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Abstract

An increasingly utilized class of general equilibrium models includes inter-
firm knowledge spillovers through diffusion. Standard methods to calibrate
critical diffusion parameters require making assumptions about the economic
environment, then using the resulting structure to map these parameters
onto more easily observed empirical moments. Within this class of mod-
els, we prove that randomly varying interactions uniquely identifies a small
set of parameters characterizing the diffusion process independent of the re-
maining economic environment. We provide an application of our results in
Kenya, where we conduct a randomized controlled trial matching firms from
the left tail of the profit distribution to those from the right. Despite match-
ing the quick fade out of the small-scale experimental treatment effect, the
model simultaneously implies a large general equilibrium diffusion external-
ity. Key is that critical parameters push the partial and general equilibrium
magnitudes in different directions. This matters: if a policy-maker selected
economies in which to implement optimal policy based solely on the magni-
tude of their experimental impact, she would in fact minimize the possible
welfare gains. Thus, the ability to properly estimate such parameters is crit-
ical not only for measuring the equilibrium importance of diffusion but also
for the interpretation and extrapolation of smaller-scale empirical studies.
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1 Introduction

A growing literature focuses on how knowledge or skill transfer among firms could

play an important role in the development process (??????). However, quantifying

the importance of this channel is difficult. The broad notion of productivity used in

these models contains a number of skills and information that can be diffused, implying

that the diffusion process cannot be directly observed. The diffusion process, therefore,

is governed by functions whose inputs have no direct empirical counterparts.

The standard approach to deal with this issue is to impose structure. Assumptions

on the economic environment outside those made directly on the diffusion process (such

as the distributions of shocks, how firms enter and exit, details of occupational choices,

etc.) allow a mapping between theoretical parameters and easily-observed empirical

moments, such as aggregate firm exit rates. In this paper we ask the extent to which

properly targeted empirical work can limit the structure required to identify diffusion

parameters in this class of models. To do so, we lay out sufficient variation in the

data-generating process that identifies key diffusion parameters independent of such

assumptions, then apply our procedure among Kenyan firms. We build these results

into commonly-used general equilibrium models to study the quantitative magnitude

of diffusion at scale, and use the results to highlight the importance of parameter

estimates for interpretation of small-scale experimental findings relative to the general

equilibrium importance of diffusion.

A full accounting of diffusion requires taking into who individuals meet with, the

static benefit from a match (how much one’s own productivity changes in response

to a match), and the dynamic effects (the propagation of that static effect to other

economic agents). Under some commonly used assumptions detailed in Section ??,

we show how exogenous variation in how matches are created can be used to mea-

sure these forces. Specifically, we propose the following hypothetical data-generating

process. We first randomly divide a population of firms into a treatment and con-

trol group. The treatment group is then guaranteed access to a random draw from a

set of highly productive firms drawn from the same population. This two-step ran-

domization guarantees both the standard exclusion restriction between control and

treatment, but also a second within the treatment group.

We then show how this variation identifies key diffusion forces. To fix ideas in

the main body of the paper, we generally discuss the intuition for our results in the

context of a random search model, in which agents randomly meet and costlessly

internalize some portion of their match’s productivity. We do so only to fix the

economic interpretation of certain model forces in a commonly used framework (e.g.
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????). As we emphasize in Section ??, the theoretical results apply to a wide range of

models with various diffusion approaches, including those that swap out random search

for non-random assignment, bargaining between matched agents, and congestion in

the vein of ?. The interpretation of some parameters differ in these various cases, and

thus we err on the side of simpler intuition and clarity by focusing the discussion on

one model, leaving the details of others for the Appendix.1

With that in mind, we identify the static effect by comparing treatment firms of

identical productivity who receive different matches. If those matches are independent

of initial conditions – guaranteed by the randomization within the treatment – we can

identify the immediate impact of match by comparing differences in ex post profit.

The dynamic effect then depends on the persistence of these static gains, which allows

firms to propagate gains from past meetings as they interact with new firms in the

future. This parameter is identified similarly to how one would identify the persistence

of an exogenous AR(1) process, with one complication. With diffusion, there are

two reasons a firm with high profit today would have high profit tomorrow: high

persistence or matching with a high productivity firm. The latter force is of course

irrelevant in a world without diffusion, which is what allows a lagged regression to

identify persistence. Thus, diffusion introduces a potential bias into this procedure.

However, because the treatment involves creating and observing matches directly, we

can correct this bias and utilize a similar procedure. As we formalize in Section ??,

it turns out that measuring both forces requires only two coefficient estimates from

a single linear regression, thus allowing a clean map between empirics and model

parameters.

The explanation above focuses on forces that govern outcomes conditional on a

match. We still need to deal with the issue of who actually meets. For example,

even within a random search framework, one might imagine that matches are drawn

from some particular part of the overall firm productivity distribution (i.e., firms

may “direct” search).2 The complication here comes from the fact that we cannot

observe control matches. However, recall that the treatment guarantees a high quality

match. Our insight is that a small average treatment effect tells us something about

the control group: that they must already be quite good at generating high quality

matches. Therefore, the average treatment effect reveals important information about

the search process of the control group, despite not being directly observable.3

1Specifically, we emphasize this in Section ?? by laying out only the assumptions required for identification. Any
model that satisfies them can be identified by our procedure. Focusing on one model serves only to fix the intuitive
properties of the identification results and quantitative interpretations.

2The papers cited here generally assume matches are uniform draws from the existing distribution of firm produc-
tivities. This is a special case of our assumption.

3Again, while this intuition holds only the case within the framework of the model we utilize in the main text, the
general idea is broader. In a model with bargaining, for example, we can interpret this same parameter as the bargaining
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An implication of this procedure is that the parameters are identified independent

of much of the remaining model structure. That is, we do not take a stand on equi-

librium (e.g., whether the economy is in a steady state or on a transition path), or

other features of the economic environment, such as occupational choice. While our

results naturally require some assumptions to map the discussion above to estimable

parameters, it substantially reduces the required structure in the remaining economic

environment. We emphasize this in Section ?? by only laying out the assumptions

required for identification, leaving the details of the full model for Section ??, when

we require them for the quantitative results.

This independence result is in large part due to randomization. In applied work,

the power of RCTs stems from their ability to eliminate potential confounds with

minimal requirements on the data-generating process. Here, something similar oc-

curs, except the confounds are structural. Various aspects of the modeled economic

environment interact with the diffusion process, thus making identification difficult

without substantial structural assumptions that map parameters to empirical mo-

ments. In both cases, properly differencing from a control group helps limit many

of the potential confounding factors. This allows us to use moments like the aver-

age treatment effect to identify model parameters without specifying the complete

economic environment. Our estimates can therefore be embedded into a variety of

models with different assumptions on the remaining structure of the economy.4

With the theoretical results in hand, we then ask how quantitatively important

these parameter estimates are. This first requires estimating these parameters in a

particular application. To do so, we conduct a randomized controlled trial in Nairobi,

Kenya to generate the proper variation, matching low-profit treatment firms with a

randomly selected high-profit firm. The full set of reduced form results are available

in ?. Profits are 19 percent higher in the treatment group relative to the control and

the effect is increasing in the relative profit gap between the two firms.5 Moreover,

we show that the more productive member of the match sees no change in profit or

business skills that one might associate with higher productivity. These empirical

results form the basis of our parameter estimation.

One key empirical finding is that the treatment effect is large at first, then quickly

fades. After 18 months, there is no difference between treatment and control. Since

weight for the less productive member of the match. If low bargaining power limits the amount of productivity one
can extract from a match, identifying this parameter turns out to be quite similar in practice to one in which the agent
internalizes all the surplus but draws from a distribution with low average productivity.

4It is worth emphasizing that the goal of this paper is not provide a test that differentiates between diffusion models,
and indeed our empirical results are not suitable for such a task. The goal here is only to limit the assumptions required
for identification within a class of diffusion models commonly used in the literature.

5We consider a number of possibilities in ?, including profit sharing, loans, and bulk discounts, and find that none
of them explain the results.
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our study population was approximately 0.2% of the population, this result is unlikely

to be driven by spillovers to the control group.6 One possible interpretation is that

the “partial equilibrium” failure to generate long-term benefits implies diffusion has a

limited role at scale. To study this, we build our parameter estimates in a full general

equilibrium model of diffusion, with the remaining parameters calibrated in a standard

fashion. The model accurately predicts the quick fade-out of the average treatment

effect in the simulated RCT. This is a partial equilibrium effect, in the sense that we

hold fixed the distribution of control group matches, therefore explicitly ruling out

control group contamination as an explanation. Yet, we simultaneously show that the

equilibrium diffusion externality is large. Average income is 175 percent higher in the

planner’s allocation than the laissez faire allocation.7

These seemingly divergent results highlight the importance of proper parameter

estimates for interpretation of and extrapolating from experimental results. Not only

do the partial and general equilibrium results rely differentially on parameters we

estimate, the value of critical parameters actually push the PE and GE magnitudes

in opposite directions. Indeed, the same parameters that allow us to match the lack

of long-run PE effects are the same that generate the large GE effect. As we show in

Section ??, our parameter estimates imply that while any single individual benefits

from a match for only a short period of time, many individuals benefit from that

same match through diffusion. The results show that one need not generate long-term

effects among individual firms to imply diffusion is an important margin for economic

development. Even these short-run gains get dispersed through other agents in the

economy through diffusion, implying that the general equilibrium impact swamps the

partial equilibrium effect.

Moreover, the results suggest caution when attempting to extrapolate partial equi-

librium outcomes for general equilibrium significance. We further show in Section

?? that if a policy-maker were to run our same small-scale experiment in multiple

economies, then use the long-run treatment effect to select the economies in which

the gains from optimal policy were the largest (or, put differently, where the diffusion

externality is the largest), she would instead select exactly the opposite. That is, the

strategy to extrapolate the potential general equilibrium policy impact from a partial

equilibrium experiment would cause a policy-maker to minimize the potential wel-

fare gains. Unbiased parameter estimates are therefore critical for understanding the

6We set up the experiment to limit spatial spillovers by spreading out the firms selected for the study. We also test
for spatial spillovers to control firms and find none.

7We view this as a way to measure the size of the diffusion externality, not necessarily the true policy one should
implement to maximize diffusion spillovers. That naturally depends on the specifics of the model on which our results
have little to say. Instead, we take our modeling cues from the literature, and deploy our estimated parameters in
existing models.
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magnitude of diffusion externalities in general equilibrium, but also for extrapolating

smaller-scale empirical studies.

1.1 Related Literature

This paper joins a relatively small literature that uses causal empirical estimates to

identify critical model parameters in dynamic structural models, including ?, ? and

?. Our paper shares a similar style but focuses on knowledge diffusion. Closest in

this dimension is ?, who use the results from a randomized controlled trial to, in

part, identify the utility cost associated with migration. We share a similar goal of

using a randomized control trial to identify parameters not directly observable in data.

Furthermore, our results emphasize caution when trying to infer general equilibrium

outcomes from partial equilibrium randomized controlled trials. ? and ? highlight

similar points in microcredit and education, respectively.

Our work adds empirical evidence to the literature studying innovations and knowl-

edge in general equilibrium models (??). Most closely related to this paper is the more

recent literature building on these papers, in which diffusion is modeled as a stochas-

tic process of “imitation,” including ?, ?, ?, ?, and ?. ? highlight the importance

of congestion in a model where all surplus is not captured by the recipient. Recent

work has also extended these models to consider within and across firm diffusion (??),

international trade (??), and the interaction of innovation and diffusion (??).

At the same time, there exists an important micro-development literature docu-

menting the diffusion of specific pieces of information or technology, including new

crops or high-yielding seeds (??), specific planting or production techniques (??), or

financial information (??). This more narrow focus has the clear benefit of allowing

one to track diffusion explicitly along the dimension of interest. Our goal here is to

focus on a set of equilibrium models interested in the diffusion of productivity while

highlighting how similar tools can be deployed to provide insights into these broader

models. That is, not only can these micro tools be useful for micro-founding aspects

of the diffusion process, they can also provide useful insights directly to aggregate

models in a more “top down” approach.

2 Identification of the Diffusion Process

We begin by specifying the class of diffusion processes we will study. The goal here is to

lay out the required assumptions without the details of the full model in which we will

eventually embed the diffusion process, as they are both cumbersome and unnecessary
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for our main identification results. Therefore, along the way, we will draw attention

to the required assumptions so that is clear what is required for the results.

2.1 Setting Up the Problem

Consider a dynamic economy populated by agents with heterogeneous entrepreneurial

productivities. We begin by describing how entrepreneurial productivity evolves over

time.

Each period, every agent receives two types of shocks to their productivity. First,

they receive an idiosyncratic imitation shock ẑ. If their own productivity z is greater

than ẑ, then the imitation opportunity is useless and it has no effect on the agent’s

future productivity. If ẑ > z, then the imitation opportunity contains some useful

information that the agent can incorporate into their own future productivity. The

intensity with which this imitation opportunity transmits to the agent’s productivity in

the subsequent period is governed by the parameter β. Second, firms receive random

shocks ε that enter the next period’s productivity multiplicatively. This shock is

assumed to be uncorrelated with own productivity z or the imitation draw ẑ.8 The

functional form of the subsequent productivity z′ is given by Assumption ??.

Assumption 1. Given a productivity z this period, an imitation opportunity ẑ, and

a random shock ε, productivity next period z′ is given by

z′ = ec+εzρ max

{
1,
ẑ

z

}β
, (2.1)

where the parameter c is a constant growth term, β is diffusion intensity, and ρ is

persistence.

If β = 0, this law of motion collapses to a standard exogenous AR(1) process,

log(z′) = c + ρ log(z) + ε. On the other hand, β > 0 allows productivity to increase

when presented with an opportunity to imitate some ẑ > z. Furthermore, notice that

the max operator in the diffusion process rules out any productivity benefit accrued

to a higher productivity firm from interaction with lower productivity firms (as in ?,

for example). We address this issue directly in Section ?? and find no evidence that

more productive firms gain profit from interaction with less productive firms.9

Given the notion of productivity we consider here, we cannot observe it directly.

Thus, we require a link between productivity and observable variables, in the case,
8Note that we need not assume that these are idiosyncratic shocks. They could, for example, have an aggregate

and idiosyncratic component where the first affects all agents in the same way. Therefore, we need not assume these
shocks are i.i.d. across agents.

9The assumption of no productivity gain accruing to the more productive firm is not a critical one. We could
alternatively allow for it, though looking ahead, our empirical results would require this channel to be shut down. We
therefore exclude it for simplicity.
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profit. The requirement is summarized in Assumption ??.

Assumption 2. In any period, profits are proportional to productivity. That is, for

any two firms i and j earning profits πi and πj, πi/πj = zi/zj.

This assumption is satisfied by much of the literature on diffusion. A simple way

to satisfy Assumption ?? is to assume πi = zi as in ? and ?. A production function of

the form y = zαn1−α, where n is labor, also satisfies Assumption ?? in a competitive

labor market.10

Finally, we specify the assumptions on the distribution from which ẑ is drawn.

We denote the cumulative density function of ẑ as M̂(ẑ; z, θ). Writing it in this

way emphasizes that agents with different productivities z may draw from different

distributions, and that these distributions depend on a parameter θ. In particular,

this parameter is assumed to order a class of distributions in the sense of first order

stochastic dominance. This is summarized in Assumption ??.

Assumption 3. The imitation opportunity ẑ is drawn by a firm with productivity

z from a distribution characterized by the cumulative density function M̂(ẑ; z, θ), a

known function. For every z and ẑ, M̂ is continuous in θ and θ1 < θ2 =⇒ M̂(ẑ; z, θ2)

first order stochastic dominates M̂(ẑ; z, θ1).

This assumption admits a variety of search and assignment processes. For ex-

ample, one commonly used diffusion process is that agents draw randomly from the

existing firms. Denoting M as the cdf of operating-firm productivity, this would imply

M̂(ẑ; z, θ) = M(ẑ). Even within the random search framework, Assumption ?? allows

us to be somewhat broader, as agents may draw from better or worse distributions

that the set of operating firms, where θ indexes how much the distribution of matches

differs from the firm productivity distribution. We discuss this assumption in more

detail in Section ??.

The assumptions laid out in this section allow us to do two things. First, they let us

translate a broad, unobservable notion of productivity to an observable characteristic,

profit. Second, they parametrize the forces of diffusion we wish to investigate. β

captures the static effect that governs how much individuals gain immediately from

a match. ρ governs how much of a past match can be transmitted in the future,

thus contributing to the dynamic impact of a single match. Finally, θ governs who

individuals regularly interact with. All three of these play a potentially important role

in governing the total impact of diffusion.

10Note, however, that assumption is violated in the presence of firm-specific distortions, such as those considered in
?. In the Appendix we argue that such distortions would imply that our estimated parameter values are attenuated,
suggesting that we are underestimating the effects of diffusion. We further show how the results change as the
importance of such distortions vary.
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Finally, we note that all of the assumptions we have made are common in the

literature, including ?, ??, and ?, among others, and in some instances allow us to

generalize. While we naturally require some structure on the diffusion process, we

have not specified the remaining economic environment. In the remainder of this

section we discuss the data variation required to uniquely identify these parameters

without this additional structure. On the other hand, one can of course come up with

models that do not satisfy our assumptions. While we emphasize that our goal in this

paper is not to distinguish various diffusion models that one could conceive of (and

our empirics are not well-suited to this task), we come back to this issue in Section ??

and discuss the limits of the structural assumptions made above to hopefully provide

some broader context for our results.

2.2 Variation Required to Identify Diffusion

Section ?? laid out a set of assumptions on the primitives of the model. Our goal

now is to identify three key diffusion parameters – the intensity of transmission β,

the persistence of productivity ρ, and the parameter controlling the distribution of

imitation draws θ – without imposing any additional structure on the economy. To

that end, Assumption ?? summarizes variation in the data required to identify the

parameters. That is, while Section ?? makes assumptions about the model primatives,

Assumption ?? lays out assumptions about the data required for identification in the

context of that model. After proving the identification results, Section ?? details a

randomized controlled trial that satisfies these assumptions, thus allowing us to take

the model to the data.

Assumption 4. A set of agents with productivity distributed H(z) are observed in

two consecutive periods. The set of agents is partitioned into two subsets characterized

by distributions HC(z) and HT (z) (i.e., “control” and “treatment”). The following

conditions hold:

1. Agents in HT and HC draw their ε shocks from the same distributions

2. The matches for agents in HC are not observable, and distributed M̂(ẑ; z, θ)

3. The matches for agents in HT are observable, and distributed ĤT (ẑ) 6= M̂(ẑ; z, θ).

Moreover, every match ẑ is greater than the z to which it is matched.

4. For any arbitrary partition of the treatment group, characterized by H1
T (z) and

H2
T (z), agents in both groups draw their ε shocks from the same distribution

The first assumption imposes the usual exclusion restriction – that unobserved char-

acteristics do not systematically vary across the two groups. The second formalizes
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the intuitive notion that we cannot observe control group matches, and they proceed

as defined by the M̂ function. That is, control group continues to match as defined

by the underlying economy.11 Finally, the third and fourth lay out what we require

from our treatment. The third states that we can observe all matches, and those

matches are drawn from some other distribution than the control group. Moreover,

we assume that treatment firms are always matched to a more productive agent.12

Finally, the last assumption states a second exclusion restriction within the treatment

group, guaranteeing that comparisons across treatment firms are unbiased.13

Our procedure works as follows. Using only the treatment firm data, we show how

to identify β and ρ uniquely. We then add back the control data to show that θ can

be identified from the average treatment effect as only a function of (β, ρ). Thus, the

three parameters are uniquely identified under Assumption ??.

Using Treatment Data for (β, ρ) The idea behind identifying (β, ρ) follows almost

directly from the law of motion for diffusion. In logs, this is

log(z′i) = c+ ρ log(zi) + β log

(
max

{
1,
ẑi
zi

})
+ ε (2.2)

Applying Assumption ?? (π ∝ z) annd Assumption ?? (ẑ > z), this simplifies to

log(π′i) = c+ ρ log(πi) + β log

(
π̂i
πi

)
+ εi. (2.3)

where πi and π̂i are baseline profit for individual i in the treatment group, and her

match. Equation (??) is a linear regression that can be estimated directly from panel

data. Intuitively, there are two ways to read (??). The first is that β measures

the impact of receiving a better match (higher π̂i/πi), controlling for initial income

πi. Alternatively, one could read this as estimating the decay in profit, measured by

ρ, after controlling for variation in match quality (π̂i/π). Given the orthogonality

built into Assumption ?? on the data-generating process, (??) measures both forces

simultaneously. Proposition ?? formalizes this.

Proposition 1. The estimates (β̂OLS, γ̂OLS) from (??) identify parameter values (β, ρ)

Proof. Follows directly from the within-treatment exclusion restriction of Assumption

11Note at this point we still do not know the parameter θ. This assumption states that control matches occur via

the (known) function M̂ indexed by some unknown parameter θ.
12The assumption that ẑ > z for all z in the treatment is not critical for the results, but drastically simplifies

the formal proof. In the Appendix, we show that Assumption ?? without the ẑ > z assumption is still sufficient for
identification in the treatment.

13While this paper proceeds using randomization as a way to generate variation consistent with Assumption ??,
it is worth emphasizing that it is not necessarily required. Any instrument that satisfies these assumptions would be
equally valid for the results to hold.
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??. �

The argument laid out above relies in part on the result that one can remove the max

operator from (??) via the assumption that ẑ > z. In the Appendix, we show that this

assumption is not required to identify β and ρ. The intuition is identical to that laid

out above, but the max operator introduces a bias that must be taken into account

directly. This requirements a two-step procedure, and thus existence and uniqueness

require a more substantive discussion.

“Directedness” of diffusion θ So far, the estimation procedure has used only data

from the treatment group. Now, we utilize both treatment and control groups to

identify θ, controls the distribution of imitation draws. We admit from the outset

that we cannot observe individual-level matches in the control group. The critical in-

sight here is that we can draw inference about the control group by differencing from

the treatment. Since treatment firms are guaranteed a high productivity match, ob-

serving small differences in average ex post profit implies that control firms must also

be drawing from a distribution with substantial mass on high productivity matches.

Or put in our notation, M̂ must be indexed by a high θ. Similarly, large differences in

average profit between treatment and control implies that the guarantee of a high pro-

ductivity match generates a large effect precisely because high productivity matches

are not usually realized. This corresponds to a low value of θ. The average difference

in profit therefore allows us to infer θ, despite not observing the underlying matches

in the control group.14. Figure ?? shows the intuition graphically.

To formalize this argument, define z̄T and z̄C as average ex post productivity the

treatment and control groups. Following a similar procedure as above, the law of

motion for productivity (Assumption ??), combined with the implied variation in

matches (Assumption ??), implies

z̄T
z̄C

=

∫ ∫ ∫
ec+ε max

[
z, ẑβz1−β]ρ dF (ε)dĤT (ẑ, z)dHT (z)∫ ∫ ∫

ec+ε max [z, ẑβz1−β]ρ dF (ε)dM̂(ẑ; z, θ)dHC(z)

Defining Γ3 := z̄T/z̄C and applying similar logic to the exogenous shocks ε as in the

previous steps of the estimation, we can re-write the equation as

Γ3 =

∫ ∫
zρ max [1, ẑ/z]β dĤT (ẑ)dHT (z)∫ ∫

zρ max [1, ẑ/z]β dM̂(ẑ; z, θ)dHC(z)
. (2.4)

Given the values of β and ρ already identified, then all other parts of this equation

14All these statements are conditional on a fixed value of β. If β = 0, for instance, then the model cannot rationalize
any difference in the treatment and control group, and θ is therefore not identified.
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Figure 1: Identification of θ

Productivity

Figure notes: Figure shows the distribution of draws for treatment and control firms under different
θ. The distributions are drawn Pareto, but this is for the example’s sake only.

come directly from the data (after again applying Assumption ?? that π ∝ z), except

for the parameter θ.15 The assumed monotonicity of M̂ (Assumption ??) is sufficient

to prove that any θ that solves this equation is unique. Proposition ?? formalizes the

results, again developing bounds to guarantee the results.

Proposition 2. Given the values (β, ρ), the value of θ that solves (??) is unique if

Γ3 ∈ [Γmin3 ,Γmax3 ], where

Γmin3 = inf
θ

∫ ∫
zρ max [1, ẑ/z]β dĤT (ẑ)dHT (z)∫ ∫

zρ max [1, ẑ/z]β dM̂(ẑ; z, θ)dHC(z)
(2.5)

Γmax3 = sup
θ

∫ ∫
zρ max [1, ẑ/z]β dĤT (ẑ)dHT (z)∫ ∫

zρ max [1, ẑ/z]β dM̂(ẑ; z, θ)dHC(z)
. (2.6)

Proof. First, note that the only unknown on the right hand side of (??) is θ. This

follows from Assumption ?? and Proposition ??. All that is left is to show that

there exists a unique θ that solves (??). The right hand side is continuous in θ

by the continuity of M̂ in Assumption ??. The intermediate value theorem then

guarantees existence when Γ3 ∈ [Γmin3 ,Γmax3 ]. Finally, uniqueness follows from the

strict monotonicity of the right hand side in θ, which is guaranteed by the first order

15This is conditional on Assumption ??, which assumes that M̂ is a known function. That is, we require that M̂ is
a known function indexed by an unknown parameter θ. It is in this sense that this paper is not designed to distinguish
between different possible matching technologies.
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stochastic dominance assumed in Assumption ??. �

Thus, the three parameters (β, ρ, θ) are uniquely identified with the variation in

the data-generating process laid out in Assumption ??.

2.3 Discussion

Before turning to the estimation and RCT results, it is worth discussing some context

for the preceding identification results, and laying out what the above procedure can

and cannot accomplish.

First, note that the empirical moments required for the estimation are are eas-

ily obtained from data and use standard moments, including the average treatment

effect, and what amounts to a measure of treatment heterogeneity coupled with the

(normalized) coefficient from a lagged profit regression. Thus, the moments allow for

a relatively straightforward link between model and data.

A second question is the extent to which our identification results are robust to

other economies, or put differently, where our assumptions fail. First, the identification

of β and ρ holds in nearly all economies. The key here is the power of the (hypothetical)

design. That the matches are randomized – and observable – within the treatment

group implies only treatment firm data are required to identify (β, ρ). Thus, the details

of who searches, or why, is irrelevant for the estimation (conditional on Assumptions

?? and ??).

A more subtle restriction is built into our assumption on M̂ in Assumption ??.

Here, we require that the draw of a match ẑ depends only on z and a parameter θ.

This assumption nests as a special case work by ?, ?, and ?, who assume uniform

draws from the existing distribution of operating firms. In that case, if M is the cdf of

operating firm productivity, M̂(ẑ; z, θ) ≡M(ẑ). ? and ? make the same assumption,

but extend these models by endogenizing a tradeoff between production and searching

for a match. These models generally fail Assumption ??, because the decision to

search depends on the remaining details of the model and equilibrium. In this case,

we lose the independence of θ from the remaining model structure.

Two things are worth emphasizing about this result though. First, assumptions

on M̂ only affect the estimation of θ. If we followed ? and ? and fixed θ ex ante,

the identification of β and ρ goes through unchanged.16 Alternatively, one could add

additional assumptions to guarantee our procedure still holds. In the cases outlined

above, a sufficient assumption is a stationary equilibrium, which guarantees that the

16In our quantitative exercise, in which we utilize a random search framework, we find that varying θ has little
impact on the results. Thus, at least in this context, fixing θ ex ante is of little importance.
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value of search remains stationary. Thus, even in these cases, the amount of structure

required to identify the diffusion parameters is dramatically reduced.

Second, Assumption ?? still allows for a wide set of underlying processes. For

example, in addition to random search, the assumption admits pure assignment models

as well. We detail a number of different underlying models that satisfy our assumptions

in Appendix ??, and highlight the variety of interpretations one can put on θ depending

on the exact model details.

3 Application to Kenyan Firms

With the identification results in hand, we now turn to the data. We detail the

randomized controlled trial that allows us to estimate the parameters in the previous

section, then estimate these parameters. A complete description of the program and

reduced-form results are available in ?, though we reproduce some of the relevant

results here for simplicity’s sake.

Our experimental design randomly matches older, profitable entrepreneurs with

younger entrepreneurs. The younger owners were then followed for over 17 months to

measure changes in business practice and profit over time. Outcomes are compared

to a control group of similar firms.17

3.1 Details of RCT and Data Collection

The experiment took place in Dandora, Kenya, a dense urban slum on the outskirts of

Nairobi. Self-employment is ubiquitous in Dandora with a huge number of street-level

businesses operating in a variety of industries, such as retail, simple manufacturing,

repair and other services. We began by conducting a large scale cross-sectional survey.

We sampled a random cross-section of 3290 businesses. Our goal was for this sample

to be representative of the population of enterprises, and it includes businesses of

a variety of ages and industries. This sample is used to estimate moments of the

population of operating firms.

Qualitative Evidence on the Importance of Learning To begin, Figure ?? plots busi-

ness scale measures based on self-reported learning methods from the baseline survey.

Fifty-five percent of all firms claimed they were self-taught, while the rest claimed to

learn either from another business operator, in school, or through an apprenticeship.

17In ?, we further randomize another group into formal business training classes. While we do not utilize this
classroom training treatment arm here, it is interesting to note that the results differ substantially across these treatment
arms. We show that this to the fact that matching with local firms provides specific information about the local economy
(supplier locations, etc.) whereas classroom training provides information on topics that are designed to be orthogonal
to the market in which they are deployed (accounting, marketing, etc.).

13



Figure ?? shows that the self-taught earn less profit at any point over the lifecycle.

The average profit of a self-taught firm is 18 percent less than firms that learn from

others, while Figure ?? show that self-taught firms pay a smaller total wage bill.

Figure 2: Self-Reported Learning Methods and Business Scale
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Selection and Randomization We start from a sample of female business owners who

have been in operation for less than 5 years.18 We then randomly select a subset of

these business owners to randomly match with an older, more experienced owner. In

this way, we guarantee a high quality match for these business owners (in an intent-to-

treat sense). Thus, the randomization allows us to compare these young owners chosen

into the treatment against those other young business owners who were not. These

individuals were then surveyed 7 times over 17 months, at t = 1, 2, 3, 4, 7, 12, 17.1920

The older business owners who entered into a match were selected from those

businesses with owners over 40 years old and at least 5 years of experience. This

hopefully minimized the importance of “luck” in baseline profit realizations to allow

us to focus on truly productive business owners.

We then recruited business owners with the highest profit until we had a sufficient

number for matches. Of those contacted to serve as a mentor, 95 percent accepted.

We reached a sufficient number of mentors at the 51st percentile of our recruitment

frame. These matches with treatment firms were random conditional on industry.

To summarize, Figure ?? plots the cumulative distribution function of baseline

18The sex selection criteria is to limit heterogeneity outside the model. Note, however, that females make up 65
percent of business owners in Dandora and 71 owners with businesses open less than 5 years.

19Note that this procedure satisfies all the requirements in Assumption ??. We do not assume we can observe
control matches (part 2 of Assumption ??), but the randomization immediately satisfies the exclusion restriction (part
1). Our selection the treatment matches satisfies the final aspect of Assumption ?? when combined with Assumption
??.

20In the context of the model, we need only that the productivity and shock distributions are the same. Of course,
when we go to the data, we also want to make sure that un-modeled and unobserved characteristics are equalized
across the two groups, which the randomization guarantees.
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profit for the entire sample, the population we study, and the selected matches. One

can see that our study population is somewhat poorer than the entire population,

while the matches are drawn from the far right tail of the baseline profit distribution.

Figure 3: Baseline Profit Distributions
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Details of a “Match” What does it mean to enter into one of our matches? We

designed the program to remain as truthful to the theoretical counterpart of the model

as possible. First, matches were designed to only last for one month, though of course

there was no restriction on meeting after the formal end of the program.

The program was pitched to both sides of the match as a mentee-mentor relation-

ship, and thus was explicitly focused on business success. The older, more successful

business owners were the “mentors,” while the younger owners were the “mentees,”

consistent with both their profitability and time engaged in business. The mentors

were told they could potentially help other business owners learn the requisite skills

required to operate in Nairobi. However, we provided no topics to discuss, instead

preferring that the content of any discussions was self-directed. After signing up men-

tors we simply provided the mentees with the mentor’s phone number and told them

that a prominent business owner in Dandora was willing to discuss business questions

with them. Whether they contacted the mentor, or ever met, was their decision. How-

ever, all matches met at least once in the official month-long treatment period.21 For

simplicity and ease of reference to the more detailed discussion in ?, we refer to these

two groups as mentees and mentors throughout. We emphasize, however, that they

21One might be concerned that we indirectly primed mentees to believe these matches would be beneficial. We can
do little to rule this out completely. We note, however, that evidence of the mentor’s business success are easily visible
to the mentee. Mentors had substantially more physical capital and workers, and had a fixed building from which they
conducted business (most mentees did not). Moreover, the first meeting took place at the mentor’s business. Thus,
that the mentor was “good” at running a business would likely have been understood with or without us.

15



should more generally be thought of as the more and less productive members of a

match.

3.2 Balance

Since our theoretical results rely on two layers of randomization, we need to verify

balance both on between control and treatment and within treatment. ? shows that

the control and treatment groups are balanced. Here, we conduct a second balance

test

yi0 = α0 + α1Mi + εi

where Mi is an indicator denoting that firm i is a treatment firm matched with a

bottom 25th percentile (denoted ML), 25-75 percentile (MM), or top 25 percentile

firm (MH) in terms of baseline profitability.22 Table ?? reports the results. The only

significant difference is in age, and the magnitude is small.

3.3 RCT Results

Impact on Mentees Over the course of one year, followup surveys were conducted

to measure business activity and profit among mentees as well as those that received

business classes and the control group. We run the regression

πit = α + Miβ + yi0δ +Xiη + θt + εit. (3.1)

where πit is the profit of firm i at time t, Mi = 1 if matched with another firm,

Xi are firm-specific controls, and θt is time fixed effects. The treatment effects are

summarized in Table ??.

We found that entrepreneurs receiving a mentor realized a statistically significant

increase in profit. Moreover, the increase is economically significant, representing

23 percent of the control group’s mean profit. In the second column of Table ??,

we break out these results by the profitability of the more profitable member of the

match. Here we divide the set of mentors by their percentile ranking within the whole

set of mentors. We find that the point estimates are ordered by the profitability of

each group, so that the most profitable mentors generated the largest treatment effects

for their mentees.

As discussed in detail in ?, we found that the mechanism for this increase in profit

was reduced costs, such as lower prices for inputs. This is important because greater

22We have experimented with a number of different ways to compute the balance table, and all show the same
results. We report this indicator instead of a continuous measure to increase precision to give the data the best chance
at uncovering a difference, though the results are the same in either case.
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Table 1: Balancing Test at Baseline

Control Mean ML - Control MM - Control MH - Control
(1) (2) (3) (4)

Firm Scale:
Profit (last month) 10,054 -732.65 -1337.06 -760.08

(1314.56) (1393.38) (2128.41)

Firm Age 2.39 0.04 -0.19 0.08
(0.28) (0.30) (0.46)

Has Employees? 0.25 -0.10 -0.07 0.10
(0.07) (0.07) (0.11)

Number of Emp. 0.23 -0.05 0.00 0.18
(0.08) (0.08) (0.13)

Business Practices:
Offer credit 0.74 -0.07 0.04 -0.03

(0.07) (0.08) (0.12)

Have bank account 0.30 -0.04 -0.05 0.06
(0.07) (0.08) (0.12)

Taken loan 0.14 -0.07 -0.06 0.03
(0.05) (0.05) (0.08)

Practice accounting 0.01 -0.01 0.01 -0.01
(0.01) (0.02) (0.02)

Advertise 0.07 0.04 0.01 0.11
(0.05) (0.05) (0.07)

Sector:
Manufacturing 0.04 -0.02 -0.04 -0.04

(0.02) (0.03) (0.04)

Retail 0.69 -0.03 0.00 -0.10
(0.08) (0.08) (0.12)

Restaurant 0.14 -0.06 0.00 0.03
(0.05) (0.06) (0.09)

Other services 0.17 0.09 0.02 0.07
(0.06) (0.07) (0.10)

Owner Characteristics:
Age 29.1 0.92 -1.88 0.50

(0.79) (0.84)∗∗ (1.28)

Secondary Education 0.51 0.02 -0.08 0.13
(0.08) (0.09 (0.13)

Table notes: Columns 1-4 are the coefficient estimates from the regression above, with column one being the estimate of the
constant α̂0. Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***. All constants are significant at one
percent.

profits driven by greater demand may mean that the mentee group took sales away

from the control group, which would bias these results upward. However, we found no

significant increase in revenue, which rules out that concern. Instead, mentees learned

how to achieve the same scale at lower cost, consistent with higher productivity in the

sense of the model. Moreover, we are able to rule out a number of other alternatives

that would be inconsistent with knowledge diffusion, such as mentors giving loans to

mentees.
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Table 2: Profit Effects in Randomized Controlled Trial (from ?)

Profit (1) (2)

Matched 414.46
(133.07)∗∗

Matched with firm in . . .

(0, 25) pctile 356.03
(180.17)∗∗

(25, 75) pctile 449.11
(172.01)∗∗∗

(75, 100) pctile 514.54
(270.54)∗

Control mean 1803.48 1803.48

Obs. 1902 1902

R2 0.091 0.090

Controls Yes Yes

Table notes: Standard errors are clustered at the individual level and are in parentheses. Controls include secondary education,
age of owner, an indicator for any employees, and sector and wave fixed effects. The top and bottom one percent of dependent
variables are trimmed. The results are robust or other (or no) trimming procedures and dropping any controls. Statistical
significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***.

Impact on Higher Profit Business Owner Finally, we consider the impact on more

productive members of the match. The diffusion process in Section ?? assumes that

there should be no gains to these individuals, which is implicitly assumed through the

use of the max function in law of motion for productivity (Assumption ??). These

individuals were not randomly selected relevant to their peers, and thus cannot be

directly compared to a control group as the others were. However, our design allows

us to use the selection procedure to identify the causal impact of being chosen. Specif-

ically, we surveyed both those chosen for the program and those just below the cutoff

for selection, then employed a regression discontinuity design to study the impact of

being chosen into the program.

Figure ?? plots profit along with a fitted quadratic and its 95 percent confidence

interval. Figure ?? uses the entire sample, while Figure ?? uses the ? procedure to

choose the optimal bandwidth. Both use 15 bins on either side of the cutoff. Figure

?? suggests no statistically discernible discontinuity around the cutoff.

We next test this more formally. In particular, letting ε be the cut-off value for

mentors, we run the regression

πi = α + τDi + f(Ni) + νi (3.2)
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Figure 4: Profit for mentors and non-mentors (from ?)
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where πi is profit, Di = 1 if individual i was chosen as a mentor (ε̂i ≥ ε, f(Ni) is

a flexible function of the normalized running variable Ni = (ε̂i − ε)/σε, and νi is

the error term. The parameter τ captures the causal impact of being chosen as a

mentor. We use local linear regressions to estimate the treatment effects on profit and

inventory, along with business practices of record keeping and marketing. The results

are in Table ??, and we find that being a mentor has no statistically significant effect

on profits. Moreover, there is no change in marketing or record-keeping practices,

which one might associate with productivity. There is some evidence that inventory

spending decreases, but it cannot be statistically distinguished from zero. Overall, we

find little evidence that entering into a match changes either business scale or business

practices for the more productive member of the match. This is consistent with the

max function in the forward equation for productivity (equation ??), which is assumed

here and in much of the existing literature.

We emphasize that while this is consistent with the model described in Section

??, where higher productivity firms receive no benefit from interaction with lower

productivity firms, there is nothing in the experimental design that guarantees this

outcome.23

23For example, the relationship may be consistent with a “collaboration” model in which both sides gain from
interacting with the other. On the other hand, if the time requirement is high enough, there could be a cost to the
more productive member of the match. However, the high take-up and persistence of matches suggests this second
explanation is unlikely a priori.
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Table 3: Regression discontinuity results for matched firm treat-
ment effect (?)

Percent of IK Scale Practices

optimal bandwidth Profit Inventory Marketing Record

keeping

100 -503.18 -3105.87 0.01 0.02

(1321.82) (2698.11) (0.11) (0.18)

150 300.19 -2585.22 0.01 0.07

(1407.26) (2291.34) (0.09) (0.14)

200 322.09 -123.59 0.01 0.10

(1324.17) (1964.08) (0.08) (0.13)

Treatment Average 4387.34 8435.79 0.08 0.85

Control Average 1794.09 4039.20 0.13 0.63

Table notes: Statistical significance at 0.10, 0.05, and 0.01 is denoted
by *, **, and, ***. Profit and inventory are both trimmed at 1 percent.

3.4 Diffusion Parameter Estimates

We use these results to estimate the parameters of the diffusion process. Relative to

the theoretical results in Section ??, we now have multiple periods of data. There are

a number of ways to link the longer panel to the theory, and we choose a particular

interpretation that allows us to use the dynamics as an “out of sample” test, allowing

for some abuse of the term.

Specifically, we do the following. We pool the data into quarters, to create equally

spaced time periods. The imitation opportunity (that is, the treatment) is in quarter 2.

We use only quarters 1 and 2 to estimate the parameters (β, ρ, θ) from properly-defined

moments detailed in Section ??. Thus, we will exactly match the initial treatment

effect. We do not, however, utilize any of the future data in our estimation. Instead,

we will ask whether the model can predict the seemingly fast fade-out of the treatment

effect.

Applying this strategy implies β = 0.26 and ρ = 0.72. Estimating θ requires

specifying the functional form of M̂ . In our quantitative results below, we assume

M̂(ẑ; z, θ) = M(ẑ)
1

1−θ

where M is the equilibrium distribution of productivity in the economy. When θ = 0,

this is the usual uniform random matching assumption. θ > 0 implies the imita-

tion draws are concentrated among better firms. On the other hand, θ < 0 implies

draws are concentrated in the left tail of the equilibrium productivity distribution.24

Applying our identification strategy with this function, we find that θ = −3.07.

24More formally, θ → 1 implies that all mass in the distribution of imitation draws concentrates on the upper bound
of the productivity distribution. As θ → −∞, imitation draws come from the lowest z firms, thus implying that no
operating firm receives a useful opportunity from imitation. This allows for the possibility that our intervention has
an effect on members in the match (via β > 0), but none of those gains diffuse in equilibrium.
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4 Full Model

With the estimated diffusion parameters in hand, we now close the model to study

the quantitative importance of diffusion. As we have emphasized throughout, this is

only one potential model in which one could deploy these results. However, because

measuring the impact of diffusion requires the solution to a fixed point problem, the

remaining structure is required to compute the effect. Naturally, the exact policy levers

used and the quantitative magnitudes change depending on the model specification,

but the estimated diffusion parameters do not.

Time is discrete and infinite. In each period there is a unit mass of risk-neutral

agents. Each agent has an exogenous probability δ of dying each period, while δ agents

are born. Each agent is characterized by productivity z which evolves over time via

the diffusion process laid out in Assumption ??.

Occupational Choice and Recursive Formulation In every period, each agent can

choose to be a worker or an entrepreneur. Workers sell their labor to entrepreneurs

for the market clearing wage w, while entrepreneurs produce an undifferentiated con-

sumption good using their skill and hired labor. In order to be a worker, an agent

must pay f units of the final good in order to access the labor market.25

As before, an entrepreneur’s profit is

π(z) = max
l≥0

zαl1−α − wl (4.1)

where is now w the market clearing wage. Recursively, the value of having en-

trepreneurial skill z is

v(z,M) = max{π(z), w − f}+ (1− δ)γEz′|zv(z′,M ′) (4.2)

where M is the equilibrium distribution of productivity, and is the aggregate state of

the economy. Solving the entrepreneur’s problem yields

l(z) =

(
1− α
w

) 1
α

z

π(z) = α

(
1− α
w

) 1−α
α

z

which satisfies Assumption ?? on the proportionality of profit and productivity. This

25This distortion is set simply to generate the correct share of entrepreneurs and workers in the economy. It could,
for example, be a stand-in for search costs. Alternatively, one could assume individuals differ in some non-pecuniary
benefit between the two occupations, such as entrepreneurship providing a more flexible work schedule.
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further implies that agents face a cutoff rule to determine their occupation. For a

given wage w, there is a z(w) such that any agent with z < z becomes a worker, while

agents with z ≥ z become entrepreneurs.26

Diffusion Continuing agents have productivity that evolves according to our Assump-

tion ??,

log(z′) = c+ ρ log(z) + β log (max{1, ẑ/z}) + ε. (4.3)

In order to identify θ, we make a functional form assumption on M̂ . A match ẑ is

drawn from

M̂(ẑ; θ) =

0, if ẑ < z(
M(ẑ)−M(z)

1−M(z)

) 1
1−θ

, if ẑ ≥ z
(4.4)

As discussed in the previous section, the parameter θ controls the part of the distribu-

tion from which draws arise, satisfying our Assumption ??. In particular, when θ = 0,

imitation draws are uniform from the set of operating firms. However, we also allow

for the possibility that draws may be better or worse than that. As θ grows toward

1, the mass in M̂ goes deeper into the right tail of operating firms, so that imitation

draws are much better than random.27 Alternatively, as θ goes to negative infinity,

the probability mass converges to z, so that no operating firm ever receives a useful

imitation draw. This case captures the possibility that diffusion is completely absent.

Unlike our assumed M̂ in Section ??, however, M̂ now depends on the economy-

wide productivity distribution M , an equilibrium object. It must therefore be consis-

tent with the the diffusion process in the economy. The law of motion for M is

∀z′,M ′(z′) = δG(z′)+(1−δ)
∫ ∞

0

∫ ∞
0

F (log(z′)−log(max{ẑβzρ−β, zρ})−c)dM̂(ẑ; θ)dM(z)

(4.5)

where G is the exogenous distribution from which new entrants draw productivity.28

4.1 Competitive Equilibrium

A competitive equilibrium of this economy is a wage w, a distribution of productivities

M , and a value function v such that v satisfies (??) with the associated decision rules

for labor and occupational choice, the evolution of M is consistent with the decision

26In Appendix ?? we embed our diffusion estimates in other models that break this result, for example by adding
a utility benefit to firm operation.

27It is straightforward to micro-found θ. For example, if 1/(1 − θ) = K and K is a natural number, then this
specification is equivalent to each agent receiving K draws each period and the imitation opportunity is the maximum
of those K draws. See Appendix ?? for more details.

28Other papers, such as ? and ?, assume that G varies with the existing distribution of productivity. This would
have no effect on any of our identification results, and thus we exclude it for simplicity.
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rules and is given by (??), the wage w clears the labor market, which requires a

solution to the implicit equation

w = (1− α)

(∫∞
z(w)

zdM(z)

M(z(w))

)α

.

4.2 Calibration of Remaining Parameters

The remaining parameterization of the model follows relatively standard calibration

procedures and we choose parameters to match moments of the same set of firms in

which the experiment was conducted. We make use of both the baseline field data

that conducted on a random subset of firms in Dandora, Kenya. Care was taken in

collecting this data that it be representative of the whole population of operating firms

in the area, and we use it here to measure the distribution of operating firms.

The model parametrization can be broken into three different parts that can be

considered separately. First, as we showed previously, the diffusion parameters are

independent of the remaining model parameters. Thus, we can simply impose our

estimated parameters β = 0.26, ρ = 0.72, and θ = −3.07.

The remaining parameters are the death rate of agents δ, the labor share of out-

put α, the growth term c, the exogenous distribution of shocks F , and the exogenous

distribution of entrants G. We assume that G is log-normally distributed with param-

eters µ0 and σ0, and that F is log-normally distributed with parameters µ and σ. We

normalize µ0 = 0. We note that c and µ are not separately identified, so we choose

µ = −σ2/2 so that E[eε] = 1.

The death rate δ is used to match the average age of the population under study,

which is 34. Because agents in the model can move between working and entrepreneur-

ship frequently over the course of their lives, we match the age of the agent rather

than the age of the firm. Moreover, we interpret a new agent in the model to be an

eighteen year old in the data, so an average age of 34 in the data corresponds to 16 in

the model. Because the rate of death is constant in the model, the age distribution is

geometrically distributed with a mean equal to the reciprocal of δ. Moreover, a period

in the model is interpreted as a quarter in the data. Therefore, to match an age of 16

years (or 64 quarters), we set δ = 0.016.

Our remaining parameters are σ, σ0, c and f . We jointly match these four param-

eters to the following four moments: the standard deviation of log-profit in the overall

population of operating firms (1.399), the variance of log-profit among new entrants

(0.961), the ratio of the average profit of firms overall to the average profit of new

entrants (1.557), and the fraction of agents that operate as workers (28.7%). These
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moments and parameter values are reported in Table ??.
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Table 4: Targets and Parameter Choices

Model Parameter Description Parameter Target Moment Source Target Model

Value Value Value

Group 1

β Intensity of diffusion 0.26 Estimated parameter from regession (??) RCT results 1.16 1.16

ρ Persistence of productivity 0.72 Estimated parameter from regession (??) RCT results 1.18 1.18

θ Directedness of search -3.07 Γ3: Overall treatment effect in quarter 2 RCT results 1.40 1.40

Group 2

σ St. dev. of exogenous productivity shock distribution 1.435 Variance of log profit in all firms Baseline survey 1.399 1.331

σ0 St. dev. of new entrant productivity distribution 0.915 Variance of log profit among new entrants Baseline survey 0.961 0.900

c Growth factor in productivity evolution 0.539 Ratio of average profit of all firms to new entrants Baseline survey 1.557 1.450

f Fixed cost to access labor market 1.028 Fraction of agents employed as workers ? 0.287 0.288

Group 3

δ Death rate of firms 0.016 Average age of baseline business owners Baseline survey 34 34

Table notes: Group 1 is jointly chosen from the experimental data. Parameters in Group 2 are calibrated to jointly match a number of moments from our baseline data. Group 3
are also set to match baseline data moments, but match 1-1 with target moments.
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5 The Quantitative Impact of Diffusion

With the calibrated model in hand, we turn to the quantitative results. Our goal

here is two-fold. First, we ask whether the model can replicate the time series of the

empirical treatment effect, and we study the importance of our estimated parameters

in generating this result. Second, we ask whether our model implies a large general

equilibrium diffusion externality, and study its relationship to the partial equilibrium

results from the first step.

5.1 Partial Equilibrium Effect

The experiment used to parameterize this model exhibited distinctive dynamics over

the study period. In particular, the treatment effects were strong in the second quarter,

and then decayed over time. After 4 quarters, the treatment effects were no longer

detectable. We begin by asking whether the model can match this result.

5.1.1 Procedure

We study this question with the following experiment. We start the economy from the

stationary equilibrium, defined by the aggregate state M∗(z). We then create a control

and treatment group with the same properties as our study group, including average

and variance of profitability relative to the full economy.29 Similarly, we construct a

“mentor” group from M∗ with the same properties as our empirical mentors. We then

shock the treatment group with a one-period random draw from the mentor group.

After that period, treatment firms continue to draw from M∗, while control group

draws from M∗ in every period.

It is important to note that this is a “partial equilibrium” experiment, in the sense

that the treatment does not influence the evolution of M (it remains fixed at M∗).

Thus, if we observe convergence of treatment and control, it is not due to the fact that

the control group is also benefiting from treatment.

5.1.2 Results

Figure ?? plots the implied dynamics of the treatment effect in the model and data.

Note that the first two quarters (i.e., the pre-period and the first post-treatment

period) are matched by construction. However, the model predicts the end of the

effect quite well. By quarter 3, both the model and data predict no treatment effect,

though the model under-predicts the effect in quarter 2.

29The age cutoff is irrelevant here, given the constant death probability in the model.

26



Figure 5: Dynamics of Treatment Effect
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The key to this result is our relatively low estimate of persistence (ρ = 0.72),

especially when compared to standard values in more developed countries of around

0.9 (e.g. ??).30 Thus, the impact of a one-time treatment degrades quickly despite

not being targeted directly. If we instead calibrated ρ to minimize the sum of squared

errors over the entire time series of Figure ??, we would have estimated ρ = 0.78.

Thus, the model matches the time series quite well without directly targeting it.

What drives this result? Figure ?? plots the treatment effect after 1 quarter

(Figure ??) and after 5 quarters (Figure ??) for various combinations of β and ρ.

It highlights the importance of different parameters for different moments of the PE

impulse response observed in Figure ??. Figure ?? shows that the initial spike in profit

is primarily a function of β. That is, when a low productivity treatment firm meets

a high productivity firm, the immediate response depends on how much how much of

that firm’s productivity gets immediately internalized.31

On the other hand, the half-life of this initial effect – and thus the “long-run” PE

effect – is primarily controlled by ρ (Figure ??). Given our estimated ρ, most values of

β imply no long-run PE effect. However, a second fact arises here. For a given ρ, the

long-run PE effect is decreasing in β. The intuition for this result is straightforward.

If β is high, individuals internalize a large portion of the potential benefits from a

good match. Over time, most agents meet with someone productive at least once, and

thus the treatment effect is muted.

Could one use these results to deduce that diffusion is unimportant in an aggregate

30We discuss the rationale for low firm-level persistence in ?.
31θ also matters for this result, as it governs how much better the match is relative to the average control match.

We do not include this graph here to save space, as θ turns out to play on a small quantitative role once we consider
general equilibrium effects.
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Figure 6: Partial Equilibrium Treatment Effect
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Figure notes: Average control group baseline profit is normalized to one, so a value equal to one here
implies no treatment effect.

sense? Only on the condition that β is equally as unimportant for long-run general

equilibrium effects as they are for long-run partial equilibrium effects. Figures ?? and

?? tell us nothing about that, and gives us no reason to make such an extrapolation.

As we show in the next subsection, even more caution is warranted. Using the long-

run PE effects as a measure of the aggregate importance of diffusion would in fact

point in the wrong direction – while the partial equilibrium impact is decreasing in β,

the general equilibrium effect is increasing in β.
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5.2 General Equilibrium Effect

We next ask whether the general equilibrium importance of diffusion is large, even

within a model that can match the quick fade of the partial equilibrium treatment

effect. The equilibrium of this model is inefficient due to the negative externality gen-

erated by marginal firms. Because knowledge diffuses via random search (conditional

on directedness parameter θ), marginal firms decrease the likelihood of an individual

learning from the right tail of the knowledge distribution. The planner, therefore,

would allocate marginal firms to instead operate as workers in order to increase the

average match quality of firms. We measure the size of this equilibrium externality by

solving for the optimal allocation of agents between workers and entrepreneurs and

compare the stationary equilibrium when agents are assigned optimally to the laissez

faire equilibrium.

5.2.1 Results

We solve for planner’s allocation and compare it to the baseline economy. At our

estimated parameters, we find that the GE diffusion externality is large. Despite

the lack of any long-run partial equilibrium effect, aggregate income is 290 percent

higher in the economy where workers are allocated optimally compared than when

the allocation is decentralized. These gains are driven by an endogenous shift in the

stationary distribution of productivities illustrated in Figure ??. This large shift is

generated by the feedback effects of increasing the average quality of ẑ draws, which

then causes the productivity distribution to shift to the right, improving the set of ẑ

draws even more.

5.2.2 Role of Estimated Parameters in Generating the GE Effect

Finally, we do a similar exericse to the partial equilibrium case, and study the impor-

tance of various parameters in generating the income gains highlighted above. Figure

?? shows the results graphically.

First, Figure ?? first shows that lower θ increases the gains from policy. This is

because higher θ implies that individuals are more easily able to access high-z matches,

limiting the impact of this policy designed to make marginal firms exit. However, the

differences are relatively muted relative to the importance of β and ρ. Moving to

θ = 0.25 lowers the gains from our baseline 290 percent down to 215 percent.

Second, ρ plays a critical role, as was true in partial equilibrium as well. Holding

the remaining parameterization fixed, the income gained by moving to the efficient

allocation increases from 2 to 6328 percent when ρ increases from 0.2 to 0.95 (the
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Figure 7: Stationary Productivity CDF
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Figure 8: % Income Changes in Efficient Allocation

(a) Impact of θ
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(b) Impact of β
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Figure notes: This figure plots the average income change in response to the optimal wage subsidy
subsidy for various diffusion parameter combinations. Our estimated gains are indicated by the red
dot on the solid line.

latter is not shown on the graphs for the sake of readability).

Finally, Figure ?? shows that the GE importance of diffusion is increasing in β.

Decreasing β from 0.26 to 0.10 holding the remaining parameterization fixed causes

the gains to plummet to from 290 percent to 2 percent. This contrasts sharply with

the PE results. While the long-run GE impact is increasing in β, the long-run PE

impact is decreasing in β.
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This contrast with the partial equilibrium case is important. In both cases, the

magnitudes rely on complementarity between β and ρ, but in different ways. The

partial equilibrium magnitude is maximized with high ρ and low β. The GE effects,

on the other hand, rely on high ρ and high β. For example, at ρ = 0.2 the gains

decline from 2 percent to slightly below 1 percent when β decreases from 0.26 to 0.10,

compared to the 290 to 2 percent drop at our estimated ρ = 0.72.

The intuition is straightforward. The ability to internalize productivity (high β)

is worth relatively little from the planner’s perspective if those gains die out quickly

(low ρ). Thus, with low persistence, there is little to be gained regardless of β. Once

the impact of a good match lasts for multiple periods, the planner has a larger role to

play in managing the diffusion externality.

These results confirm the importance of exercising caution when extrapolating PE

effects for GE interpretation. For example, imagine a scenario in which a policy-

maker decided to run our experiment in various economies with different β, then use

the long-run treatment effect to identify where diffusion played the largest role (that

is, where the gains from optimal policy were largest). Using this metric, she would

select economies with the lowest β. That is, she would instead minimize the potential

welfare gains from policy.32

6 Discussion and Alternative Modeling Chocies

As we highlighted in Section ??, the model laid out here is not the only one in which

one could deploy our estimated diffusion parameters, nor the only diffusion process.

We highlight the random search framework in the main body of the paper it underlies

a large portion of the literature. However, the model does have its own idiosyncrasies

that potentially matter for the quantitative results. In the Appendix, we re-create the

results under two different scenarios.

In the first, we fix θ ex ante and allow for a cost of finding a match, similar to

?.33 As in the baseline model, θ plays little quantitative role, making this assumption

relatively innocuous.

In the second, we depart from the baseline assumption that all surplus is captured

by the less productive member of the match, and consider a bargaining problem when

two agents meet as in ?. In this context, we reinterpret θ as a measure of bargaining

power.

32If economies differ in β and ρ, this would no longer be exactly true. In this case, the policy maker would choose
economies with low β and high ρ. Quantitatively, however, the same results emerge. See Figure ?? and the surrounding
discussion.

33In a model where search requires a cost, θ is not generically identified independent of the remaining model
environment. See Section ?? for a longer discussion.
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We note, however, that these are not the only models in which one can deploy

these results. In Appendix ??, we provide a variety of alternative assumptions that

fall under the assumptions laid out in Section ??, including models with multiple

draws, draws that include noise, and deterministic assignment.

7 Conclusion

This paper uses evidence from a randomized controlled trial to identify a model of

firm-to-firm productivity transmission . Our results imply an important role for dif-

fusion. The efficient level of the learning externality increases income substantially.

We emphasize that this need not be true, as both the model and experimental design

ex ante allow for the possibility that the impact of diffusion is small or nonexistent.

Moreover, our results show that the critical parameters for generating the equilibrium

importance of diffusion are the same t

We view these results as an important first step that highlights the possibilities of

linking equilibrium diffusion models with causal identification. The next steps require

a more detailed investigation of model and data. For example, one question that

remains unanswered both in this paper and the broader literature is why individuals

do not seek out the most productive business owners to learn from, given the seemingly

large benefits and low costs we observe (?). Our model builds this in as a technological

constraint, but that need not be the case. ? point to frictions in the information

market, while ? point out that growth-reducing network structures can be an optimal

response to the possibility of detrimental flows through the network (e.g., disease). Put

differently, here we assume a diffusion process assumed by much of the recent literature

(though generalized somewhat), and estimate it. The next steps require distinguishing

across diffusion processes, including any potential distortions that arise. Different

field experiments, designed with an eye toward aggregate theory, could provide more

detailed information to help further refine such model choices.
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A Alternative Models [to be completed]

In this section, we replicate the results in a number of different models. After, we

provide additional interpretations of models that fall under our assumptions (without

the quantitative results).

A.1 Cost of Searching

A.2 Bargaining Problem During a Match

A.3 Assignment

A.4 Additional Diffusion Processes

A.4.1 Model of Multiple Draws

Suppose each period each agent takes K independent, uniform draws from the dis-

tribution M , labeled ẑ1, ..., ẑK . The agent then has to select the most useful of these

draws. Hence:

ẑ = max{ẑ1, ...ẑN} (A.1)

The distribution of ẑ then follows the well-known form:

M̂(c) = Prob(ẑ ≤ c) = Prob(max{ẑ1, ...ẑN} ≤ c) =
K∏
i=1

Prob(ẑi ≤ c) =
K∏
i=1

M(c) = (M(c))K

(A.2)

where the third inequality comes from the fact that they are independent and the

fourth from the fact that each draw is from M .

Note that this example is a special case of the version considered in the body of

the paper when 1/(1− θ) is a natural number.

A.4.2 Model with Effort Choice

Each period, every agent characterized by productivity z is matched to an agent that

owns a potential imitation opportunity zm as a uniform draw from the distribution

of operating firms M . The agent has an effort endowment of 1 that must be divided

between imitation and providing a utility benefit to the owner of the imitation op-

portunity zm. If z ≥ zm, then no effort is put into imitation and ẑ = z. If zm > z,

then the agent and the owner of the imitation opportunity must first agree on the

distribution of effort, then the choice of effort x and the values of z and zm together

generate the value of ẑ for the agent in that period according to:
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ẑ =
(zm
z

)x
z (A.3)

That is, by putting in more effort x ∈ [0, 1] the agent is able to close the gap

between their z and zm. The benefit to the owner of zm is given by the function b(x),

which is decreasing in x.

Agents and owners of imitation opportunities have one-off interactions and each

receive 0 benefit if no agreement is made. They bargain over the assignment of the

agent’s effort between imitation and utility benefits for the owner of the imitation

opportunity according to a Nash bargaining problem where the bargaining weight of

the agent is θ. The bargaining problem is:

max
x∈[0,1]

([zm
z

]x
z
)θ
b(x)1−θ (A.4)

Suppose that b(x) is given by b(x) = 1− x. Then it is easy to show that:

x = max

[
0, 1− 1− θ

θ log(zm/z)

]
(A.5)

ẑ = max
[
z, zme

1−1/θ
]

(A.6)

As expected, the more bargaining power that the learning agents have, the greater is

x, resulting in greater ẑ.

Note that, in the model, draws of imitation opportunities ẑ < z are not useful.

Hence, the distribution M̂ can be written, for any value c, as:

M̂(c) = Prob(ẑ ≤ c) = Prob(zme
1−1/θ ≤ c) = Prob(zm ≤ ce1/θ−1) = M(ce1/θ−1)

(A.7)

or following the notation more standard in the paper:

∀z, M̂(ẑ, z, θ) = M(ẑe1/θ−1) (A.8)

A.4.3 Innovations through Imitation

Here we show how the ? environment maps into that considered in this paper. In

their model (adapted to our notation), an agent with productivity z receives new

arrivals of ideas that have two components: zm that comes from a random match from

another agent, and γ a random innovation on that idea. Then ẑ = γ1/θzm. Here, zm

is a uniform draw from the distribution of productivities. Then if γ has a cumulative

density function given by Γ, then:
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M̂(c) = Prob(ẑ ≤ c) = Prob(zm ≤ cγ−1/θ) =

∫
M(cγ−1/θ)dΓ(γ) (A.9)

A.5 Model with Deterministic Assignment

Here we consider a case where M̂ arises when all agents can interact with one another

and sort into relationships endogenously. Suppose that every agent with productivity

ẑ has the option to influence any other agent that has productivity z. Every agent

can only be influenced by one other agent each period, and they always prefer to be

influenced by the highest productivity possible.

The utility of an agent with productivity ẑ influencing an agent with productivity

z is given by:
ẑ

z
− 1− 1

2θ

(
ẑ

z
− 1

)2

(A.10)

That is, the agent with ẑ gains benefit in proportion to how large the benefit is

for the other agent, but their cost is quadratic in the distance between their produc-

tivities. For example, the influencer is happy when the other agent is helped by their

influence, but it takes more effort to influence when the distance between them is

great. Therefore, if there is a continuous distribution of z < ẑ, the ideal agent that

the influencer would like to interact with has productivity:

z∗(ẑ) = ẑ/(1 + θ) (A.11)

That is, the lower is the cost of influencing low productivity firms, the deeper into the

left tail of the distribution is the agent willing to go.

However, since every agent can only be influenced by one agent each period and

they strictly prefer to be influenced by agents of higher productivity, it is possible that

(even if the distribution is continuous) that the ideal agent for ẑ is already matched to

another influencer. Therefore, intuitively, the probability distribution over assignment

between ẑ and z is constructed by starting at the upper support of the distribution

M , allowing the highest productivity firms to choose their most preferred matches,

then descending down through the distribution letting each firm choose to influence

its preferred firm among those remaining. Note that not all firms need have another

firm to influence if their utility from doing so be negative.

Formally, the probability distribution over imitation opportunities can be con-

structed in the discretized case as follows, when the productivity grid takes values

z ∈ {z1, ...zN}, which are ordered (i < j =⇒ zi < zj).

Define µ̃(z, ẑ) as the measure of ẑ influencing z (a N×N matrix). We can construct
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µ̃ in the following steps given the measure µ of agents of each z type:

1. Let U(z, ẑ) be the N ×N matrix of utilities of ẑ influencing z, and µ̃ be a N ×N
matrix of zeros. Let µ̄ be the N × 1 vector of unassigned influencers and µu be

the N × 1 vector of unassigned imitators. Set µ̄ = µu = µ, n = N , and m = 1.

2. Let l be the m-argmax of U(·, zn). If U(zl, zn) ≤ 0, set µ̃(z1, zn) = µu(zn) and

skip to step 5.

3. If µ̄(zn) ≤ µu(zl), then µ̄(zn) = 0, µu(zl) = µu(zl)− µ̄(zn), and µ̃(zl, zn) = µ̄(zn).

Skip to step 5. Otherwise, go to 4.

4. If µ̄(zn) > µu(zl), then set µ̃(zl, zn) = µu(zl), µu(zn) = 0 and µ̄(zn) = µ̄(zn) −
µu(zl). Set m = m+ 1 and return to step 2.

5. Set n = n− 1 and m = 1. If n = 0, go to step 6. Otherwise, go to step 2.

6. Set µ̃(·, z1) = µ̃(·, z1) + µu, and stop.

Given this matrix µ̃(z, ẑ), the measure of assignments M̂ is given by:

M̂(ẑi, zj) =

∑i
k=1 µ̃(zj, ẑk)

µ(zj)
(A.12)
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B Identification without More Productive Treatment Draws

In the main body of the paper, we assumed that for all treatment firms i, their matches

are more productive. That is, ẑi > zi for all i in the treatment. This assumption is not

necessary for the main identification results, and we relax it here. The key difference is

that β and ρ must now be jointly identified, requiring more work on the existence and

uniqueness of a fixed point. Proposition ?? shows the result is not required. Below

we detail the procedure.

The transmission parameter β is identified by comparing the effects on two initially

identical participants from receiving a very high productivity ẑ match to those receiv-

ing a relatively low ẑ match. If those receiving a high ẑ realize much bigger returns

compared to their receiving a lower ẑ, we conclude that β is high. The persistence

term ρ is then read off the persistence of profit among the treatment firms.

To formalize this idea, we first compare treatment that received a “high” produc-

tivity ẑ draw to those receiving a “low” ẑ draw.34 Letting Ω(z, ẑ) be the set of all

realized treatment matches, we can define disjoint subsets ΩH and ΩL with associated

probability density functions mH(z, ẑ) and mL(z, ẑ) such that:

∀ẑ0,

∫ ẑ0

0

∫ ∞
0

mH(z, ẑ)dzdẑ <

∫ ẑ0

0

∫ ∞
0

mL(z, ẑ)dzdẑ. (B.1)

That is, the ẑ draws within ΩH are “better” than those within ΩL.

Now we define the first moment condition using these subsets. Defining the average

profit after treatment as E[πTH ] and E[πTL ] for members of ΩH and ΩL, our first empirical

moment is

Γ1 ≡
E[πTH ]

E[πTL ]
=

∫ ∫ ∫
ec+εzρ max

[
1, ẑ

z

]β
mH(z, ẑ)dzdẑdF (ε)∫ ∫ ∫

ec+εzρ max
[
1, ẑ

z

]β
mL(z, ẑ)dzdẑdF (ε)

. (B.2)

Note that Γ1 is simply a measure of the heterogeneity in treatment effect for some

measure of “high” (H) and “low” (L) quality matches. This empirical moment can

be read directly off a regression given our randomization, and thus is observable.

Furthermore, given the independence of the ε terms along with the fact that several

constants appear in the numerator and denominator, this can be written more simply

as

Γ1 ≡
∫ ∫

zρ max
[
1, ẑ

z

]β
mH(z, ẑ)dzdẑ∫ ∫

zρ max
[
1, ẑ

z

]beta
mL(z, ẑ)dzdẑ

. (M1)

Since Γ1, mH and mL come directly from the data, only β and ρ are yet unknown in

34These are only relative classifications. The “low” draws are still from the upper tail of the population distribution.
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this equation. Thus, (??) pins down β as a function of ρ. We therefore need a second

moment to separate them.35

The second moment used to identify these parameters is the relationship between

initial productivity z and final productivity z′ among the set of treatment participants

i ∈ T . The identification strategy is similar to that employed in standard firm dy-

namics models with AR(1) processes, but much be adjusted to take into account the

diffusion process, which is inherently asymmetric. Specifically, the moment we use is

Γ2 ≡
Cov[z, z′]

E[z]E[z′]
+ 1 =

∫ ∫
z1+ρ max

[
1, ẑ

z

]β
m(z, ẑ)dzdẑ∫

z
∫
m(z, ẑ)dẑdz ·

∫ ∫
zρ max

[
1, ẑ

z

]β
m(z, ẑ)dzdẑ

. (M2)

A simple way to highlight the empirical availability of Γ2 is to note that we can

rewrite Γ2 = 1 + V ar(z)
E[z]E[z′]

γ̂OLS, where γ̂OLS is the coefficient estimate from a lagged

profit regression

πi,t = η + γπi,t−1 + ν

run on all treatment individuals. Thus, this moment, like Γ1 is easily observed in the

data. This moment allows us to pin down ρ as a function of β. For some intuition

on why this is the case, note that in an economy with no diffusion and exogenous

shocks drawn from F ∼ N(µ, σ2) then this moment simplifies to Γ2 = exp(σ2ρ).

Thus, with knowledge of the distribution of exogenous shocks, the normalized lagged

profit regression coefficient identifies persistence of productivity. This result is used

in a variety of firm dynamics models that do not include diffusion, and identifies the

persistence of an exogenous AR(1) process.

Diffusion introduces a slight complication to this result – if we observe two in-

dividuals with different initial productivities that converge over time, it is no longer

possible to conclude that persistence is low. Instead, it could be that the less produc-

tive individual was hit with a higher match productivity. Thus, we can only identify

ρ conditional on the ability to internalize match productivity, β. That is, this same

procedure now identifies ρ(β).

The last step is summarized in Proposition ??, which is to find a fixed point (β∗, ρ∗)

that jointly matches the moments (Γ1,Γ2).

Proposition 3. If the following two conditions hold, then there exists a unique pair

35The reason that Γ1 only identifies β(ρ) instead of β directly stems from the fact that Γ1 is a measured response
to a treatment. Any measurement that occurs over time, such as this one, requires taking into account the decay of
the effect. Thus, this moment cannot separate β from ρ. The easiest way to see this is to assume that there is no
productivity decay over time, so that ρ = 1. In that case, Γ1 would directly pins down β.

39



(β∗, ρ∗) that solve equations (??) and (??). Those conditions are:

Γempirical1 ∈
(

1,

∫
π(ẑ)mH(z, ẑ)dẑ∫
π(ẑ)mL(z, ẑ)dẑ

)
(C1)

Γempirical2 ∈
(
1, 1 + CV (z)2

)
(C2)

where CV (z) is the coefficient of variation of baseline productivity among treatment

firms.

Proof. Define:

G1(ρ, β̃) = Γ1

∫ ∫
zdM(z, ẑ)

∫ ∫
zρ max

[
1, (ẑ/z)β̃

]
dM(z, ẑ)∫ ∫

z1+ρ max
[
1, (ẑ/z)β̃

]
dM(z, ẑ)

G2(ρ, β̃) = Γ2

∫ ∫
zρ max

[
1, (ẑ/z)β̃

]
dML(z, ẑ)∫ ∫

zρ max
[
1, (ẑ/z)β̃

]
dMH(z, ẑ)

Then define:

T (ρ, β̃) =

[
ρG1(ρ, β̃)

β̃G2(ρ, β̃)

]
Last, define:

B(ρ, β̃) = (G1(ρ, β̃)− 1)2 + (G2(ρ, β̃)− 1)2

The proof works as follows:

1. Prove G1 and G2 are strictly convex.

2. Prove (ρ, β̃) ∈ [0, 1]2 =⇒ T (ρ, β̃) ∈ [0, 1]2. This is true under the conditions

above.

3. Since T is obviously continuous, then T has a fixed point in [0, 1]2 by Brouwer’s

FPT. The (ρ, β̃) that is a fixed point in T solves both moment equations above,

proving existence.

4. Any (ρ, β̃) that is a fixed point of T also solves B(ρ, β̃) = 0. Since G1 and G2

are strictly convex, B is strictly convex. Also, clearly all values of B are weakly

positive. Therefore, any zero of B is unique. Therefore, T has a unique fixed

point. This proves uniqueness.

Proofs of parts 1 and 2 follow. The arguments above prove parts 3 and 4, conditional

on the first two parts being true. �
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C Additional Results

C.1 Allowing for Idiosyncratic Distortions

[to be completed]
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