Liquidity constraints, opportunity cost and post-secondary education. Evidence from Colombia

VI Congreso de Economia Colombiana - Universidad de los Andes

Luis Fernando Gamboa Universidad Jorge Tadeo Lozano Jaime Millán-Quijano UC3M & Econometría S.A.

October 5, 2018

Do liquidity constraints matter in higher education?

- Evidence from developed countries:
 - Yes: Lochner and Monge-Naranjo (2011); Brown et al. (2011)
 - No: Carneiro and Heckman (2002); Cameron and Taber (2004)
- Evidence from developing countries:
 - Yes: Solis (2017); Rau et al. (2013); Attanasio and Kaufmann (2009); Londono-Velez et al. (2017)
 - No: Alfonso (2009)
- Other Factors: Debt Aversion, Opportunity cost of studying!!!
 - Low enrollment rates even when the tuition fees are close to zero.
 - Opportunity cost can be observed in the probability of completion of studies and labor participation.

Our contribution

 What do we do? We use two discontinuities to identify the effects of reducing liquidity constraints to studying tertiary vocational education in low income individuals in Colombia.

• Two discontinuities?

- i Access to monetary support via poverty score.
- ii Access to free vocational education via an entry exam.

JeA and vocational education in Sena

Youth in Action (JeA), is a national program for poor youths who finished secondary school and want to enter into public tertiary education (*IES* and *SENA*).

- I Sena
 - Two types of courses: Technical (1 year) and technological (2 years).
 - No tuition fees.
 - Includes an internship program.
 - In case of excess of demand, selection is done using an entry exam.
- II JeA for Sena
 - Period of analysis: Applicants from 2014-II to 2015-I
 - Grant: \$ 200.000 per month conditional on being enrolled
 - Preferential entry: Reserves 30% of total places when a course is over demanded
- III JeA selection process.
 - Age: 16 to 24 with Completed secondary
 - Vulnerable population:

Sisben score lower than a cutoff (by type of municipality) (87%)

Data

Data

We use the following administrative data:

- The program (JeA): Registry of beneficiaries and payments.
- Vocational education (Sena): Applicants to all courses since January 2013.
- Poverty score (Sisben): All individuals 16 to 24 y.o. in JeA municipalities.
- Social security registry (PILA): we matched Sena's data with the national registry 2014/06 - 2017/12

Sisben's discontinuity and enrollment in Sena

Figure 1: Effect on enrollment - Sisben's discontinuity

Exam's discontinuity and enrollment in Sena

Figure 2: Effect on enrollment - TEST's discontinuity

Estimation strategy

We use a double discontinuity approach to estimate the effect of entering into Sena's education with and without financial aid.

$$Y_{i} = \alpha_{0} + \alpha_{1}D_{i} + \alpha_{2}A_{i} + \alpha_{3}D_{i} \times A_{i} + g(s_{i}) + f(e_{i}) + X_{i} + \mu_{i}$$

$$\tag{1}$$

Where :

- $D_i = 1$ if Sisben \leq JeA cutoff.
- $A_i = 1$ if Exam \geq course cutoff.
- $g(s_i)$ and $f(e_i)$ are polynomials of distance in Sisben and Test, respectively

Both discontinuities apply only when:

- Course is over-demanded
- There is an entry exam
- There is no second exam

Enrollment in Sena

Table 1: Double discontinuity on Enrollment - 1 year course						e
	All		Female		Male	
α_1	0.058	0.050	0.029	0.035	0.085	0.078
	(0.036)	(0.034)	(0.043)	(0.042)	(0.054)	(0.050)
α_2	0.106*	0.095**	0.118*	0.135*	0.101+	0.091
	(0.041)	(0.035)	(0.057)	(0.054)	(0.060)	(0.055)
α_3	0.063**	0.062**	0.093**	0.078**	0.030	0.034
	(0.019)	(0.017)	(0.027)	(0.024)	(0.024)	(0.022)
Constant	0.283**	-0.221	0.300**	-0.321	0.268**	1.448**
	(0.050)	(0.161)	(0.075)	(0.201)	(0.071)	(0.102)
$\alpha_1 + \alpha_3$	0.002	0.002	0.019	0.015	0.020	0.017
$\alpha_2 + \alpha_3$	0.000	0.000	0.000	0.000	0.010	0.007
$\alpha_1 + \alpha_2 + \alpha_3$	0.000	0.000	0.002	0.001	0.011	0.010
Controls		\checkmark		\checkmark		\checkmark
R ²	0.21	0.34	0.25	0.38	0.19	0.35
Observations	7244	7244	3329	3329	3915	3915

Notes: Standard errors clustered at municipality level. + 0.1 * 0.05 ** 0.01. Controls include gender, age, participation in FeA, application year, number of applications and course takeout rate. Also include Sisben's area, Sena centre and Sena program fixed effects.

Enrollment in Sena

Table 2: Double discontinuity on Enrollment - 2 year course						e
	All		Female		Male	
α ₁	0.084**	0.078**	0.073*	0.061*	0.092**	0.092**
	(0.024)	(0.018)	(0.035)	(0.025)	(0.022)	(0.025)
α_2	0.035	0.039	0.099	0.085	-0.019	-0.006
	(0.047)	(0.044)	(0.070)	(0.068)	(0.040)	(0.039)
α_3	0.094**	0.069**	0.074*	0.053	0.109**	0.076**
	(0.023)	(0.020)	(0.037)	(0.037)	(0.021)	(0.018)
Constant	0.263**	0.314**	0.210**	0.279**	0.310**	0.360**
	(0.031)	(0.068)	(0.049)	(0.072)	(0.034)	(0.096)
$\alpha_1 + \alpha_3$	0.000	0.000	0.002	0.002	0.000	0.000
$\alpha_2 + \alpha_3$	0.001	0.002	0.001	0.002	0.021	0.063
$\alpha_1 + \alpha_2 + \alpha_3$	0.000	0.000	0.000	0.001	0.000	0.001
Controls		\checkmark		\checkmark		\checkmark
R^2	0.16	0.32	0.17	0.35	0.16	0.31
Observations	12056	12056	5551	5551	6505	6505

Labor market outcomes

To obtain an intuition of the importance of the financial aid for people in the labor markets, we check some outcomes:

- Proportion of periods working
- Longest employment spell
- Longest unemployment spell

Labor market participation and enrollment in Sena

Figure 3: Formal labor market participation by enrollment in Sena

Labor market participation - post studying

Table 3:	Double disc	ontinuity on	proportion	of periods	with a forma	al job
		1y. course			2y. course	
	All	Female	Male	All	Female	Male
α ₁	0.055*	0.019	0.070	0.101**	0.060	0.139**
	(0.026)	(0.053)	(0.053)	(0.038)	(0.052)	(0.041)
α_2	-0.009	-0.066	0.028	0.001	-0.021	0.023
	(0.030)	(0.051)	(0.022)	(0.017)	(0.026)	(0.029)
α_3	0.050*	0.077**	0.031	-0.002	-0.011	0.004
	(0.023)	(0.028)	(0.028)	(0.017)	(0.033)	(0.014)
Constant	-0.552**	-0.706**	-0.894**	-0.149+	0.117	-0.338**
	(0.061)	(0.131)	(0.131)	(0.084)	(0.138)	(0.071)
$\alpha_1 + \alpha_3$	0.004	0.053	0.166	0.002	0.279	0.001
$\alpha_2 + \alpha_3$	0.027	0.834	0.061	0.971	0.269	0.352
$\alpha_1 + \alpha_2 + \alpha_3$	0.000	0.731	0.086	0.007	0.545	0.001
R^2	0.18	0.16	0.23	0.17	0.17	0.19
Observations	7244	3329	3915	12056	5551	6505

Labor market participation - post studying

Т	Table 4: Double discontinuity on longest employment spell					
		1y. course			2y. course	
	All	Female	Male	All	Female	Male
α ₁	1.218*	0.105	1.662	1.777*	1.124^{+}	2.459*
	(0.556)	(1.282)	(1.007)	(0.704)	(0.584)	(0.979)
α_2	0.327	-0.793	1.094+	0.014	-0.381	0.396
	(0.606)	(1.060)	(0.594)	(0.360)	(0.474)	(0.432)
α_3	0.647	1.172+	0.205	-0.189	-0.233	-0.129
	(0.517)	(0.653)	(0.622)	(0.296)	(0.423)	(0.271)
Constant	-10.160**	-12.964**	-7.446**	-4.190**	0.177	-7.745**
	(1.384)	(3.514)	(2.180)	(1.425)	(1.600)	(1.479)
$\alpha_1 + \alpha_3$	0.005	0.266	0.192	0.004	0.088	0.013
$\alpha_2 + \alpha_3$	0.039	0.737	0.129	0.686	0.150	0.625
$\alpha_1 + \alpha_2 + \alpha_3$	0.000	0.802	0.059	0.041	0.467	0.012
R^2	0.17	0.16	0.23	0.19	0.19	0.22
Observations	7244	3329	3915	12056	5551	6505

Labor market participation - post studying

	Table 5: Doub	able 5: Double discontinuity on longest unemployment spell				
		1y. course			2y. course	
	All	Female	Male	All	Female	Male
α_1	-1.081	0.087	-1.672	-1.812*	-1.488	-2.071**
	(0.734)	(1.535)	(1.167)	(0.707)	(0.990)	(0.759)
α_2	0.432	1.698	-0.391	0.122	0.618	-0.400
	(0.614)	(1.318)	(0.700)	(0.295)	(0.655)	(0.557)
α_3	-1.344*	-2.167**	-0.717	0.022	0.181	-0.079
	(0.593)	(0.782)	(0.677)	(0.334)	(0.672)	(0.239)
Constant	38.619**	44.807**	52.780**	15.741**	11.065**	19.298**
	(1.853)	(4.124)	(4.559)	(1.381)	(2.651)	(1.100)
$\alpha_1 + \alpha_3$	0.006	0.147	0.138	0.003	0.132	0.010
$\alpha_2 + \alpha_3$	0.032	0.719	0.265	0.720	0.072	0.407
$\alpha_1 + \alpha_2 + \alpha_3$	₃ 0.008	0.868	0.146	0.018	0.465	0.003
R^2	0.16	0.16	0.20	0.13	0.15	0.16
Observations	7244	3329	3915	12056	5551	6505

Instrumenting enrollment

We can use each discontinuity to show the effect that enrollment in Sena has on labor market participation for different type of compliers.

$$Y_{i} = \pi_{0} + \pi_{1} \left(E_{i} | D_{i} \right) + g\left(s_{i} \right) + f\left(e_{i} \right) + X_{i} + \mu_{i}$$
(2)

and

$$Y_{i} = \lambda_{0} + \lambda_{1} \left(E_{i} | A_{i} \right) + g\left(s_{i} \right) + f\left(e_{i} \right) + X_{i} + \mu_{i}$$
(3)

Where $E_i = 1$ if the individual is enrolled at Sena.

- π₁ captures the effect of Sena's enrollment on *Y*, for those who enrolled because they where eligible for financial aid.
- λ₁ captures the effect of Sena's enrollment on *Y*, for those who enrolled because they got the first offer to enroll.
- $g(s_i)$ and $f(e_i)$ are polynomials of distance in Sisben and Test, respectively

Sena enrollment on labor market participation

т	able 6: IV -	Enrollment of	on proportic	on of period	ls working	
		1y. course			2y. course	
	All	Female	Male	All	Female	Male
Instrumenting	with D _i					
π_1	1.019	0.781	0.886	0.956**	0.672	1.158**
	(0.703)	(1.100)	(0.903)	(0.289)	(0.585)	(0.344)
Constant	-0.718**	-0.537**	-0.790*	-0.484*	-0.124	-0.750**
	(0.246)	(0.190)	(0.339)	(0.208)	(0.324)	(0.214)
F Test	4.09	1.55	3.60	39.24	12.16	21.82
Instrumenting	with A_i					
λ_1	0.172	-0.064	0.427	-0.003	-0.229	0.640
	(0.138)	(0.241)	(0.304)	(0.237)	(0.195)	(0.997)
Constant	-0.509**	-0.461**	-0.651**	-0.088	0.230	-0.527
	(0.071)	(0.104)	(0.148)	(0.099)	(0.146)	(0.429)
F Test	21.31	15.77	5.61	5.21	5.77	1.13
Observations	7244	3329	3915	12056	5551	6505

Sena enrollment on labor market participation

Table 7. IV - Enforment on longest employment spen							
		1y. course			2y. course		
	All	Female	Male	All	Female	Male	
Instrumenting							
π_1	20.437	8.433	18.988	16.258**	12.511^+	19.874**	
	(12.777)	(22.651)	(17.794)	(5.570)	(6.948)	(7.324)	
Constant	-14.562**	-10.349**	-16.588**	-9.921**	-4.313	-14.842**	
	(4.513)	(3.695)	(6.173)	(3.591)	(3.506)	(4.420)	
F Test	4.09	1.55	3.60	39.24	12.16	21.82	
Instrumenting	with A _i						
λ_1	5.496	0.171	11.060	-1.308	-4.434	7.906	
	(3.477)	(5.258)	(8.130)	(4.404)	(3.520)	(15.403)	
Constant	-10.871**	-9.610**	-14.188**	-2.666	2.348	-9.709	
	(1.925)	(2.603)	(3.347)	(1.975)	(2.075)	(6.615)	
F Test	21.31	15.77	5.61	5.21	5.77	1.13	
Observations	7244	3329	3915	12056	5551	6505	

Table 7: 11/ Envelopment on longest smaller ment and

Sena enrollment on labor market participation

Table 8: IV - Enrollment on longest unemployment spell								
		1y. course			2y. course			
	All	Female	Male	All	Female	Male		
Instrumenting	Instrumenting with D _i							
π_1	-21.595	-10.347	-20.850	-17.211**	-17.175	-17.310**		
	(15.857)	(28.877)	(20.216)	(5.456)	(11.918)	(5.845)		
Constant	43.451**	37.520**	47.785**	21.856**	17.254**	25.413**		
	(5.808)	(4.605)	(8.595)	(3.765)	(6.569)	(3.656)		
F Test	4.09	1.55	3.60	39.24	12.16	21.82		
Instrumenting	with A _i							
λ_1	-3.171	0.884	-7.551	1.707	6.128	-11.310		
	(2.884)	(6.139)	(8.907)	(3.702)	(4.619)	(20.315)		
Constant	38.900**	36.516**	43.760**	14.043**	8.095*	22.839*		
	(1.697)	(3.227)	(5.143)	(1.567)	(3.259)	(8.992)		
F Test	21.31	15.77	5.61	5.21	5.77	1.13		
Observations	7244	3329	3915	12056	5551	6505		

Wrapping up!

Initial results:

- Financial aid benefits Sena students in the Labor markets
- Labor market outcomes exhibit better results for longer courses. It suggest that opportunity cost does not matters in short courses.
- Opportunity costs are heterogeneous between women and men

Ongoing research:

- Survival analysis.
- Job quality?
- ...

Thanks

Comments are more than welcome at luisfw.gamboan@utadeo.edu.co Special thanks to Econometría S.A. and SEI in Colombia.

References I

- []Alfonso, M. (2009, June). Credit constraints and the demand for higher education in latin america. Working paper 3, IADB. Education Division.
- []Attanasio, O. and K. Kaufmann (2009, July). Educational choices, subjective expectations, and credit constraints. Working Paper 15087, National Bureau of Economic Research.
- [] Brown, M., J. Karl Scholz, and A. Seshadri (2011). A new test of borrowing constraints for education. The Review of Economic Studies 79(2), 511–538.
- [] Cameron, S. V. and C. Taber (2004). Estimation of educational borrowing constraints using returns to schooling. Journal of political Economy 112(1), 132–182.
- []Carneiro, P. and J. J. Heckman (2002). The evidence on credit constraints in post-secondary schooling. The Economic Journal 112(482), 705–734.
- [] JLochner, L. J. and A. Monge-Naranjo (2011). The nature of credit constraints and human capital. The American Economic Review, 2487–2529.
- []Londono-Velez, J., C. Rodriguez, and F. Sánchez (2017). The intended and unintended impacts of a merit-based financial aid program for the poor: The case of ser pilo paga.
- []Rau, T., E. Rojas, and S. Urza (2013, June). Loans for higher education: Does the dream come true? Working Paper 19138, National Bureau of Economic Research.

[Solis, A. (2017). Credit access and college enrollment. Journal of Political Economy 125(2), 562-622.

Table 9. Sena applicants 2014-II to 2015-I. Descriptive statistics						
	Withou	t JeA	JeA beneficiaries			
	Mean	S.D	Mean	S.D		
All individuals						
Individuals	1380926		89350			
In Sample	0.71	0.45	0.94	0.24		
Sample with Sisben so	ore					
Individuals	977263		84020			
Enrolled	0.19	0.40	1	0		
Area 1	0.47	0.50	0.39	0.49		
Area 2	0.46	0.50	0.52	0.50		
Area 3	0.07	0.25	0.09	0.29		
Male	0.46	0.50	0.43	0.50		
Age	19.54	2.39	19.05	2.13		
Technical	0.51	0.50	0.36	0.48		
Entry exam score	39.11	17.19	49.31	8.29		
Eligible FeA	0.49	0.50	0.61	0.49		
Second test taker	0.17	0.38	0.46	0.50		
Other support	0.01	0.08	0	0.03		
Coursos	14976		0404			
Courses	27.00	20.01	3404	00.70		
Seals	37.02	20.01	38.09	23.78		
Demand	102.83	1/1.33	155.04	212.71		
% excess of demand	0.52	0.50	0.76	0.4		
% second test	0.25	0.44	0.42	0.49		

Table Or C 0011 11.4.

Notes: Authors' calculations using data from Sena and Sisben. Only includes Sena centers where JeA beneficiaries applied.

Figure 6: Continuity in observables around the Sisben's cutoff - 1y. course

Figure 7: Continuity in observables around the Sisben's cutoff - 2y. course

Figure 8: Continuity in observables around the Sena exam's cutoff - 1y. course

Figure 10: Impact of JeA on enrollment in Sena. Reduced form estimates by enrollment semester)

(a) Unconditional

(b) Controlling by the effect of JeA

Figure 11: Probability of formal employment by entry exam's score

(b) JeA vs Non-JeA

	Via enrollment	Via certification
1st stage (D)	0.102**	0.102**
	(0.005)	(0.005)
2nd stage (T)	0.749**	0.161**
	(0.045)	(0.028)
3rd stage	0.491**	2.284**
	(0.143)	(0.761)
R2		
Observations	137409	137409

Table 10: JeA's indirect impact on formal employment

Figure 12: Enrollment by distance to entry exam's cutoff - JeA

Affirmative action - JeA's preferential entry

Table 11: Preferential entry's effect on Sena's composition

	Never	Admitted	Exclude	Always
	admitted	by PE	by PE	admitted
Observations	815356	23875	25982	204471
Entry exam's score	42.681	45.608	51.317	53.415
	(0.323)	(0.433)	(0.534)	(0.384)
% Enrolled	0.060	0.464	0.231	0.332
	(0.004)	(0.014)	(0.008)	(0.009)

Notes: Authors' calculations using data from Sena.

	Table 1	Table 12: Enrollment by student's score					
_		Low	score	High	score		
		(1)	(2)	(3)	(4)		
		RF	IV	RF	IV		
_	Enrollment						
	Eligible	0.050**		0.119**			
		(0.008)		(0.019)			
	JeA beneficiary		0.868**		0.673**		
			(0.145)		(0.054)		
	Constant	0.047**	0.047**	0.209**	0.209**		
		(0.012)	(0.012)	(0.011)	(0.011)		
_	F Test		99.62		36.45		
	R2	0.00	0.40	0.01	0.32		
_	Certification						
	Eligible	0.012**		0.026**			
		(0.003)		(0.006)			
	JeA beneficiary		0.210**		0.149**		
			(0.049)		(0.030)		
	Constant	0.008**	0.008**	0.031**	0.031**		
		(0.002)	(0.002)	(0.004)	(0.004)		
_	F Test		99.62		36.45		
	R2	0.00	0.08	0.00	0.05		
			70051				
	Observations	/2051	/2051	65547	65547		

By excess of demand

Appendix

Monetary or affirmative action

Table 13: Enrollment and Certification by excess of demand before JeA

	Under demanded		Over demanded	
	(1)	(2)	(3)	(4)
	RF	IV	RF	IV
Enrollment				
Eligible	0.100**		0.085**	
	(0.021)		(0.014)	
JeA beneficiary		0.643**		0.694**
		(0.119)		(0.052)
Constant	0.221**	0.221**	0.201**	0.201**
	(0.029)	(0.029)	(0.016)	(0.016)
F Test		86.34		47.84
R2	0.01	0.27	0.01	0.24
Certification				
Eligible	0.026**		0.019**	
	(0.009)		(0.004)	
JeA beneficiary		0.165**		0.157**
		(0.057)		(0.023)
Constant	0.021**	0.021**	0.029**	0.029**
	(0.006)	(0.006)	(0.006)	(0.006)
F Test		86.34		47.84
R2	0.00	0.02	0.00	0.04
Observations	26122	26122	180084	180084
le ??				

Return

Appendix

Monetary or affirmative action

Figure 16: Estimated JeA impact by bandwidth of analysis

Certification from Sena

Table 14: Double discontinuity on Certification - 1 year course						
	All		Female		Male	
α ₁	0.037	0.043*	0.028	0.023	0.046^{+}	0.050^{+}
	(0.024)	(0.021)	(0.052)	(0.046)	(0.024)	(0.027)
α_2	0.002	0.006	-0.030	-0.010	0.033	0.037
	(0.040)	(0.037)	(0.054)	(0.051)	(0.030)	(0.029)
α_3	0.020	0.019	0.040+	0.030	-0.002	0.001
	(0.016)	(0.015)	(0.023)	(0.023)	(0.015)	(0.013)
Constant	0.105**	0.155**	0.170**	0.062	0.049+	1.032**
	(0.030)	(0.059)	(0.047)	(0.163)	(0.025)	(0.060)
$\alpha_1 + \alpha_3$	0.072	0.035	0.277	0.331	0.090	0.081
$\alpha_2 + \alpha_3$	0.503	0.415	0.830	0.646	0.264	0.172
$\alpha_1 + \alpha_2 + \alpha_3$	0.099	0.052	0.444	0.357	0.079	0.057
Controls		\checkmark		\checkmark		\checkmark
R^2	0.05	0.13	0.07	0.18	0.03	0.15
Observations	7244	7244	3329	3329	3915	3915

Certification from Sena

Table 15: Double discontinuity on Certification - 2 year course						
	All		Female		Male	
α_1	0.012	0.011	0.020	0.012	0.004	0.011
	(0.009)	(0.010)	(0.013)	(0.013)	(0.009)	(0.010)
α_2	-0.003	-0.002	-0.003	-0.003	-0.002	-0.000
	(0.004)	(0.003)	(0.006)	(0.006)	(0.006)	(0.005)
α_3	0.012**	0.011**	0.011*	0.009^{+}	0.013*	0.011+
	(0.003)	(0.003)	(0.005)	(0.005)	(0.006)	(0.006)
Constant	0.007^{+}	0.046**	0.010	0.051**	0.003	0.041
	(0.004)	(0.014)	(0.006)	(0.014)	(0.004)	(0.029)
$\alpha_1 + \alpha_3$	0.026	0.056	0.010	0.085	0.205	0.139
$\alpha_2 + \alpha_3$	0.010	0.008	0.318	0.378	0.008	0.020
$\alpha_1 + \alpha_2 + \alpha_3$	0.030	0.063	0.057	0.162	0.146	0.072
Controls		\checkmark		\checkmark		\checkmark
R ²	0.01	0.07	0.01	0.12	0.01	0.07
Observations	12056	12056	5551	5551	6505	6505