of � while Result 3 is stronger and shows the
existence of a threshold value of � above which the value of the test is positive for
small enough values of �. This weaker statement is due to the fact that, with moral
hazard, the value of the test may not always increase with �; because the utility of an
uninformed type may increase more with � than that of a type H, due to the partial
and endogenous coverage o¤ered by insurers to both types.

We now turn to the case where e¤ort is undertaken if and only if the policyholder�s
type is high.

4.3.2 Only type H agents undertake prevention: �MH
min < � < �

MH
max

The value of the test in that case is

	MH(�;�) = �U1MH
H + (1� �)U0L � U0U

= �
�
(1� p1H)v(b1H) + p1Hv(d1H)� �

�
+ (1� �)v(c0L)� v(c0U ):

The next lemma states how prevention cost and e¢ ciency a¤ect the value of the
test:

Lemma 3 For �MH
min < � < �

MH
max, we have that

a)
@	MH(�;�)

@�
> 0;

b)
@	MH(�;�)

@�
< 0:

With intermediate values of �, prevention e¢ ciency a¤ects the value of the test only
through its impact on the utility level attained by typeH agents. This impact is twofold.
The direct impact of a larger � lowers both the disease probability and the premium,
for a given coverage level �H , and thus increases type H utility. The indirect impact is
ambiguous, since recall from footnote 8 that � may either decrease or increase �H . We
show in the proof of Lemma 3 that, even if �H decreases with �, the direct impact is
larger than the indirect one, so that the value of the test always increases with � when
�MH
min < � < �

MH
max . The impact of a higher prevention cost on the value of the test works

similarly: the direct impact decreases the utility of the individual with a positive test
for a given insurance contract, while the indirect impact of � on the insurance contract
10We will compare the threshold costs with and without moral hazard in section 5.
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is to decrease the coverage rate �H proposed by the insurer (see Lemma 1), further
damaging the utility of this individual and thus the value of the test.

Observe that the sign of the impact of � and � on the value of the test is the same
as without moral hazard. This is in stark contrast with the previous section, where the
fact that moral hazard a¤ects the insurance contracts o¤ered to both types H and U
(since they both undertake prevention and are o¤ered insurance contracts with partial
coverage) renders the sign of the impact of � and � on the value of the test ambiguous
in general.

We then obtain the following result.

Result 7 When �MH
min � � < �MH

max, the value of the test is positive provided that the
prevention e¢ ciency � is large while the e¤ort cost � is small. Formally, assume that
� is large enough. We then have that
a) there exists a unique value of �, denoted by ~�

MH
2 (�), such that �MH

min � ~�
MH
2 (�) <

�MH
max and 	

MH(~�
MH
2 (�);�) = 0. Moreover, �MH

min <
~�
MH
2 ( ��) < �MH

max;

b) 	MH(�;�) > 0 for �MH
min < � <

~�
MH
2 (�);

c) ~�
MH
2 (�) increases with �.

We now take stock of what we have learned when prevention is not observable, and
we compare our results with the perfect information case.

5 The impact of introducing moral hazard on testing and
prevention

We �rst summarize our results with unobservable prevention e¤ort in the following
propositions.

Proposition 1 Individuals take the test if the e¢ ciency of prevention is large enough
and the prevention cost takes intermediate values: ~�

MH
1 (�) � � � ~�MH

2 (�). Moreover,

the threshold ~�
MH
2 (�) increases with �.

The main di¤erence with results obtained without moral hazard is due to the fact
that, as we have underlined in section 4.3.1, the value of the test need not always be
increasing in the e¢ ciency of prevention when the cost of prevention is low enough
that even uninformed types take the test. This prevents us from determining a speci�c
prevention e¢ ciency threshold above which individuals take the test for speci�c values
of prevention cost also. This also prevents us from assessing how the lowest prevention
cost compatible with taking the test varies with prevention e¢ ciency. Except for these
caveats, the main gist of our results is not a¤ected by the introduction of moral hazard:
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the test is undertaken provided that the prevention e¢ ciency is high enough, and that
prevention costs take intermediate values.

The following proposition states when prevention is undertaken as a function of its
cost and e¢ ciency.

Proposition 2 a) If the e¢ ciency of prevention is large enough, then everyone un-
dertakes prevention if its cost is low enough (� < ~�

MH
1 (�)), only people of type H

undertake prevention if its cost is intermediate (~�
MH
1 (�) � � � ~�MH

2 (�)) while no one

makes a prevention e¤ort otherwise (i.e., if � > ~�
MH
2 (�)).

b) If the e¢ ciency of prevention is low enough that 	MH(�;�) < 0 8�, then all agents
undertake prevention if its cost is low enough (� < �MH

min ) while no one undertakes pre-
vention otherwise (if � > �MH

min ).

The same caveats apply as for Proposition 1, compared to the situation where pre-
vention is observable.

Figure 4 provides a graphical illustration of the value of the test as a function of
prevention cost for �ve di¤erent values of prevention e¢ ciency. It is based on the same
assumptions as those used to depict Figures 1 to 3, and is the equivalent, with moral
hazard, of Figure 1.

Insert Figure 4 around here

Each curve on Figure 4 shows the value of the test as a function of prevention cost
for a given value of prevention e¢ ciency. All curves have the same shape, so we start
by focusing on any curve �i.e., on any given e¢ ciency �. We observe that 	MH is �rst
increasing and convex in �. This complements nicely our analytical �nding of Lemma
2 that the slope of 	MH is larger than 1 � � when � ! ��. The curve 	MH is then
(as proved in Lemma 3) decreasing in � until it reaches 	0 for � > �MH

max. Finally, a
striking characteristic of Figure 4 is that 	MH(�MH

min ;�) is increasing in �: although
a larger prevention e¢ ciency does not increase the value of the test for all values of �
such that even untested types undertake e¤ort, the maximum value of the test is indeed
increasing with � in our numerical example.

We now look at the impact of the unobservability of the prevention e¤ort. We
�rst assume that � is �xed, and look at how the testing and prevention decisions
are a¤ected by moral hazard as a function of the cost of prevention e¤ort, �. We
assume that � is close to ��, and that �MH

min < �min < �MH
max < �max (the case where
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�MH
min < �MH

max < �min < �max can be treated similarly and does not bring any new
insight, so we leave it to the reader).

We then obtain the following proposition.

Proposition 3 Assume that � is large enough (close but not equal to ��). Then
(a) there exists a threshold �MH

min < �̂ < �min such that the value of the test is larger
(resp., lower) with than without moral hazard for all prevention costs below (resp., above)
this threshold;
(b) for ~�

MH
1 (�) < � < min[~�1(�);

~�
MH
2 (�)], the value of the test is positive with moral

hazard but negative without: agents take the test if and only if there is moral hazard;
(c) for max[~�1(�); ~�

MH
2 (�)] < � < ~�2(�), the value of the test is positive without moral

hazard but negative with: agents take the test if and only if there is no moral hazard;
(d) the maximum value of the test is higher with moral hazard than without:

	MH(�MH
min ;�) > 	(�min;�):

We give the intuition for this proposition, starting with part (a). Recall that the
value of the test is de�ned as the di¤erence between the expected utility of taking the
test and of remaining uninformed about one�s own disease probability. We know that the
value of the test is larger with than without moral hazard when the e¤ort cost is so low
that even uninformed agents undertake the prevention e¤ort (a direct consequence of
Lemma 2). The reason is that moral hazard damages more the utility of the uninformed
type than that of type H, through a lower coverage. By contrast, the value of the test
is lower with than without moral hazard when only type H undertakes the prevention
e¤ort (i.e., for intermediate values of the prevention cost). In that case, uninformed
and low type agents receive the same contract (and thus utility level) with and without
moral hazard. The contract o¤ered to type H with moral hazard is degraded compared
to the situation without moral hazard because of the partial coverage o¤ered, hence
lowering the value of the test. Since the value of the test is continuous in prevention
cost whether prevention is observable or not, the intermediate value theorem implies
that there exists a cost threshold below (resp., above) which the value of the test is
larger (resp., lower) with than without moral hazard.

Part (b) shows that, for some values of the prevention cost low enough that even
uninformed agents undertake prevention, the value of the test is positive if and only
if prevention is not observable. Recall that the value of the test is negative for very
low values of the prevention cost (since the discrimination risk trumps the gain from
foregoing the cheap prevention e¤ort when the test is positive), whether prevention is
observable or not. The result then obtains directly from the observation that the value
of the test increases faster with e¤ort cost with than without moral hazard when � is
large enough (see Result 6). Similarly, part (c) establishes that, for higher values of the
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e¤ort cost (such that the value of the test is lower with than without moral hazard),
agents undertake the test at equilibrium if and only if there is no moral hazard.

Finally, part (d) shows that the maximum value of the test is larger with moral haz-
ard, when prevention e¢ ciency is close to its maximum, because the reduced insurance
coverage generated by moral hazard considerations hurts more uninformed than type
H agents.

With our numerical example, Proposition 3 holds for all values of �, as illustrated
in Figure 5 for the case where � = 0:1 < �� = 0:5.

Insert Figure 5 around here

We now endogenize the decision to take the test and study the impact of moral
hazard on the amount of prevention e¤ort at equilibrium.

Proposition 4 Introducing moral hazard considerations (weakly) decreases the fraction
of the population exerting the prevention e¤ort.

To prove this proposition, observe �rst that, for values of (�;�) such that the
testing decision is not a¤ected by moral hazard, the fraction of the population exerting
the prevention e¤ort either remains constant or decreases. This is a straightforward
consequence of the fact (see Result 5) that �MH

min < �min and that �
MH
max < �max. We

now show that the same result holds if (�;�) is such that the introduction of moral
hazard changes the testing decision. Proposition 3 has shown that two situations may
occur. The �rst one happens when (�;�) is such that the test is taken if and only
if there is moral hazard. This case materializes when the e¤ort cost is low enough
(� < ~�1(�) < �min) that, without moral hazard, all individuals choose to remain
uninformed and to undertake the prevention e¤ort. With moral hazard, the agents who
obtain a negative test do not exert the e¤ort. We then obtain that introducing moral
hazard decreases by 1� � the fraction of the population exerting the prevention e¤ort
at equilibrium. A similar phenomenon appears when the e¤ort cost is high enough that
agents take the test if and only if there is no moral hazard. The cost is high enough
(� > ~�

MH
2 (�) > �MH

min ) that, with moral hazard, agents remain uninformed and do not
exert e¤ort while, without moral hazard, agents take the test and thus exert e¤ort if
they are of type H. Hence, moral hazard also decreases prevention e¤ort from a fraction
� of the population to zero.

The analysis we have performed up to now in this section looks at the impact of
introducing moral hazard for a given value of �. We now look at how this impact varies
as a function of �.
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Proposition 3 (a) proves that the value of the test is larger with than without moral
hazard when the prevention cost is low enough that uninformed agents undertake the
e¤ort and when � is large enough. This suggests that taking the test may be compatible
with lower values of the prevention e¢ ciency with than without moral hazard. Resorting
to numerical simulations, we obtain that the minimum value of � above which there
exists an interval of prevention cost values compatible with taking the test is lower (at
0.034) with than without moral hazard (where ~� = 0:04). We then have that

Proposition 5 Introducing moral hazard considerations may induce individuals to un-
dertake the genetic test for lower values of the prevention e¢ ciency �.

Up to now, we have concentrated on the value of the test, and on the testing and
prevention decisions of agents. We now look at their welfare level.

6 Welfare analysis

In this section, we investigate the impact of the availability of (observable or not)
prevention e¤ort, testing and insurance on the ex ante welfare of agents. We then
contrast these results with the �rst-best allocation, and we discuss three ways to do away
with the discrimination risk that is at the root of the non optimality of the equilibrium
allocation studied here.

We start from the simplest case, where prevention is not available, and then add
sequentially the availability of prevention and of testing in order to measure their sepa-
rate impact on welfare. We illustrate our results with the help of Figures 6 and 7, which
depict welfare (ex ante utility) as a function of the prevention cost �, for a given value
of �, under various scenarios.

Insert Figure 6

When prevention is not available, whether the test is available or not plays no role:
policyholders do not take the test since it has only drawbacks, namely the discrimination
risk. The ex ante utility level is then v(c0U ) which is of course independent of �. This
utility level corresponds to the horizontal line on Figure 6. We then introduce the
possibility to exert observable e¤ort but assume that the genetic test is not available.
In that case, agents are uninformed about their individual probability and exert e¤ort
if and only if the e¤ort cost is lower than the threshold �min (see Result 1). Their ex
ante utility is given by v(c1U ) � � for � < �min, and v(c0U ) for � � �min. We represent
this utility level on Figure 6. The vertical distance between this utility level and the
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horizontal line (denoted by A on Figure 6) represents the ex ante utility gain from the
prevention technology with observable e¤ort. It obviously decreases linearly (at a rate
of one) with the cost of e¤ort.

The next step consists in introducing the testing technology, assuming that the
prevention e¤ort is observable and the prevention e¢ ciency � large enough that the
test is worth taking for certain values of �. We know from Results 3 and 4 that the
test is taken only if the e¤ort cost � is comprised between ~�1 and ~�2. For � < ~�1,
agents remain uninformed and exert e¤ort, so that their utility remains v(c1U ) � �,
while if � > ~�2 they also remain uninformed but do not exert e¤ort, with a utility
level of v(c0U ). For � in between ~�1 and ~�2, agents test and their ex ante utility is
�(v(c1H)��)+ (1��)v(c0L), which decreases with � at a rate of � since the test enables
those who, with probability �, are of a high type to make the prevention e¤ort at a
cost �. Figure 6 depicts the value of the test as a function of the cost of prevention
(vertical distance labeled B). It is composed of the gain from the targeted e¤ort, minus
the discrimination risk.

Before turning to the impact of moral hazard, we study the �rst-best allocation
as a benchmark.11 Given risk aversion, the �rst-best allocation should perfectly ensure
against both the risk of being of type H (or discrimination risk) and the health risk, and
should thus give the same (ex post) consumption to all (ex ante identical) individuals.12

The test gives information that can be acted upon to reduce the health risk and is then
prescribed to everyone. High type agents are told to do the prevention e¤ort provided
that its cost is not too large. From an ex ante perspective, if e¤ort is prescribed for
types H, the average probability to incur the damage in the economy equals p1U and the
individuals�expected utility is v(c1U )� �� because of the probability � of being of type
H and of having to do the e¤ort. If type H agents are told not to make the e¤ort, all
agents obtain ex ante a utility level of v(c0U ) based on the higher average probability
p0U . So, the �rst-best solution entails e¤ort for all agents of type H if and only if

v(c1U )� �� � v(c0U )

, � <
v(c1U )� v(c0U )

�
=
�min
�
:

The welfare level attainable under the �rst-best allocation is represented on Figure 6. It
corresponds to v(c1U )� �� if � < �min=� and to v(c0U ) otherwise. Its slope with respect
to � equals minus the probability of having to make the e¤ort, which is � if the e¤ort
cost is low enough, and zero otherwise.

11The comparison between �rst best and equilibrium allocations under various assumptions is more
easily made assuming away moral hazard. Moreover, the introduction of moral hazard would not change
signi�cantly the arguments made here.
12We assume that the e¤ort cost, being a utility cost, is not ensurable.
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The vertical distance C on Figure 6 represents the utility di¤erence between expected
welfare levels attained at the �rst-best and at the equilibrium allocation studied in this
paper. The discrimination risk explains this di¤erence, through two channels. First,
the discrimination risk may bias the prevention decision of agents away from the �rst-
best level, leading to too much prevention (if � < ~�1) or to too little of it (if ~�2 <
� < �min=�). Second, even when the prevention decisions are �rst-best optimal (when
~�1 < � <

~�2), the discrimination risk by itself entails a decrease in the ex ante utility.
It is then very tempting to infer as policy recommendation that the discrimination risk
should be banned in order to move us closer to the �rst-best allocation. It is important
to remain cautious in this area, since there are di¤erent ways for a planner to do away
with the discrimination risk, and since these di¤erent ways have very di¤erent welfare
implications.

By far the best way to remove discrimination is to create a market selling insurance
against the discrimination risk. Testing would then be available only after having shown
proof of subscription to this �genetic insurance�. In other words, it would be illegal to
perform the genetic test without �rst purchasing this insurance. Tabarrok (1994) has
shown that creating this insurance market would decentralize the �rst-best allocation.
To the best of our knowledge, no country has adopted such a policy, and no such
insurance exists.

Another, much more travelled route to get rid of the discrimination risk consists in
prohibiting insurers from asking the test results and from using this information. This
corresponds to the �strict prohibition� regulation studied by Barigozzi and Henriet
(2011) and implemented in Austria, Belgium, Denmark, France, Germany, Israel, Italy,
Norway and the US. Note that, in that case, nothing prevents individuals from taking the
test before buying insurance contracts, as assumed in our model. Even though insurers
are prohibited from asking the test results, nothing prevents them from proposing menus
of contracts that will be self selected by agents according to their (private) information
about their genetic risk. In other words, strict prohibition introduces adverse selection
into the insurance market, and Barigozzi and Henriet (2011) show that this results into
strict prohibition being weakly dominated by the disclosure duty approach!

There is a third way to get rid of the discrimination risk, which is less demanding than
the �rst one, since it does not entail the creation of a new insurance product covering
this risk. As with Tabarrok (1994), agents would have to show proof of insurance before
taking a test, but the insurance concerned is classical health insurance, rather than the
(empirically non available) genetic insurance.13 In other words, agents would have to
take the test (if they wish to) after having bought health insurance, and not before. This
would prevent insurers from distorting coverage rates in order to extract from agents
their private information regarding their type, since this private information would not

13A similar mechanism (although in a di¤erent context) can be found in Cochrane (1995).
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exist at the stage where agents buy health insurance contracts. Competition among
insurers would then drive premia to their actuarially fair levels: insurers would o¤er a
contract with the sure consumption level of c0U if the agent performs no prevention, and
of c1U otherwise. Agents would decide about the prevention e¤ort after having tested
(or not), as in the sequence studied above, and would then perform prevention provided
that its cost is low enough, and more precisely, that

� < v(c1U )� v(c0U ) = �min:

The expected welfare of agents is then v(c1U ) � � if � < �min and v(c
0
U ) if � � �min.

This corresponds to the utility when the test is not available while e¤ort is, and is thus
weakly dominated by the disclosure duty situation studied in the rest of the paper.
The intuition is that the provision of a pooling insurance contract interferes with the
prevention decision, leading to too much prevention if the e¤ort cost is lower than �min,
and to too little for larger values of this cost.

This comparison of three ways to get rid of discrimination risk shows that the only
way to proceed to increase welfare consists in creating a new product, namely genetic
insurance, while making it mandatory for those who wish to take genetic tests. The
other ways to get rid of discrimination risk end up being detrimental for ex ante welfare,
either because of adverse selection by insurers, or because the pooling of health insurance
interferes with the incentives to undertake the prevention e¤ort.

We now turn to Figure 7, which depicts the impact of the unobservability of the
prevention e¤ort when the testing technology is available (but entails a discrimination
risk). Lemma 4 in the Appendix shows that moral hazard reduces the value of the

two cost thresholds between which policyholders take the test (~�
MH
i < ~�i; i = 1; 2).

Moreover, the ex ante utility is lower with moral hazard when e¤ort is undertaken, even
when the testing decision is the same than without moral hazard, because of the lower
coverage implied by the unobservability of the prevention e¤ort. Figure 7 represents
this welfare loss of moral hazard as the vertical distance D between the two curves.

Insert Figure 7

7 Conclusion

We have studied the situation where a costless genetic test perfectly informs an individ-
ual about his probability of developing a speci�c disease in the future. This information
allows the individual to better inform his decision to undertake a costly prevention ef-
fort, which reduces his probability of incurring the health damage in the case the genetic
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test is positive. The drawback of the genetic test is that its results are used by insurers
to price their insurance policies, so that agents undertaking the test are faced with a
discrimination risk. We �rst show that, when the prevention e¤ort is observable, the
pros of the test are larger than its cons when the prevention e¢ ciency is large while its
cost is neither too low nor too high. We then obtain that, when e¤ort is not observ-
able by insurers, the private value of the genetic test is not always increasing with the
e¢ ciency of prevention. Also, and contrary to the intuition, the value of the test may
actually be larger when e¤ort is not observable, so that the test may be taken for lower
values of the prevention e¢ ciency than when prevention is observable.

What policy implications can we derive from this analysis? Even when e¤ort is
observable, there is too little testing since people choose to test only for intermediate
values of the prevention e¤ort cost, while the �rst-best allocation calls for testing for
a larger set of values of this cost. The equilibrium prevention level can be too small
or too large: while optimality calls for only agents with a predisposition to the disease
to perform e¤ort, with a low prevention cost there is actually too much prevention (all
undertake the e¤ort) while with a high prevention cost there is too little of it (no one
exerts the prevention e¤ort). This model then does not provide ground to recommend
policies that would result in a general increase in prevention e¤orts by all. Pushing for
more testing would not be advisable either, because of the discrimination risk that is
associated with taking the test.

Since this discrimination risk is at the root of the ine¢ ciencies exhibited by the equi-
librium allocation (both because it decreases directly the utility of agents and because
it biases their testing and prevention decisions away from the socially optimal levels),
the main recommendation is to get rid of this risk. We have shown that, out of three
ways to proceed to make the discrimination risk disappear, only one decentralizes the
�rst-best allocation: completing the insurance markets by creating a �genetic insur-
ance�against the risk of a positive test, and making this insurance mandatory in order
to test. The other two procedures studied actually result in a worse ex ante welfare
level than the equilibrium allocation studied here: the �strict prohibition� regulation
introduces adverse selection into the problem, while requiring that agents buy health
(as opposed to genetic) insurance before testing defeats the purpose of the test because
it suppresses the agents�incentive to tailor their prevention decision to the test result.
Our main recommendation is then to combat discrimination risk by making genetic
insurance mandatory, together with implementing the disclosure duty regulation on the
testing decision and results.

Moral hazard considerations further reduce ex ante welfare. This is true even though
moral hazard may actually induce agents to take the test, for certain con�gurations of
the e¤ort cost and e¢ ciency parameters for which the test would not be taken without
moral hazard. Also, this happens even though taking the test allows agents to make the
e¤ort only when socially worthwhile. The reason is that moral hazard, by decreasing
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the coverage rate o¤ered to those insurers want to induce to exert the prevention e¤ort,
reduces more the utility of uninformed than of informed types. So, even if moral hazard
may have bene�cial e¤ects on both the testing and prevention decisions, its net impact
on welfare is always negative. This calls for policy measures that would make prevention
e¤orts more easily observable by insurers. One prominent such measure would consist
in enlarging the scope of disclosure duty to prevention decisions: insurees could not be
obliged to perform such an e¤ort, but would be required to disclose truthfully whether
they have stopped smoking or perform physical exercise regularly. In other words, one
conclusion of our work is that disclosure duty should be embraced not only for genetic
tests, but also for the prevention activities whose desirability they inform.14

Another policy recommendation concerns the breadth of the tests, measured by the
number of health problems a genetic test shows light on. There is a lot of discussion and
projections about decoding the whole genome of individual human beings, in order to
screen for as many potential disease risks as possible in a single, global test. As long as
discrimination risks persist, such a global test has a lower value than the sum of narrower
tests aiming at a single health issue at a time. Even if the value of the global test is
positive, it may include information on speci�c diseases for which the con�guration of
prevention cost and e¤ectiveness is such that agents would prefer not to be informed
about these speci�c risks. At the limit, the value of a global test may be negative, even
though the value of several of its components is positive. We then advocate the issue
of targeted rather than all encompassing tests, allowing the individuals to choose the
tests whose value is positive.

14We acknowledge that the disclosure duty requirement (whether applied to the test results or the
prevention e¤ort) faces the problem of false statements. This problem is usually attenuated by the use
of sti¤ penalties (up to the voiding of the contract) when a damage occurs and the insurer discovers the
false statements (assuming they are veri�able ex post at a cost).
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8 Appendix

8.1 Proof of Result 3

a) First note that c1H � c0H = (p0H � p1H)d while c1U � c0U = �(p0H � p1H)d, so that
�min = �max = 0 if � = 0, and that 	(0; 0) < 0. We also know that @�min=@� =
�dv0(c1U ) > 0 (so that �min > 0 if � > 0) which, together with @	(�;�)=@� > 0 and
@	(�;�)=@� > 0, implies that

d	(�min;�)

d�
=
@	(�min;�)

@�

@�min
@�

+
@	(�min;�)

@�
> 0:

Finally, we know that 	(0; ��) = 0 and that �min > 0 when � = ��, which imply that
	(�min; ��) > 0. The continuity of 	(�;�) in � together with the fact that 	(�;�)
is strictly increasing with � for any � implies, by the intermediate value theorem, that
there exists a unique value 0 < � < ��, denoted by ~�, such that 	(�min; ~�) = 0.
b) By the same reasoning as above, we know that 	(�min;�) > 0 for all � > ~�.
The fact that @	(� ;�)=@� > 0 and that 	(0;�) � 0 for all � > ~� imply, by the
intermediate value theorem, that there exists a unique value of �, denoted by ~�1(�),
such that 0 � ~�1(�) � �min and 	(~�1(�);�) = 0;
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c) Straightforward since @	(�;�)=@� > 0:
d) We have by de�nition that 	(~�1(�);�) = 0 so that

d	(~�1(�);�)

d�
=
@	(~�1(�);�)

@~�1(�)

@~�1(�)

@�
+
@	(~�1(�);�)

@�
= 0:

Our claim then results from the fact that @	(�;�)=@� > 0 and that @	(� ;�)=@� > 0
for all � and �.
e) Straightforward since 	(0; ��) = 0.

�

8.2 Proof of Result 4

a) First, part a) of the proof of Result 3 has shown that 	(�min;�) > 0 for all � > ~�.
Second, Result 2 has shown that	(�max;�) < 0 for all�. The fact that @	(�;�)=@� =
�� < 0 then implies, by the intermediate value theorem, that there exists a unique value
of �, denoted by ~�2(�), such that �min � ~�2(�) < �max and 	(~�2(�);�) = 0;
b) Straightforward since @	(�;�)=@� = �� < 0.
c) We have by de�nition that 	(~�2(�);�) = 0 so that

d	(~�2(�);�)

d�
=
@	(~�2(�);�)

@�

@~�2(�)

@�
+
@	(~�2(�);�)

@�
= 0:

Our claim then results from the fact that @	(�;�)=@� < 0 and that @	(�;�)=@� =
�dv0(c1H) > 0 for all � and �.
d) The fact that ~�1( ~�) = ~�2( ~�) = �min comes from the de�nitions of ~�, ~�1(�)
and ~�2(�). The fact that �min < ~�1( ��) < �max comes from the observation that
	(�min; ��) > 0 while 	(�max; ��) < 0.

�

8.3 Proof of Lemma 1

a) �H and �U are respectively implicitly determined by

� = (p0H � p1H)(v(b1H)� v(d1H))

and,
� = �(p0H � p1H)(v(b1U )� v(d1U )):

It is worth noticing that �U = �H in the special case � = 1 (since p1U = p
1
H). Then, let

us consider the following function

F (�U ; �) = �(p
0
H � p1H)(v(b1U )� v(d1U ))� �:
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The implicit function theorem gives

d�U
d�

= � @F (�U ; �)=@�

@F (�U ; �)=@�U

=

�
p0H � p1H

� �
v(b1U )� v(d1U ) + ��U

�
p1H � pL

�
d
�
v0(d1U )� v0(b1U )

��
��
�
p1Uv

0(b1U ) + (1� p1U )v0(d1U )
� > 0:

b) The implicit function theorem implies:

@�H
@�

= � 1

�d
�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H)

� < 0:
The coverage rate �H attains the minimum value of zero when

� = ��H = �(v(y)� v(y � d)):

We proceed similarly to prove that �U is decreasing in �, and that the minimum value
of �U = 0 is reached when

� = ��U = ��(v(y)� v(y � d));

so that ��U < ��H .

�

8.4 Proof of Result 5

We have respectively

�MH
min � �min = (1� p1U )v(b1U ) + p1Uv(d1U )� v(c0U )�

�
v(c1U )� v(c0U )

�
= (1� p1U )v(b1U ) + p1Uv(d1U )� v(c1U ) < 0

and

�MH
max � �max = (1� p1H)v(b1H) + p1Hv(d1H)� v(c0H)�

�
v(c1H)� v(c0H)

�
= (1� p1H)v(b1H) + p1Hv(d1H)� v(c1H) < 0:

Also, When � = ��H , we have �H = 0 so that the agent is not insured at all (and is
indi¤erent between making the prevention e¤ort or not). His utility is then lower than
what he gets under U0H , where he is fully insured at an actuarially fair price (without
e¤ort). Since U1MH

H is decreasing in � (because of both the direct e¤ect of a higher �
and the indirect impact through the decrease in coverage rate) while U0H is not a¤ected
by �, we have that �MH

max <
��H . The proof that �

MH
min <

��L is obtained in a similar way.

�
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8.5 Proof of Lemma 2

a) We have that

@	MH(�;�)

@�
= 1� �

+�

�
(1� p1H)p1Hd

@�H
@�

�
v0(d1H)� v0(b1H)

��
�
�
p1U (1� p1U )d

@�U
@�

�
v0(d1U )� v0(b1U )

��
:

We then have that
@	MH(�;�)

@�
� @	(�;�)

@�
= 1� �

if and only if

�

"
(1� p1H)p1H

�
v0(d1H)� v0(b1H)

��
p1Hv

0(b1H) + (1� p1H)v0(d1H)
� # � " p1U (1� p1U ) �v0(d1U )� v0(b1U )�

�
�
p1Uv

0(b1U ) + (1� p1U )v0(d1U )
�# :

If �! ��, this condition simpli�es to

�2
�

v0(d1H)� v0(b1H)
pLv0(b1H) + (1� pL)v0(d1H)

�
�
�

v0(d1U )� v0(b1U )
pLv0(b1U ) + (1� pL)v0(d1U )

�
:

A su¢ cient condition is�
pLv

0(b1U ) + (1� pL)v0(d1U )
� �
v0(d1H)� v0(b1H)

�
�

�
pLv

0(b1H) + (1� pL)v0(d1H)
� �
v0(d1U )� v0(b1U )

�
;

() v0(d1U )v
0(b1H) � v0(b1U )v

0(d1H);

which is true since d1U < d
1
H for �! ��.

The proof of part b) of the lemma is straightforward.

�

8.6 Proof of Result 6

a) Start by assuming that � = ��. We know from Lemma 2 b) that

	MH(0; ��) = 	(0; ��) = 0:

Part a) of Lemma 2 shows that

@	MH(�; ��)

@�
� 	(�; ��)

@�
= 1� � for all � < �MH

min ;
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which implies that
	MH(�; ��) > 0 for all � < �MH

min :

We then have that ~�
MH
1 ( ��) = 0.

Assume now that � < �� while remaining close enough. Observe that, by continu-
ity of 	 and 	MH in �, we have that

@	MH(�;�)

@�
� 	(�;�)

@�
= 1� � for all � < �MH

min and �! ��:

We know from Lemma 2 b) that

	MH(0;�) = 	(0;�) < 0:

Since 	MH(�;�) is continuous in �, we have that

	MH(�MH
min ;�) > 0:

By the intermediate value theorem, there exists a unique value of �, denoted by ~�
MH
1 (�),

such that ~�
MH
1 (�) < �MH

min and 	
MH(~�

MH
1 (�);�) = 0.

b) The proof is straightforward by de�nition of ~�
MH
1 (�) and by the intermediate value

theorem.

�

8.7 Proof of Lemma 3

a) Observe that, for �MH
min < � < �

MH
max, we have

	MH(�;�) = �
�
�MH
max � �+ v(c0H)

�
+ (1� �)v(c0L)� v(c0U );

so that
@	MH(�;�)

@�
= �

@�MH
max

@�
:

The derivative of �MH
max with respect to � is

@�MH
max

@�
= v(b1H)� v(d1H) + �Hd

��
1� p1H

�
v0(b1H) + p

1
Hv

0(d1H)
�

+d
@�H
@�

�
1� p1H

�
p1H
�
v0(d1H)� v0(b1H)

�
:
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If @�H=@� > 0, it is clear that @�MH
max=@� > 0. On the contrary, if @�H=@� < 0, the

sign is a priori ambiguous. We have

@�MH
max

@�
= v(b1H)� v(d1H) + �Hdv0(b1H)

+�Hdp
1
H

�
v0(d1H)� v0(b1H)

�
+ d

@�H
@�

�
1� p1H

�
p1H
�
v0(d1H)� v0(b1H)

�
:

A su¢ cient condition to have @�MH
max=@� > 0 is then

�H +
@�H
@�

�
1� p1H

�
� 0:

Using the implicit function on the equation de�ning �H , we obtain

d�H
d�

=
v(b1H)� v(d1H) + ��Hd

�
v0(b1H)� v0(d1H)

�
�d
�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H)

� ;

whose denominator is always positive. Therefore, the previous su¢ cient condition be-
comes

�H � �
 
v(b1H)� v(d1H) + ��Hd

�
v0(b1H)� v0(d1H)

�
�d
�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H)

� ! �
1� p1H

�
, �d�H

�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H) +

�
v0(b1H)� v0(d1H)

� �
1� p1H

��
� �

�
v(b1H)� v(d1H)

� �
1� p1H

�
, �d�Hv

0(b1H) � �
�
v(b1H)� v(d1H)

� �
1� p1H

�
;

which is always true since the RHS is negative.
b) The derivative of 	MH(�;�) with respect to � is

@	MH(�;�)

@�
= �

�
�1�

�
1� p1H

�
v0(b1H)

@�H
@�

p1Hd+ p
1
Hv

0(d1H)
@�H
@�

�
1� p1H

�
d

�
= �

�
p1H
�
1� p1H

�
d
@�H
@�

�
v0(d1H)� v0(b1H)

�
� 1
�
< 0:

�

8.8 Proof of Result 7

a) Recall that, for �MH
min < � < �

MH
max, we have

	MH(�; ��) = (1� �)v(c0L) + �
�
(1� pL)v(b1H) + pLv(d1H)� �

�
� v(c0U ):
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We have established at the beginning of section 4.3 that 	MH(�MH
max; ��) < 0. We now

prove that 	MH(�MH
min ; ��) > 0. We have

	MH(�MH
min ; ��) = (1� �)

�
v(c0L)� v(c0U )

�
(7)

+�
�
pL
�
v(d1H)� v(d1U )

�
+ (1� pL)

�
v(b1H)� v(b1U )

��
:

Note that the �rst term of (7) is positive. Moreover, using the mean value theorem,
we obtain that

v(d1H)� v(d1U ) = v0($)d(1� pL) (�H � �U ) ;
v(b1H)� v(b1U ) = v0(�)dpL (�U � �H) ;

with $ 2
�
d1H ; d

1
U

�
and � 2

�
b1H ; b

1
U

�
. Therefore, the second term of (7) becomes

pL
�
v(d1H)� v(d1U )

�
+ (1� pL)

�
v(b1H)� v(b1U )

�
= d(1� pL)pL (�H � �U )

�
v0($)� v0(�)

�
:

As �H > �U (Lemma 1) and $ < �, then the concavity of v(:) implies that
	MH(�min; ��) < 0.
Moreover, Lemma 3 has shown that @	MH(�;�)=@� < 0 for �MH

min < � < �MH
max. As

	MH(�; ��) is continuous in �, the intermediate value theorem implies that there exist
~�
MH
2 ( ��) 2]�MH

min ; �
MH
max[ such that 	

MH(~�( ��); ��) = 0. By continuity of 	MH(�;�) in

�, this threshold ~�
MH
2 (�) also exists for value of � close enough to ��. Observe that,

when it exists, ~�
MH
2 (�) < �MH

max since 	
MH(�MH

max;�) < 0 for all �. From now on, we

consider only values of � large enough that ~�
MH
2 (�) exists.

b) The claim is straightforward since @	MH(�;�)=@� < 0 by Lemma 3.

c) We have by de�nition that 	MH(~�
MH
2 (�);�) = 0 so that

d	MH(~�
MH
2 (�);�)

d�
=
@	MH(~�

MH
2 (�);�)

@�

@~�
MH
2 (�)

@�
+
@	MH(~�

MH
2 (�);�)

@�
= 0:

Our claim then results from the fact that @	MH(�;�)=@� < 0 and that @	MH(�;�)=@� >
0 for all � and �.

�

8.9 Proof of Proposition 3

We �rst prove the following two lemmatas.
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Lemma 4 We have (a) ~�
MH
1 (�) < ~�1(�) and (b) ~�

MH
2 (�) < ~�2(�) when �! ��:

Proof. Result 3 has shown that ~�1(�) < �min exists if � � ~� (de�ned as
	MH(�min; ~�) = 0), with 	(�;�) < 0 for � < ~�1(�). Obviously, � ! �� > ~�,

so that ~�1(�) exists. Similarly, Result 6 shows that ~�
MH
1 (�) exists for � ! ��, with

	MH(~�
MH
1 (�);�) = 0. We then have that 	MH(�;�) > 	(�;�) for � < �MH

min (a

consequence of Lemma 2) implies that ~�
MH
1 (�) < ~�1(�).

Result 4 has shown that �min < ~�2(�) < �max exists if � � ~�, with 	(�;�) > 0
for ~�1(�) < � < ~�2(�). Similarly, Result 7 shows that �

MH
2 (�) < �MH

max exists for

� ! ��, with 	MH(�;�) > 0 for ~�
MH
1 (�) < � < ~�

MH
2 (�). We then have that

	MH(�;�) < 	(�;�) for any � when �MH
min < �min < � < �MH

max (Lemma 5) implies

that ~�
MH
2 (�) < ~�2(�).

Lemma 5 	MH(�;�) < 	(�;�) for any � when �MH
min < �min < � < �

MH
max:

Proof. Recall that, when �min < � < �
MH
max, we have

	MH(�;�) = �
�
(1� p1H)v(b1H) + p1Hv(d1H)� �

�
+ (1� �)v(c0L)� v(c0U );

	(�;�) = �
�
v(c1H)� 1

�
+ (1� �)v(c0L)� v(c0U );

hence we obtain

	(�;�)�	MH(�;�) = �
�
v(c1H)� (1� p1H)v(b1H)� p1Hv(d1H)

�
> 0:

We now prove Proposition 3
Proof. (a) Recall that, when � is close enough to ��, we have that 	MH(0;�) =

	(0;�) and that 	MH(�;�) > 	(�;�) for � < �MH
min (see Lemma 2 for both), which

implies that 	MH(�MH
min ;�) > 	(�

MH
min ;�). Lemma 5 shows that 	

MH(�;�) < 	(�;�)
for �MH

min < �min < � < �
MH
max. By continuity of 	

MH(�;�) and 	(�;�) in �, the fact
that @	MH(�;�)=@� < 0 for �MH

min < � < �min (see Lemma 3) and the intermediate
value theorem, we then have that there exists a unique value of �, denoted by �̂, with
�MH
min < �̂ < �min, and such that 	

MH(�;�) > 	(�;�) for � < �̂, 	MH(�̂;�) =
	(�̂;�) and 	MH(�;�) < 	(�;�) for �̂ < � < �max. As for the latter inequality,
observe that 	MH(�;�) = 	0 < 	(�;�) for �MH

max � � < �max, while 	
MH(�;�) =

	(�;�) = 	0 for � � �max.
(b) The proof of Lemma 4 shows that ~�1(�), ~�

MH
1 (�) and ~�

MH
2 (�) exist when � !

��. The claim follows from the observation that 	MH(�;�) > 0 for ~�
MH
1 (�) < � <

~�
MH
2 (�) (Results 6 and 7) while 	(�;�) < 0 for for � < ~�1(�) (Result 3).
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(c) The proof of Lemma 4 shows that ~�1(�), ~�2(�) and ~�
MH
2 (�) exist when � !

��. The claim follows from the observation that 	MH(�;�) < 0 for � > ~�
MH
2 (�)

(Proposition 1) while 	(�;�) > 0 for ~�1(�) < � < ~�2(�) (Results 3 and 4).
(d) Recall that

	MH(�MH
min ;�) = �

�
(1� p1H)v(b1H) + p1Hv(d1H)� (1� p1U )v(b1U )� p1Uv(d1U )

�
+ (1� �)

�
v(c0L)� v(c0U )

�
;

	(�min;�) = �
�
v(c1H)� v(c1U )

�
+ (1� �)

�
v(c0L)� v(c0U )

�
;

so that

	MH(�MH
min ;�) > 	(�min;�)

, v(c1U )�
�
(1� p1U )v(b1U )� p1Uv(d1U )

�
> v(c1H)�

�
(1� p1H)v(b1H) + p1Hv(d1H)

�
:

If we assume that � = ��, the latter inequality becomes

(1� pL)
�
v(b1U )� v(b1H)

�
< pL

�
v(d1H)� v(d1U )

�
, (1� pL)

�
b1U � b1H

�
v0(�) < pL

�
d1H � d1U

�
v0(�); (8)

with � > �. Using

b1U � b1H = (�H � �U )pLd;
b1U � b1H = (�H � �U )pLd;

the inequality (8) becomes
v0(�) < v0(�);

which is true.

By continuity of	MH(�MH
min ;�) and of	(�min;�) in�, we obtain that	

MH(�MH
min ;�) >

	(�min;�) for �! ��.
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Figure 1 : Value of the test as a function of

the effort cost Φ for several values of effort efficiency D
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Figure 2 : Effort cost thresholds as a function of effort efficiency D
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Figure 3 : Coverage rates as a function of effort cost Φ
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Figure 4 : Value of the test with moral hazard as a function

of the effort cost Φ for several values of effort efficiency D
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Figure 5 : Value of the test with and without moral hazard

as a function of the effort cost Φ when the effort efficiency D = 0.1
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Figure 6 : Ex-ante utility without moral hazard as a 
function of effort cost 
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Figure 7 : Ex-ante utility with and without moral hazard as a 
function of effort cost 
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