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Motivation

There has been recent interest and increasing use of
non-experimental estimators to evaluate programs with multiple,
or multivalued, and continuous treatments

There has been a focus on methodological advances and issues
(Imbens, 2000; Lechner, 2001; Hirano & Imbens, 2004; Imai &
van Dyk, 2004; Abadie, 2005; Flores, 2007; Cattaneo, 2009)

And a great interest in evaluating such programs
(Lechner, 2002a,b; Behrman et al., 2004; Frölich et al., 2004;
Kluve et al., 2007; Plesca & Smith, 2007; Mitnik, 2008;
Flores et al., 2009; etc.)
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Objectives of this Paper

The main question of this paper is: How well do different
non-experimental estimators for multiple treatments work?

We concentrate on estimators based on the unconfoundedness
assumption (selection on observables)

We study linear regression estimators, and partial mean and
weighting estimators based on the generalized propensity score
(GPS) –> probability of receiving a treatment given covariates

We focus on estimators of the average outcome over all possible
values of the treatment (“dose-response function”)

We analyze the key role of GPS in identifying individuals that
are comparable (in observable characteristics) in each of the
treatment groups
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Previous Literature

There is a long literature evaluating non-experimental estimators
(Lalonde, 1986; Fraker & Maynard, 1987; Heckman & Hotz,
1989; Friedlander & Robins, 1995; Heckman et al., 1997/98;
Dehejia & Wahba, 1999/02; Michalopoulos et al., 2004; Smith &
Todd, 2005; Dehejia, 2005, Mueser et al., 2007)

Virtually all focus has been on estimators for binary treatments
Two approaches have been used in the literature to assess the
value of methods based on unconfoundedness for estimation of
average effects of binary treatments (Imbens, 2004):

1 Uses data from experiment and non-experimental control groups
–> aimed at assessing plausibility of unconfoundedness
assumption and value of methods based on it

2 Uses Monte Carlo simulations to evaluate the performance of
alternative estimators under different scenarios
–> helpful in identifying which particular estimators perform
better in a given setting
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Previous Literature (cont.)

In this paper we will follow the first approach –> we want to
assess the likely reliability of the methods based on the
unconfoundedness assumption in a multiple treatment setting

This approach in general uses data from a randomized
experiment, and constructs a nonexperimental control group
from additional data sets or locations

Then, performance of nonexperimental estimators is evaluated
by two alternative methods:

1 Experiment results compared to results obtained from using
experimental treatment group and nonexperimental control group

2 Experimental and nonexperimental control groups are employed
(implicit treatment effect=0)
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Previous Literature (cont.)

What have we learned from previous literature?

Basic message: We need to compare “comparable” individuals!

Propensity score plays key role in identifying regions of data
where treatment and control units are comparable

Quality of data matters (we need good data)

Comparing individuals in same local labor markets can be
important



Introduction Study Setup Multiple Treatment Estimators Determination of Overlap Region Data Results Conclusion

What Do We Do in this Paper?

We have an experiment with control groups in multiple sites

We use nonexperimental methods for multiple treatments to
adjust for observable characteristics

Our objective: Eliminate differences in outcomes across control
groups in different sites simultaneously

Why use data from experiment?
1 Relatively “comparable” individuals (all welfare recipients)
2 Same data for all individuals (and rich data)
3 We use the experiment itself to develop benchmark measures to

assess our nonexperimental results
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What Do We Do in this Paper? (cont.)

An “ideal” dataset to accomplish our objectives would have
several nonexperimental control groups all belonging to the same
labor market: we are not aware such dataset exists!

However, having different geographic locations implies dealing
with (potential) differences in local labor markets
–> makes our exercise more difficult –> high yardstick

Our approach is similar to that followed by Friedlander and
Robins (1995), Michalopoulos, Bloom, and Hill (2004) and
Hotz, Imbens and Mortimer (2005)

Key difference: we focus on simultaneously comparing the
individuals across all locations, not pairwise comparisons
–> requires the use of nonexperimental methods for multiple
treatments
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Notation

Each unit i, i = 1,2, . . . ,N, comes from one of k sites

Location indicator for unit i: Di ∈ {1,2, . . . ,k}

Potential outcomes: Yi (td,d), td = treatment, d =location

We focus only on control groups: Y (0,d)

For each unit we observe: (Yi,Di,Xi),
Xi = pre-treatment variables, Yi = Y (0,Di)

Our parameters of interest in this paper are

βd = E [Y (0,d)] , for d = 1,2, . . . ,k

This gives average potential outcome under control treatment in
location d for a unit randomly selected from the entire population
(i.e., from any of the k sites)
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Our Hypothesis

As we want to study whether our nonexperimental estimators can
properly equalize average outcomes for control individuals across all
sites, the hypothesis we test is

β1 = β2 = . . . = βk

Note:
This does not imply that the average potential outcome for controls in
each location is the same across locations; i.e. this does not imply that

E[Yi (0,d) |Di = d] = E[Yi (0,d) |Di = f ] for d 6= f
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Assessing Performance of Estimators

We assess estimators in two ways:

1 Perform a Wald test –> sensitive to estimators’ variance

2 Use three measures of “distance”:

Root mean square distance, rmsd =
√

1
k ∑

k
d=1(β̂d −β )2

Mean absolute distance, mad = 1
k ∑

k
d=1

∣∣∣β̂d −β

∣∣∣
Maximum pair-wise distance among all estimates:

Maximum Distance =
∣∣∣∣ max
d=1,...,k

{
β̂d

}
− min

d=1,...,k

{
β̂d

}∣∣∣∣
Where:

Outcomes standardized by their mean and S.D.–> comparability

β̂d= an estimator of β applied to standardized data

β = mean value of β̂ among all sites

A successful estimator should make these distances “close” to zero
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Assumptions

The estimators we study are based on two assumptions

Assumption 1 (Unconfounded site)

1(Di = d)⊥Yi (0,d) |Xi, for all d ∈ {1,2, . . . ,k}

This assumption is similar to the one in Hotz, Imbens &
Mortimer (2005) for the binary treatment case

Referred as weak unconfoundedness by Imbens (1999, 2000)
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Assumptions (cont.)

In addition, we impose a condition that guarantees that in infinite
samples we are able to find individuals with the same values of the
covariates across all k sites:

Assumption 2 (Simultaneous strict overlap) For all d and all x in the
support of X

0 < ξ < Pr(Di = d|X = x) , for some ξ > 0

Critical role for the asymptotic properties of semiparametric
estimators of βd

Stronger than in binary case –> where is known as “strict
overlap” (Busso et al. 2009a,b)

Requires that for each individual in the population we are able to
find comparable individuals in terms of covariates in each of the
k sites
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The Generalized Propensity Score (GPS)

Imbens (1999, 2000) defines the Generalized Propensity Score as:

r (d,x) = Pr(D = d|X = x)

It defines several random variables:

Ri = ri (Di,Xi): cond. probability that i belongs to his own site

Rd
i = ri (d,Xi): cond. probability that i belongs to site d

The GPS plays an important role in:

Reducing dimentionality in estimation of βd

Identifying comparable individuals across sites
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Estimators we Compare

Under Assumptions 1 and 2, and using iterated expectations, we can
identify βd as:

βd = E[E [Yi|Di = d,Xi = x]]

This result suggests estimating βd using a partial mean (Newey, 1994)

Thus we consider the following estimators

“Raw” mean

Linear regression-based partial mean (linear & flexible)

GPS-based partial mean (parametric & non-parametric)

Inverse Probability Weighting by GPS (w/o & w/ covariates)

We also compare regression-based estimators before & after overlap

GPS Estimation: parametric multinomial logit model
–> can be specified in a flexible way
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Imposing Overlap Condition

We propose a rule that is less stringent than that previously used in the
multiple treatment literature (e.g., Frölich et al., 2004)

Let Rd
q,{j∈A} denote the q-th quantile of the distribution of Rd over

those individuals in subsample A

Overlap region w/respect to particular site d given by subsample

Overlapd =
{

i : Rd
i ≥ max

{
Rd

q,{j:Dj=d},R
d
q,{j:Dj 6=d}

}}
Then, we define the overlap or common support region as

Overlap =
k⋂

d=1
Overlapd

Compares Rd
i only among those in groups Di = d and Di 6= d

Exploits only lower tail of distributions of Rd
i

We set q = 0.002 (also analyzed q = 0 to q = 0.005)
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Our Data

National Evaluation of Welfare-to-Work Strategies (NEWWS):
U.S. experiment (randomization from 1991 to 1994) in 7
different sites

Individuals randomly assigned to control group or LFA training
or HCD training (in some sites to other types of programs)

Because of treatment heterogeneity across sites, we concentrate
only on comparing controls

Only use women with non-missing data and drop 2 sites:
Columbus, OH (not enough pre-RA information) & Oklahoma
City, OK (randomization done at application, not on recipients)

Analysis sample: 9,351 women in 5 sites: Atlanta, Detroit,
Grand Rapids, Portland and Riverside

Rich data before/after RA, both survey & administrative
(some constraints because we use public-use version of the data)
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The Role of Local Economic Conditions

The overlap assumption may fail even if individual
characteristics are balanced across all sites, just because there are
differences in local labor markets

In our data we observe different cohorts for each site
(determined by year of random assignment)

This creates enough within-site variation to attempt controlling
for pre-randomization differences in LECs across sites
–> both in GPS estimation and in regression functions estimation

We also explored adjusting by post-randomization variation (did
not make much of a difference)
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The Role of Local Economic Conditions (cont.) - Fig. 1
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The Role of Local Economic Conditions (cont.) - Fig. 1
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The Role of Local Economic Conditions (cont.) - Fig. 1
4

7
10

13
4

7
10

13

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2

Atlanta Detroit Grand Rapids

Portland Riverside

1991 1992

1993 1994

Random Assignment Cohort

U
ne

m
pl

oy
m

en
t r

at
e 

(%
)

Year from random assignment

C. Unemployment rate by random assignment cohort



Introduction Study Setup Multiple Treatment Estimators Determination of Overlap Region Data Results Conclusion

Outcomes

We analyze two outcomes

Levels = 1{Ever employed during two years after RA}

“Diff” = 1{Empl 2 yrs after RA} − 1{Empl 2 yrs before RA}
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Balancing of Covariates Summary (Table 2 - 5 sites)
A. Joint equality of means tests for each covariate across all sites

Method Number of covariates for which p-value ≤ 0.05
5 sites

Raw means before overlap 53
GPS-based Inverse Probability Weighting 11
Total number of covariates 53

B. Difference of means tests for each covariate - Each site versus all other sites pooled

Method Number of covariates for which p-value ≤ 0.05
5 sites

Raw means before overlap
     Atlanta vs others 43
     Detroit vs others 50
     Grand Rapids vs others 35
     Portland vs others 37
     Riverside vs others 49
Blocking on GPS
     Atlanta vs others 4
     Detroit vs others 6
     Grand Rapids vs others 1
     Portland vs others 4
     Riverside vs others 2
Total number of covariates 53

Note: GPS-based balancing tests are applied only to observations that satisfy the overlap condition.
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Overlap Quality - Observations Dropped (Table 1 - 5 sites)

Site Observations Obs. after Obs. dropped
before overlap overlap due to ovlp (%)

Atlanta 1,372 1,184 13.7%
Detroit 2,037 1,943 4.6%
Grand Rapids 1,374 1,185 13.8%
Portland 1,740 1,432 17.7%
Riverside 2,828 1,107 60.9%
Total 9,351 6,851 26.7%
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Overlap Quality - Kernel Densities - 5 sites (Fig. 2)
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Figure 2. Kernel densities of estimated GPS − 5 sites
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Overlap Quality - Kernel Densities - 5 sites (Fig. 2 - cont.)
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Figure 2. Kernel densities of estimated GPS − 5 sites
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Outcome in Levels - 5 Sites (Figure 4.A)
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Outcome in Levels - 5 Sites (Figure 4.B)
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B. Results for GPS−based estimators
Outcome: Ever employed in 2 years after RA
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Outcome in Differences - 5 Sites (Figure 5.A)
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A. Results for linear regression−based estimators
Outcome: Ever employed in 2 years after RA − DID
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Outcome in Differences - 5 Sites (Figure 5.B)
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Balancing of Covariates Summary (Table 2 - 5 vs. 4 sites)
A. Joint equality of means tests for each covariate across all sites

Method
5 sites 4 sites

Raw means before overlap 53 52
GPS-based Inverse Probability Weighting 11 5
Total number of covariates 53 53

B. Difference of means tests for each covariate - Each site versus all other sites pooled

Method
5 sites 4 sites

Raw means before overlap
     Atlanta vs others 43 36
     Detroit vs others 50 47
     Grand Rapids vs others 35 49
     Portland vs others 37 34
     Riverside vs others 49 -
Blocking on GPS
     Atlanta vs others 4 1
     Detroit vs others 6 2
     Grand Rapids vs others 1 1
     Portland vs others 4 6
     Riverside vs others 2 -
Total number of covariates 53 53

Note: GPS-based balancing tests are applied only to observations that satisfy the overlap condition.

Number of covariates for which p-value ≤ 0.05

Number of covariates for which p-value ≤ 0.05
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Overlap Quality - Obs. Dropped (Table 1 - 5 vs. 4 sites)

Site Observations Obs. dropped due to ovlp (%)
before overlap 5 sites 4 sites 5 sites 4 sites

Atlanta 1,372 1,184 1,245 13.7% 9.3%
Detroit 2,037 1,943 1,945 4.6% 4.5%
Grand Rapids 1,374 1,185 1,193 13.8% 13.2%
Portland 1,740 1,432 1,360 17.7% 21.8%
Riverside 2,828 1,107 - 60.9% -
Total 9,351 6,851 5,743 26.7% 12.0%

Obs. after overlap
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Overlap Quality - Kernel Densities - 4 sites (Fig. 3)
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Figure 3. Kernel densities of estimated GPS − 4 sites
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Overlap Quality - Kernel Densities - 4 sites (Fig. 3 - cont.)
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Figure 3. Kernel densities of estimated GPS − 4 sites
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Outcome in Levels - 4 Sites (Figure 6.A)
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A. Results for linear regression−based estimators
Outcome: Ever employed in 2 years after RA
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Outcome in Levels - 4 Sites (Figure 6.B)
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B. Results for GPS−based estimators
Outcome: Ever employed in 2 years after RA
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Outcome in Differences - 4 Sites (Figure 7.A)
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A. Results for linear regression−based estimators
Outcome: Ever employed in 2 years after RA − DID
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Outcome in Differences - 4 Sites (Figure 7.B)
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B. Results for GPS−based estimators
Outcome: Ever employed in 2 years after RA − DID
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How do we Evaluate if the Results are Good?

We use two ways to evaluate our results
1 Create a “placebo” treatment (randomized treatment

assignment)–> calculate “benchmark” values of assessment
measures

2 We exploit the fact that the NEWWS was an experiment
For three sites (ATL, GRP, RIV) individuals were randomly
assigned to three treatments:

Control

Labor Force Attachment (LFA) training

Human Capital Development (HCD) training

Outcome: 1{Employment 2 yrs before RA}
Then, within each site we calculate “benchmark” assessment
values
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Placebo Experiment

Table 5. Benchmark values of the assessment measures for Raw Mean estimator from placebo experiments 
              Outcome: Employment rate in two years after random assignment

P-value joint equality Root Mean Mean Absolute Maximum
Outcome Wald test Square Distance Distance Distance
A. 5 sites
Levels 0.436 0.020 0.020 0.048

[0.013,0.043] [0.011,0.037] [0.035,0.122]
DID 0.158 0.027 0.024 0.064

[0.018,0.051] [0.015,0.045] [0.046,0.141]

B. 4 sites
Levels 0.491 0.020 0.019 0.048

[0.010,0.047] [0.009,0.042] [0.027,0.120]
DID 0.344 0.023 0.021 0.056

[0.013,0.048] [0.010,0.043] [0.032,0.126]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).

Distance measures
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Pre-treatment Outcome for Experimental Group

Table 6. Benchmark values of the assessment measures for Raw Mean estimator from using within-site
              experimental treatment groups (3 treatments per site)
              Outcome: Employment rate in two years prior to random assignment

Site P-value joint equality Root Mean Mean Absolute Maximum
Wald test Square Distance Distance Distance

ATL 0.270 0.024 0.023 0.052
[0.009,0.051] [0.008,0.046] [0.022,0.120]

GRP 0.250 0.024 0.021 0.057
[0.009,0.051] [0.008,0.045] [0.021,0.120]

RIV 0.283 0.025 0.023 0.060
[0.009,0.055] [0.008,0.049] [0.021,0.129]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).

Distance measures
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Robustness: Different Overlap Trimming Rules (Table 7)
Table 7. Assesment measures of estimators when applying different overlap trimming rules (quantile  q ) - 4 sites  
              Outcome: Employment Rate in Two Years after Random Assignment 

P-value Root Mean P-value Root Mean P-value Root Mean
jnt equality Square jnt equality Square jnt equality Square

Estimator Wald test Distance Wald test Distance Wald test Distance
A. Outcome in levels 
Linear regression-based 
Partial Mean Flex X - Ovlp 0.055 0.041 0.098 0.039 0.056 0.045

[0.025,0.072] [0.024,0.072] [0.023,0.072]
GPS-based (imposing Ovlp) 
IPW With Covariates 0.200 0.066 0.284 0.058 0.280 0.057

[0.031,0.125] [0.028,0.113] [0.024,0.108]

B. Outcome in differences (with respecto to years 1 and 2 before RA)
Linear regression-based 
Partial Mean Flex X - Ovlp 0.131 0.032 0.249 0.028 0.127 0.036

[0.018,0.059] [0.018,0.060] [0.015,0.059]
GPS-based (imposing Ovlp) 
IPW With Covariates 0.991 0.012 0.894 0.030 0.708 0.041

[0.016,0.086] [0.017,0.091] [0.020,0.099]
Sample size after overlap 
Obs dropped due to overlap (%) 

Notes: Results based on 1,000 bootstrap replications.

q =0.002
Overlap rule:Overlap rule:

6,228

q =0.000

5,337

Overlap rule:
q =0.005

18.2%4.5%
5,743
12.0%
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Conclusion

Overlap condition stronger than for binary case
–> harder to find comparable individuals for each treatment

Crucial role of GPS in assessing comparability of treatment
groups –> we propose a strategy for determining overlap region
that is less stringent than previously used in literature

GPS works well in balancing covariates (once site with poor
overlap quality is removed)

Estimators perform badly when there is poor overlap quality

Estimators improve considerably with better overlap quality (and
more similar LECs)

DID estimators perform the best compared to benchmark
measures based on experimental data

Results very encouraging –> if satisfactory overlap quality

Future work: simulations-based analysis
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