Job Reallocation, Productivity Dynamics and Trade Liberalization Bogotá, July 8, 2005

Comparative analysis of the sources of growth: A quest for more and better data

Stefano Scarpetta World Bank

Road Map

- Motivation: growth, convergence, technical progress and the business environment: the OECD growth story
 - GDP/Capita levels and growth and their drivers
 - What is the role of the ICT-producing and using industries in OECD countries
- Looking at micro: firm dynamics, labor reallocation and productivity: how important is allocative efficiency for growth
- What could be the role of market characteristics, policy and institutions for productivity and allocation efficiency

Growth patterns over the past decade

- Evidence of widening disparities in growth performance across OECD countries
- Virtually all countries still have a gap vis à vis the United States
- In many countries the gap has been rising recently, after decades of convergence

GDP p.c. levels and growth rates Who is catching up?

1994-2003

Explaining the GDP p.c. gaps

A simple accounting decomposition

Proximate and policy determinants of GDP p.c.

Explaining the GDP p.c. gaps

A simple accounting decomposition

- Sources of gaps differ across the OECD:
 - Low productivity is key in some countries (e.g. Japan)
 - Low labor utilization is key in other countries (e.g. EU)

The sources of GDP p.c. gaps

Explaining the GDP p.c. gaps

- A simple accounting decomposition
- Sources of gaps differ across the OECD:
 - Low productivity is key in some countries (e.g. Japan)
 - Low labor utilization is key in other countries (e.g. EU)
- But high observed productivity often matches low labor utilization, pointing to low « structural » productivity

- No long-run employment-productivity trade off exists
- Countries with low « structural » productivity need to accelerate growth in **both** productivity and labor utilization

Observed and "structural" productivity

The productivity advantage of large EU countries partly reflects low labour utilisation

Observed and "structural" labour productivity as a percentage of the level in the US, 2002

	Observed hourly productivity	Adjustments		"Structural" hourly productivity
		for differences in working time	for differences in the employment rate	
	% of the US level	% of the gap vs. the United States		% of the US level
	а	d	е	f=a-d-e
EU	84	4.4	5.3	74.3
France	107	5.2	7.5	94.3
Germany	91.6	7.2	4.6	79.8
Italy	96.6	3.8	11.3	81.5

The World Bank

Source: Authors' computations based on Artus and Cette (2004)

MFP patterns

Caveat: simple Solow residual: difficult to control for changes in quality of labor and especially capital

Some countries are filling the productivity gap with the US, but most aren't

- Only a few countries (among which the US!) experienced a productivity acceleration over the past decade
 - Notably, countries with low « structural » productivity failed to do so

What has driven growth?

- Capital quality has been crucial in explaining cross-country differences in growth
 - Capital quality strong influenced by the shift towards ICT, even after the hype of the late 1990s

Percentage share of ICT investment in total non-residential investment

Current prices, 1980-2000

What has driven growth?

- Capital quality has been crucial in explaining cross-country differences in growth
 - Capital quality strong influenced by the shift towards ICT, even after the hype of the late 1990s
 - The effect of ICT is through strong MFP in ICT-producing industries, but also ICT-driven acceleration in MFP in ICT-using industries

Productivity acceleration and ICT investment

What has driven growth?

- Capital quality has been crucial in explaining cross-country differences in growth
 - Capital quality strong influenced by the shift towards ICT, even after the hype of the late 1990s

The effect of ICT is not only through strong MFP in ICT-producing industries, but also ICT-driven acceleration in MFP in ICT-using industries

Caveat: harmonization of price indexes for different products are essential (hedonic adjustment)

Prices indexes for ICT goods: a crucial issue for international comparisons

What is the role of policy and institutions?

- In countries that extensively reformed product markets:
 - multifactor productivity (MFP) accelerated over the past two decades
 - ICT-using service industries contributed more strongly to aggregate labour productivity growth
- Multivariate panel estimates over countries and industries suggest that (Nicoletti and Scarpetta, 2003):
 - MFP growth rises as the overall regulatory environment is eased
 - the lower are entry barriers (including trade barriers), the faster is catch-up to best practice in manufacturing industries
 - long-run costs of restrictive regulation are higher where MFP is farther from the technology frontier
 - reforms in non-manufacturing increase manufacturing productivity through input-output linkages (Faini et al. 2005)

Regulation and MFP acceleration

Changes in PM regulations and the acceleration of MFP

Difference in average MFP growth rate between 1990-2000 and 1980-1990¹

The World Bank

Procompetitive regulatory reform 75-98 (% reduction in the regulatory reform indicator)

Product market reform in non-manufacturing, 1980-2003

(Indicator increasing in restrictions)

Regulatory reform in OECD countries

Regulatory reform in EU15 countries

Going deeper: firm level analysis

- Often difficult to assess role of policy and institutions at the aggregate levels: too many possible explanatory factors
- Ideally, we would like to test hypotheses of how policy influence firms' and workers' behaviors leading to different aggregate outcomes
- For example:
 - Role of firm and worker churning for productivity and employment
 - How regulations affect churning and its effectiveness
 - How reforms— including trade reforms and PM reforms changes incentives for firms to invest and hire workers

Firm level analyses: the quest for data

- Many country studies (including those in this conference) have shed light on firm dynamics, allocative efficiency and productivity
- Meta-analysis of results from micro studies
 - A challenge to control for data, method, and context
 - Little within-country variation in policy (e.g. before and after)
- Cross-country longitudinal micro dataset
 - Generally not possible (disclosure)
 - EUROSTAT attempting to build EU panel, but from existing databases

Distributed micro analysis The WB firm-level project with Eric Bartelsman and John Haltiwanger

- Harmonization
 - Sample frames; Variable definitions; Classifications;
 Aggregation Methods
- Make comparisons that 'control' for errors
 - Exploit the different dimensions of the data (size, industry, time)
 - Use difference in difference techniques

Distributed micro data research

Data sources

- Business registers for firm demographics
 - Firm level, at least one employee, 2/3-digit industry
- Enterprise surveys for productivity analysis
- Countries: 10 OECD
 - 5 Central and Eastern Europe; 6 Latin America; 3 East Asia
- Data are disaggregated by:
 - industry (2-3 digit);
 - size classes 1-9; 10-19; 20-49; 50-99; 100-249; 250-499;
 500+ (for OECD sample the groups between 1 and 20 and the groups between 100 and 500 are combined)
 - Time (late 1980s late 1990s)

The key features of firm churning

The magnitude of firm churning

Firm entry and exit rates

Total business sector, firms with at least 1 employee

Gross and net firm turnover: how the <u>time dimension</u> sheds light on the evolution of market forces in transition economies

The key features of firm churning

The magnitude of firm churning

The characteristics of entrants and exiting firms

The key features of firm churning

The magnitude of firm churning

The characteristics of entrants and exiting firms

The post-entry performance of successful entrants

Average firm size growth relative to entry, by age

Assessing the role of allocative efficiency for productivity

The cross-sectional efficiency of resource allocation

Allocative efficiency: static analysis – Olley-Pakes decompositon, avg. 1990s

$$P_{t} = (1/N_{t})\sum_{i} P_{it} + \sum_{i} \Delta \theta_{it} \Delta P_{it}$$

How the allocative efficiency evolved over time in transition economies

The Evolution of the Gap Between Weighted and Un-Weighted Labor Productivity

in Transition Economies over the 1990s

Five-Year Differencing, Real Gross Output, Manufacturing. Data for Hungary and Romania use Three-Year Differencing.

Assessing the role of firm dynamics on productivity

The cross-sectional efficiency of resource allocation

The dynamic efficiency: the role of entry and exit

Dynamic efficiency: the role of entry and exit in reallocating resources towards more productive uses, FHK approach

$$\Delta P_{t} = \sum_{i \in C} \overline{\theta_{i}} \Delta p_{it} + \sum_{i \in C} \Delta \theta_{it} (\overline{p_{i}} - \overline{P}) + \sum_{i \in N} \theta_{it} (p_{it} - \overline{P}) - \sum_{i \in X} \theta_{it-k} (p_{it-k} - \overline{P})$$

FHK Decomposition Shares - Manufacturing

Fxit

The World Bank

Argentina: 1995-2001. Chile: 1985-1999. Colombia: 1987-1998. Estonia: 2000-2001. Finland: 2000-2002. France: 1990-1995. West Germany: 2000-2002. Korea: 1988 & 1993. Latvia: 2001-2002. Netherlands: 1992-2001. Portugal: 1991-1994. Slovenia: 1997-2001.

Taiwan: 1986, 1991 & 1996. UK: 2000-2001. USA: 1992 & 1997.

Entry

Excluding Brazil and Venezuela.

Firm Turnover(i)

Dynamic efficiency: the importance of "technology factors"

Contribution of entry to labor productivity growth, five year differencing, gross output

Assessing the role of firm dynamics on productivity

The cross-sectional efficiency of resource allocation

The dynamic efficiency: the role of entry and exit

The World Bank

The heterogeneity of firms and the effects on productivity

The heterogeneity of firms: labor productivity and growth

Labor Productivity Dispersion

	ICT-produ	icing	ICT-using	
Quartile	US	EU	US	EU
Top	123	118	74	58
3	88	87	51	48
2	61	72	40	46
Bottom	38	68	26	41

The World Bank

Units: Thousand US\$ per worker

Assessing the role of firm dynamics on productivity

- The cross-sectional efficiency of resource allocation
- The dynamic efficiency: the role of entry and exit
- The heterogeneity of firms and the effects on productivity

The indirect effect of firm churning on productivity: market contestability

The indirect effect: market contestability

Back to the role of policy and institutions: U.S. vs Europe:

- ➤ Similar degree of firm churning and 'infant mortality in Europe and in the United States.
- But in the US vs EU:
 - > smaller relative size of entering firms;
 - a lower level of labour productivity of entrants relative to the average incumbent;
 - > much stronger expansion of successful entrants in the initial years;
 - Wider dispersion of productivity levels across firms
 - higher allocative efficiency
- These differences may point to a different degree of "market experimentation" in the U.S. than in Europe. Why?
 - More market-based financial system
 - Lower administrative costs of start up
 - Lower costs of adjusting the workforce to accommodate changes in demand

Data issues, micro level

	OECD	Developing and emerging countries
Firm demographics	√, several countries, access often difficult	√, some countries Manufacturing, size cutoff
Firm survival	Fewer countries Track of employment problematic in bus. Reg.	Fewer countries Track of employment problematic in bus. Reg.
Productivity decomposition	Price indices of Y, inputs, materials Threshold for entry in dynamic decomposition	Price indices of Y, inputs, materials Threshold for entry in dynamic decomposition

