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Abstract

Rules of k names are frequently used methods to appoint individuals to o¢ ce.

They are two-stage procedures where a �rst set of agents, the proposers, select k

individuals from an initial set of candidates, and then another agent, the chooser,

appoints one among those k in the list. In practice, the list of k names is often

arrived at by letting each of the proposers screen the proposed candidates by voting

for v of them and then choose those k with the highest support. We then speak of

v -rules of k names. Our main purpose in this paper is to study how di¤erent choices

of the parameters v and k a¤ect the balance of power between the proposers and

the choosers. From a positive point of view, we analyze a strategic game where the

proposers interact to determine what list of candidates to submit. From a normative

point of view, we study the performance of di¤erent rules in expected terms, under

di¤erent informational assumptions. The choice of v and k is then analyzed from

the perspectives of e¢ ciency, fairness and compromise.
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1 Introduction

Appointing people to o¢ ce is one of the main ways how the powerful exert their in�uence

in society. But the ability of any authority to appoint o¢ cers is often limited by the

existence of other �de iure� or �de facto� powers. Even the President of the United

States has to submit his proposals for cabinet members, for supreme court judges and for

many other appointments to the approval of the legislators.

In this paper we study a class of methods that allow several agents to share the power

to appoint. We call them rules of k names, and they work as follows. The set of deciders

is divided into two groups: the proposers and the chooser. Proposers consider the set of

all candidates to a position and screen k of them. Then, the chooser picks the appointee

out of these k names. Indeed, rules of k names can vary, depending on the composition

of the set of proposers, on the value of k, and also on the voting procedure adopted to

form a list of k candidates.

Here we focus on a speci�c family of rules of k names that are used in many practical

cases. This family adopts the following procedure to form the list of k names: each

proposer submits a list of v candidates, and then the k most voted candidates get into the

list. Though one can think of other methods to select the k names, the ones we consider

are simple and frequently used. We call these procedures the v-rules of k names.

Rules of that form have been used in the past and are still very much used in the

present. They seem particularly �tted to provide a balance of decision power between

parties that have an interest to control who will be the rulers of certain institutions,

like government bodies of the judiciary, public universities or local churches. These are

examples of institutions that governments are interested to in�uence from the outside,

but whose members would rather have under internal control. Historically, rules of k

names were used within the Roman Church since the early middle ages, when secular

rulers tried to control the appointment of bishops, while the clergy would rather decide

on its leaders. And similar rules are still used to share the power between Rome and the

local congregations. At present, the members of bodies that control the administration of

justice are elected under rules of k names in many countries (Chile, Brazil, Colombia etc),

thus allowing the legal professionals to propose their rulers, but also letting governments,

or parliament, have a say on which internal candidates will eventually be appointed.

Di¤erent countries (Mexico, Brazil, Turkey etc) have also adopted rules of k names to
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select their university rectors, with the government choosing from a short list generated

within the university.

The purpose of this paper is to compare the ability of di¤erent v-rules of k names

to balance the power between the proposers and the chooser. From a positive point of

view, we analyze a strategic game where the proposers interact to determine what list

of candidates to submit. From a normative point of view, we study the performance of

di¤erent rules in expected terms, under di¤erent informational assumptions. The choice

of v and k is then analyzed from the perspectives of e¢ ciency, fairness and compromise.

Notice that a great variety of methods that are used in practice do di¤er on the values

of both k, the size of the list, and v, the number of candidates that each proposer can vote

for. There are cases where in order to participate in the choice of k candidates, each voter

is allowed to submit k names. The rule used to elect Irish bishops or prosecutor-general in

most of Brazilian states are of this sort, with k = v = 3. Yet, in most cases we know, each

proposer is asked to submit a vote for v candidates, with v less than k. This is the case,

for example, when choosing public university rectors in Brazil (k = 3; v = 1), members of

Chile�s courts of justice (k = 3; v = 2) or Chile�s Supreme Court (k = 5; v = 3).

It is clear that the size k of the list to be submitted has an important e¤ect on the

distribution of power between the proposers and the chooser. In the extreme case where

the proposers have to submit the whole list of candidates, all power goes to the chooser.

In the opposite extreme case where k = 1, it is now the chooser who has no room left,

and all the power stays in the hands of the proposers. In that case, however, there is

still room for analysis, to determine what candidate would arise, depending on v and on

the preferences of proposers. Our focus will be directed to those intermediate cases where

both sides have some in�uence in the result. Speci�cally, we shall be interested in the kind

of ex ante evaluation that a designer could make of di¤erent v-rules of k names, in terms

of the expected utility that the chooser and the proposer might derive from each possible

choice of the parameters k and v, under di¤erent scenarios/utility pro�les. Armed with

that kind of comparative assessment of di¤erent rules, a designer could eventually propose

the use of a speci�c one in order to arbitrate between both parties, balance their power

or distribute it according to di¤erent criteria.

In order to compute the expected utility that the proposers or the chooser would

derive from the adoption of any speci�c v-rule of k names, a designer would have to
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gather information, or else to make assumptions regarding a number of relevant issues.

Here are the ingredients required for such a calculation. First of all, the designer needs to

know the distribution of utility pro�les under which the rules to be compared are expected

to eventually operate. Then, she needs to determine the outcome of the vote at each of

the utility pro�les. This outcome, in fact, will depend on the type of information available

to agents at the time where their vote takes place, and the strategic behavior that they

adopt, given that information. Our main calculations are made under the assumption

that agents are fully informed about their preferences and those of all others at the time

of vote, and that proposers play a strong Nash equilibrium of the ensuing strategic game

where they decide what set of v candidates to vote for. An important part of our analytical

e¤ort goes to analyze the game that proposers play among themselves to determine the

list of k names they present the chooser with. Because these games may have several

strong Nash equilibria, or none, we concentrate attention to sets of environments where a

unique strong Nash equilibrium is assured to exist, thus avoiding the need to make further

predictions about the proposer�s behavior in case of multiplicity or non-existence. For our

restricted, yet non-trivial sets of environments, we characterize the equilibrium outcomes

at each pro�le, and calculate the expected utility of the proposers and the chooser for

each value of v and k. Of course, our calculations are made for speci�c distributions and

environments, but we expect the reader to appreciate that the general method we propose

to compare di¤erent rules could be extended to more complex situations.

Before we proceed, let us comment on some related papers. Unfortunately there does

not seem to be a body of literature speci�cally devoted to study appointment rules with

their checks and balances. Of course there exist many voting rules that can be adapted to

this speci�c purpose, but we feel that it may be useful to focus on those that are especially

�t for appointments. Our preceding papers on the subject (Barberà and Coelho, 2006 and

Barberà and Coelho, 2010) provided an initial analysis of rules of k names and of possible

ways to screen candidates. Our main results in Barberà and Coelho (2010) did focus on

majoritarian rules.1 Here we extend the analysis to the much wider class of v-rules of k

names, of which only the case v = k is majoritarian. In addition, we provide a fresh start

1We say that a screening rule is majoritarian if and only if for every set with k candidates there exists

an action such that every strict majority coalition of proposers can impose the choice of this set provided

that all of its members choose this action.
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toward the normative evaluation of these rules. To mention some related work, Holzman

and Moulin (2013) and Alon et al. (2011) concentrate on what they call nomination

rules, leading to the choice of a �xed number of candidates where the candidates are

also the voters. Even if di¤erent from our analysis, these papers show how being speci�c

on the nature of the choice to be made can help in focusing on new axioms and new

questions. We would also like to mention some sequential methods where di¤erent agents

play di¤erent roles, as voters or vetoers, like Mueller�s voting by veto (see Mueller,1978),

Moulin�s successive elimination procedures (Moulin, 1982) or Stevens, Brams and Merril�s

�nal-o¤er arbitrage procedures (Brams and Merrill, 1986 and Stevens, 1966). All of them

are multi-stage procedures that also demand a game theoretic and a normative analysis,

though in fact they are all di¤erent from each other and of v-rules of k names. What we

can certainly say is that v-rules of k names are among the most widely used methods in

that general vein.

As for the normative analysis in terms of expected utility, the papers closest to ours are

those that study the design of egalitarian and utilitarian voting schemes. See for instance,

Rae�s (1969), Curtis (1972), Badger (1972), Coelho (2004) and Barberà and Jackson

(2004). However, this literature focuses on the case where a society faces dichotomous

choices. On the game theoretical side, the most related literature is the one characterizing

the set of strong Nash equilibrium outcomes of voting games. See Barberà and Coelho

(2010), Ertemel, Kutlu and Sanver (2010), Sertel and Sanver (2004), Polborn and Messner

(2007), Moulin (1982) and Gardner (1977).

The paper is organized as follows. In the next section we introduce notation and

de�nitions. In Section 3 we study the case where there is only one proposer. In Section

4 we analyze the case with several proposers, show some of the di¢ culties involved and

concentrate on the speci�c but signi�cant case where the proposers�interests are polarized.

Conclusions follow in Section 5, and proofs appear in the Appendix.

2 The setup

In this section we formally de�ne rules of k names and the games they induce. We observe

that, in addition to other structural features, like the number of proposers, the number

of candidates and the size k of proposed candidates, a full speci�cation of a rule of k
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names also requires to de�ne the screening rules by which the proposers decide what

names go into the list. In principle, this method could remain unspeci�ed, or be rather

complicated. But in actual practice simple and well speci�ed screening rules are usually

set. Basically, proposers are allowed to vote for a number v of candidates, and then the

k most voted ones are selected (with a tie break if needed). These votes will typically be

cast as the result of strategic calculations that may involve the cooperative coordination

among players.

Let C be the �nite set of candidates and c be its cardinality. For any h < c, Ch

denotes the family of subsets of C with cardinality h. Let N = f1; :::; ng be the �nite set
of proposers. The set of agents is A = N [ fchooserg, where chooser is interpreted as
an individual not in N. Let W be the set of all strict orders2on C. Elements in W are

denoted by �i;�j,....
Societies, or preferences pro�les, are elements ofW n+1, denoted as (�1;�2; :::;�n;�c).

The �rst n components are interpreted to be the preferences of the proposers and the last

component stands for the preferences of the chooser.

In addition to stand for the preferences of agents, orders of the set of candidates will

also be used to break ties among alternatives, as we shall be later. Given an order �, and
any subset of candidates B �C; we denote by �(B;�) the best candidate in B according
to � :
We now de�ne v-rules of k names, where k � c is the size of the set of candidates that

the proposers must submit and v � k is the number of candidates that each proposer can
support.

De�nition 1 Given any n-tuple (B1; :::; Bn) belonging to Cnv , of sets of size v, the score

of a candidate x 2C at (B1; :::; Bn) is the number of Bi�s containing x, s(x;B1; :::; Bn) =
# fBijx 2 Big : A set T is most voted in (B1; :::; Bn) if for all x 2 T and y 2CnT;
s(x;B1; :::; Bn) � s(y;B1; :::; Bn): A v�screening rule of k names is a function g :Cnv !Ck
that selects a set T of k most voted candidates for each n-tuple of sets of size v.

De�nition 2 A v�rule of k names is a function f :Cnv � W !C de�ned so that

2Transitive: For all x; y; z 2 A : (x � y and y � z) implies that x � z:
Asymmetric: For all x; y 2 A : x � y implies that :(y � x):
Irre�exive: For all x 2 A;:(x � x):
Complete: For all x; y 2 A : x 6= y implies that ( y � x or x � y):
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f(B1; :::; Bn;�) = �(g((B1; :::; Bn));�), for some v-screening rule of k names g.

Notice that our de�nition of a set of most voted candidates allows for some candidates

in T and some outside of T to get the same number of votes. This is because, in our

setting, there may be cases where several candidates get the same number h of votes,

the set of those getting more than h votes is smaller than k and the set of those getting

at least h votes is larger than k. In these cases, the screening rule must "break the tie"

between these candidates who just got h votes, and select enough of them to complete a

set of size k. From now on, we will assume that our "tie breaking rules" are given by an

order of candidates, and that this order is either �xed, or coincides with the preferences

of some predetermined agent3.

An important part of our work will consist in analyzing the type of strategic interac-

tions that may arise among the proposers, as a function of their preferences and those of

the chooser. We model these interactions as a normal form game with complete informa-

tion, and concentrate our analysis on the study of its strong Nash equilibria.

De�nition 3 (Barberà and Coelho, 2010) Given k 2 f1; 2; :::; cg and v 2 f1; 2; :::; kg,
a v-screening rule for k names g :Cnv !Ck and a preference pro�le (�1;�2; :::;�n;�c
) 2 W n+1, the Constrained Chooser Game is the simultaneous game with complete

information where each player i 2 N chooses a strategy Bi 2Cv. Given (B1; :::; Bn) 2Cnv ,
g((B1; :::; Bn)) is the chosen list with k names and the winning candidate is

�(g((B1; :::; Bn));�chooser).

In the Constrained Chooser Game, the chooser�s strategy set is restricted to a single

element. In that sense, we could say that she is not an active player. Speci�cally, we take

it that the chooser will simply select that candidate that is best for her among those that

he will be presented with. Thus, the chooser�s preferences determine the game�s outcome

function, and will have an impact on the equilibrium play of the proposers. But, in the

spirit of subgame perfection, and given the sequential form of our rules, we exclude the

possibility that the chooser may select a candidate that is not her best in the list she is

presented with.

3For example, when k = 3 and C = (x; y; z; w), if x,y receive 3 votes and the remaining two candidates

z; w receive the same number of votes (say 2, one or none), the proposed set will be formed by x; y and

the highest ranked among z and w according to the tie breaking rule.
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We choose to analyze the set of strong Nash equilibria of this game. This is consistent

with the idea that proposers have complete information about their preferences and those

of the chooser, and that they must �nd ways to cooperate among themselves, in order to

come up with a favorable list.

De�nition 4 Given k 2 f1; 2; :::; cg and v 2 f1; 2; :::; kg, a v-screening rule for k names
g :Cnv �!Ck and a preference pro�le �� f�igi2N[fchooserg 2 W n+1, a joint strategy

(B1; :::; Bn) 2Cnv is a pure strong Nash equilibrium of the Constrained Chooser

Game if and only if, given any coalition G �N; there is no (B01; :::; B0n) 2Cnv with B0;j =
B;j for every j 2 NnG such that �(g((B01; :::; B0n));�chooser) �i �(g((B1; :::; Bn));�chooser)
for each i 2 G:

3 The case of one proposer

A designer is interested in determining the expected utility that a proposer and a chooser

would derive from using any given rule within our class. Since there is only one proposer,

only the value of k matters, and v does not play a role.

In order to carry out the ex ante calculations, the designer has to attribute utilities on

candidates to each of the agents. We�ll assume here that the designer takes the (negative

of the) ranking of the di¤erent candidates as a proxy for the utility they derive from their

election. Formally, ui(y) = �ri where ri = 1 +#fz 2Cjz �i yg.
Under these simple speci�cations, each preference order is associated to one utility

function, and from now on we use the terms preference pro�le and utility pro�le inter-

changeably.

We also assume that, once a utility pro�le is realized, both agents are informed about

it, and the proposer uses this information to vote strategically, knowing that the chooser

can only choose her best candidate in the received list. It is easy, in that case, for the

designer to characterize the equilibrium behavior at each realized pro�le. Notice that a

candidate can only be the chooser�s best in a list with k names if it is among the chooser�s

best c� k + 1-top candidates. Therefore, the equilibrium outcome is the best candidate

for the proposer out of the c� k + 1-top candidates of the chooser. This outcome can be
obtained by not presenting the chooser with any of the candidates that would be better

for her.
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If the designer is endowed with a distribution indicating the probability that each

pro�le of preferences is realized, then she is ready to compute the expected utility from

choosing each possible value of k. For the purpose of illustration, we proceed under

the assumption that the agents� preferences over the set of candidates are the result

of independent random draws from a uniform distribution over the domain of all strict

preferences.

Under the scenario where agents know each other�s preferences at the time of vote,

the expected utilities that the designer attributes to the proposer and to the chooser can

be computed as their utility for the equilibrium outcome resulting at each pro�le times

the probability that the pro�le obtains. In what follows, and for simplicity, x will stand

for the equillibrium outcome at each pro�le.

Under the scenario where agents know each other�s preferences at the time of vote,

the expected utilities that the designer attributes to the proposer and to the chooser are:

E(up(x)jc; k) = � (c+1)
(c�k+2) (1)

E(uc(x)jc; k) = � (c�k+2)
2

(2)

From expressions (1) and (2), notice that the proposer�s expected utility is strictly

decreasing with k, while the chooser�s expected utility is strictly increasing with k. Thus,

when k = 1 the chooser�s expected utility reaches its minimum and E(uc(x)jc; k = 1) =
�c+1

2
, while proposer�s reaches its maximum, E(uc(x)jc; k = 1) = �1.

The expected utilities have these functional forms because the random variable rp (rp �
1+#fy 2Cjy �p xg) has the same distribution as that of the smallest element of a random
sample with size s = c� k + 1 drawn without replacement from a uniformly distributed

population D = f1; 2; : : : ; cg and the random variable rc (rc � 1 + #fy 2Cjy �c xg) has
the same distribution as that of a discrete random variable uniformly distributed over

f1; 2; : : : ; c� k + 1g.
Now, given these expected utility values, the designer can select a k satisfying any

desirable criteria. We have considered three possible criteria for selection:

-egalitarianism: choose a k that minimizes, jE(up(x)jc; k) � E(uc(x)jc; k)j,the dif-
ference between the expected utility of the proposer and that of the chooser, and thus

equalizes them whenever possible with an integer value of k.

-utilitarianism: choose a k that maximizes, E(up(x)jc; k) + E(uc(x)jc; k), the sum of

the proposer and the chooser�s expected utilities.
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-Nash bargaining: choose a k that maximizes, (E(up(x)jc; k)� d)(E(uc(x)jc; k)� d),
the product of the proposer and the chooser�s expected utilities where d, the status quo

expected utility for each of the players, is equal to �c+1
2
: The status quo expected utility

can be interpreted as the one that the agents would obtain if the winning candidate was

chosen at random with uniform probability, rather than through any bargaining process.

Interestingly, these three criteria lead to the selection of the same values for k, in our

case. The reason is simple: the combination of expected utilities for the proposer and for

the chooser that we get as k changes constitute a symmetric set. Since the egalitarian and

the utilitarian solutions satisfy Nash�s axiom of symmetry, and our bargaining problem

is symmetric, they both coincide with Nash�s solution in this nice case. In fact, they

may lead to the choice of one or at most two rules, de�ned by consecutive values of k,

depending on the number of candidates. At any rate, we can always say that the chosen

value must be greater or equal than half the number of candidates. That fact may be a

bit disturbing, since in real life we observe the use of small values of k. But this is due to

the speci�city of the one proposer case, where the proposer gets a large advantage, that

can only be compensated by a larger k. In the next section, we will see that these k values

become smaller as the polarization among the proposers increases.

The following proposition expresses our preceding remarks more formally and with

additional detail.

Proposition 1 The egalitarian, utilitarian and Nash bargaining choice of k coincide in

the one proposer case. If z = c + 5
2
�
q
2c+ 9

4
is an integer, the two values fz � 1; zg

are selected. Otherwise, the selected value is unique and equal to bzc4. If, in addition,
z = c �

p
2c+ 2 + 2; then full equalization of expected utilities is achieved at k = z.

The value of the optimal k�s according to the egalitarian, utilitarian and Nash bargaining

criteria is always greater or equal than c+1
2
.5

Before we leave this one proposer case, let us just compare it with a di¤erent scenario.

This is the case where at the time of vote agents would know their own preferences,

but still remain completely ignorant about the characteristics of others. To simplify

the analysis, suppose that the proposer selects a strategy assuming that the chooser�s

4bzc is the largest integer not greater than z.
5The proofs of the propositions are in the Appendix A.
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preferences are the result of independent random draws from a uniform distribution over

the domain of strict preferences. In that case, it is reasonable to assume that the proposer

will always include their k best candidates in the list. Then, under the same distributional

assumptions over preferences and preference pro�les, the ex ante expected utilities for the

proposer and for the chooser would be

E(up(x)jc; k) = � (k+1)
2

(3)

E(uc(x)jc; k) = � (c+1)
(k+1)

(4)

and the value of k that would simultaneously correspond to the egalitarian, utilitarian

and Nash bargaining distribution of utilities would be equal to c� k� + 1 where k� is the
optimal k under the complete information scenario.

Let us now compare the results from the complete information case with those that

obtain under ignorance at the time of vote. Take, as a reference point, the case where

the proposer was allowed to nominate half of the candidates. Then the proposer has

a �rst mover advantage in the complete information case, while that advantage goes to

the second mover, the chooser, in the case of perfect ignorance. These advantages are

symmetric, and the choices of k correspond to the need to compensate the weakest of

the two players by allowing them to nominate more, or less than half of the candidates,

depending on the scenario. Since these two scenarios are very extreme, we can interpret

our result under the complete information as an upper bound for the optimal k, and the

one under complete ignorance as a lower bound.

From now on, we abandon the scenario of complete ignorance, which was just intro-

duced for comparative purposes, and we stick all along the paper to the realistic assump-

tion that agents involved in the use of v-rules of k names are well informed about the

characteristics of all players.

4 The case of several proposers

We now turn attention to the more general case, where several proposers must determine

what list of k names they submit to the chooser, who then chooses one of them.

We have already seen in the preceding section that, as part of the search for the ex ante

expected values of di¤erent v-rules of k names, the designer needs to assess what would
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be the list chosen by the proposers at each preference pro�le. The equilibrium choice of a

list by a single informed proposer was easy to establish. But now, the presence of several

proposers acting under a v-screening rule, introduces several new challenges. One needs to

describe the game played by the proposers when deciding what candidates to support, and

the solution concept that �ts their expected behavior. We study the speci�c game where

the strategies of the proposers are sets of v candidates, and the outcome function is the

straightforward choice by the chooser of her best candidate among those in the list. We

call it the Constrained Chooser Game, because we are implicitly assuming that the chooser

will not act strategically, trying to reach agreements with any of the proposers. Given

the sequential structure of the decision process, and in the spirit of subgame perfection,

this chooser restricted game discards the possibility of the chooser committing to act in

a non-maximizing way. As for the proposers, we assume that they can coordinate their

actions, and thus study the outcomes associated with strong Nash equilibrium play. We

have provided formal de�nitions for this game and for our equilibrium concept in Section

2.

We �rst present the reader with two examples that show how interesting, but also how

complex and revealing the analysis of equilibrium can become. Then, we introduce a spe-

ci�c type of societies that capture some essential features of the interplay between several

proposers whose interests are in con�ict. These are what we call polarized proposer�s so-

cieties: proposers come in two types, one majoritarian and the other minoritarian, whose

preferences are exactly opposed. We are able to prove that in these societies the Con-

strained Chooser Game always has a unique strong Nash outcome. Moreover, we can

provide an exact characterization of this equilibrium, and this allows us to reach our goal:

for any given distribution of potential societies over which it must operate, we show how

the designer can calculate the expected utility of the chooser, and the average utility of

the proposers. Again, armed with this information and with some normative criterion, it

is possible to arbitrate among di¤erent rules.

4.1 Two interesting voting situations

It is clear from the one proposer case that, in order to compute the expected value of a

rule, one needs to predict the outcome of voting at any given pro�le. Finding the equilibria

of the games generated under di¤erent v-rules of k names is thus a necessary step prior
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to the choice of those (v; k) values that identify those satisfying any desirable normative

criterion. In our search for equilibria and their characterizations, we�ll face a number of

di¢ culties, that eventually lead us to concentrate on a simple model. But in order to give

the reader a feeling of the interesting problems that arise, let us plunge directly in the

following example.

There are �ve candidates fc1; c2; c3; c4; c5g and eleven proposers. Each proposer is
allowed to vote for one candidate (v = 1) and a list will be formed with the names of

the three most voted candidates (k = 3), with ties being broken according to the order

c1 � c3 � c4 � c5 � c2. The type (preferences) and the number of agents are given in
the following table.

Preference Pro�le

1 type 1 proposer 7 type 2 proposers 3 type 3 proposers Chooser

c1 c3 c2 c1

c3 c2 c3 c2

c4 c5 c4 c3

c5 c1 c5 c4

c2 c4 c1 c5

We shall argue, in what follows, that c2 can be the outcome induced from the strong Nash

equilibrium play of the proposers when the chooser always picks his best candidate in the

list.

Consider the following strategy pro�le that sustains c2 as a strong Nash equilibrium

outcome: the seven type 2 proposers cast four votes for c3 and three votes for c4. The

only one type 1 proposer casts a vote for c1, while the three type 3 proposers cast three

votes for c2. Thus, the selected list is fc3; c2; c4g and c2 is the winning candidate.
The argument behind this equilibrium is quite clear. Type 3�s go ahead in support of

c2, and then the type 2�s have to prevent c1 from becoming the outcome by "wasting"

their remaining votes in support of c4.

But there is another, maybe more interesting equilibrium. Notice that any coalition

with at least three proposers can impose at least one candidate in the list, and that the

chooser and the three proposers of type 3 prefer c2 to c3. In spite of this, candidate c3

can also be sustained as a strong Nash equilibrium outcome! To verify it, consider the

following strategy pro�le: the seven type 2 proposers cast three votes for c3, two votes
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for c4, one vote for c1 and one vote for c5. Type 1 proposer casts a vote for c1, while

the three type 3 proposers cast two votes for c5 and one for c4. So, c3,c5 and c4 will

have three votes each, while c1 only two. Thus, the selected list is fc3; c5; c4g and c3 is
the winning candidate. The reader can check that no coalition of voters can pro�tably

deviate.

Now, here is a intuition for this equilibrium, where the two proposers of type 2 cleverly

distribute their votes in order to prevent the type 3�s from being able to select c2, even

if they all vote for it. Voters of type 2 ensure that candidate c3, their favorite, is among

the proposed ones, by casting three votes in its favor. They also give enough support to

candidate c1 so that, along with the vote of type 1, c1 is still not chosen, but would be as

soon as candidates with two votes enter the list. Then, since c1 has two votes, proposers

of type 3 cannot vote for their favorite, c2, because if they all spent their votes on c2,

which would make c2 eligible, then some alternative with two votes would come in, and

in this case it would be c1, which they hate but is the chooser�s best. Given that they

cannot get c2, they then concentrate, in alliance with type 2 people, in getting c4 and c5

into the list, both above their worse alternative c1, in order to at least get their second

alternative.

Thus, the presence of the type 1 proposer voting for c1 leads types 2 and 3 into a sort

of race: if one of them uses the most rewarding strategy in one of the two equilibria, the

other must concede. If both used their most rewarding strategies, then c1, that they both

hate, would come out!

In this example, we can observe several types of strategic behavior on the side of agents.

The richness of the example also leads to the existence of several equilibria among which

it is hard to choose. Multiplicity of equilibria adds to the di¢ culty of characterizing any

of them. Hence, even if the steps to be taken toward any speci�c choice of optimal rules

are quite clear, we cannot expect simple, general explicit solutions. This is why we shall

eventually simplify the setting where we work.

Our second example is also clarifying. The choice of v and k has an impact on the

balance between the satisfaction of the chooser and that of the proposers. But our fol-

lowing example shows that this impact is complex: without any further restrictions, the

e¤ects of k and v on the agents�payo¤s are not monotonic.

There are four candidates c2,c1,c3 and c4, and three proposers. Each proposer votes for
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one candidate and the list has the names of the two most voted candidates (v = 1; k = 2),

with a tie breaking rule when needed: c3 � c4 � c1 � c2.

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c1 c2 c2 c1

c4 c3 c3 c2

c3 c4 c4 c3

c2 c1 c1 c4

Candidate c3 is the unique strong Nash equilibrium outcome under v = 1 and k = 2.

Here is an intuition for this result: notice that candidate c2 cannot be a strong equilib-

rium outcome, because as long as proposer 1 votes for c1, proposers 2 and 3 cannot get

c2 to be the outcome, even if they can force c2 to be in the list. Short of that, proposers

2 and 3 coordinate their actions so that one of them votes for c3 and the other for c4. If

1 persists in voting for c1, this creates a tie between the three candidates that is solved in

favor of c3 and c4, out of which the chooser selects c3. If 1 votes for c3 instead, the same

outcome ensues. And all other actions by any combination for agents would lead some of

them to outcomes that would be worse than c3 for some of them. Hence, c3 is the unique

strong Nash equilibrium under (v; k) = (1; 2). The case (v; k) = (1; 1) is simple and lead

to the election of c2.

The table below presents the set of strong Nash equilibrium for di¤erent values of v

and k.

Set of strong Nash equilibrium outcomes

k=1 v = 1 fc2g
k=2 v = 1 fc3g
k=2 v = 2 fc2g
k = 3 v = 1 fc1g
k = 3 v = 2 fc2g

Notice that, with v �xed at 1, the chooser prefers k = 1 than when k = 2. This is

quite surprising, since k = 1 means that the chooser has no power at all! Notice also that

he prefers k = 3 to k = 2 when v = 1. On the other hand, for k = 2, the chooser prefers

the higher value v = 2 to that of v = 1. However, for k = 3, he prefers the lower value
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v = 1 to that of v = 2.

4.2 Polarized Proposers Model

The rich examples in the preceding section show that we cannot expect to develop a full,

general analysis of the equilibrium outcomes when a diversity of proposers coexists. This

also makes it hard to develop explicit formulas for the expected utilities of proposers

and choosers would derive from di¤erent choices of k and v. Yet, our general reasoning

can still be applied to analyze speci�c cases, however complex. Better than that, we

can provide an explicit analytical development for the case of several proposers, for the

special case where these are divided into two antagonistic groups. This model is able to

take into account the tension that arises among the proposers, when drawing a list of

k names, provided the tension is not too di¤used, and concentrates between two groups

in con�ict. We call it the polarized proposer�s case, and it is described by the following

characteristics:

1. (Assumption 1). The set of proposers is partitioned into two groups G1 and G2 =

NnG1;with sizes #G1 = m > #G2 = n�m.

2. (Assumption 2). All proposers in G1 share the same preferences over the set of

candidates.

3. (Assumption 3). All proposers in G2 share the same preferences over the set of

candidates, and they are the reverse of those of agents in G1.

4. (Assumption 4). The tie breaking rule coincides with at least one of the agents

preferences over the set of candidates.6

As we shall see, these conditions guarantee that there will always exist a unique strong

Nash equilibrium for the Constrained Chooser Game, thus allowing us to compare rules

according to the expected utility of the chooser, and the average expected utility of the

proposers. Before we plunge into the analysis of that case, we provide some general results

that are useful to partially characterize equilibria even under more general conditions.

Notice that any v-screening rule of k names endows each group of proposers with

some power to determine what candidates are to be included in the list submitted to the
6Without this assumption, the existence result may not hold. See an example in Appendix B.
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chooser. The following de�nitions and results apply for any given v-rule of k names and

any set X of candidates.7

De�nition 5 Let qvk(X) be the minimum integer bq such that, for any coalition G of voters
with size at least as large as bq, agents in G can vote in such a way that all elements in X
are included in the list, for any vote of the proposers in N=G. That is, qvk(X) is computed

in such a way that any coalition of that size or larger can always guarantee itself the

inclusion of X in the list, if its members coordinate their votes.

Remark 1 The values of qvk(�) evolve monotonically with those of k and v. For any C
and v < v�< k < k�<c, we have that:

1. qvk(X) � qv
0
k (X) for any X 2Ck;

2. qvk�(X
0) � qvk(X) for any X 2Ck and X 0 2 fY 2Ck0jX � Y g;

3. qv
0
k (fxg) � qvk(fxg) for any x 2C;

4. qvk(fxg) � qvk0(fxg) for any x 2C:

Remark1 tell us that qvk(�) is increasing in k and decreasing in v, while qv1(�) is decreasing
in k and increasing in v. Thus, an increase in k or a decrease in v alters the distribution

of power among the proposers in the following ways: (1) it a¤ects non-positively the

cardinality of the set of possible coalitions of players that are able to impose all the

names in the list and (2) it a¤ects non-negatively the cardinality of the set of possible

coalitions of players that that are able to impose at least one name in the list. Notice

that (1) implies that some strong Nash equilibrium outcomes under (k; v) may not be a

strong Nash equilibrium under (k; v � 1) or under (k + 1; v). Notice also that (2) implies
that the chooser�s best candidate in the list may become an equilibrium outcome under

(k; v � 1) or under (k + 1; v) in spite of not being an equilibrium outcome under (k; v).

These qvk values may di¤er (but not too much) for sets of the same size, depending

on the names of the alternatives that they include, because the tie breaking rule treats

candidates asymmetrically. Hence, we may also de�ne some absolute bounds that work

7Notice that de�nitions 5 and 6 are closely linked to that of e¤ectivity functions studied by, among oth-

ers, Peleg (1984), Abdou and Keiding (1991) and Sertel and Sanver (2004). These concepts of e¤ectivity

refer to the ability of agents to ensure an outcome, under the given rule.
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for any set. In particular, we�ll use those bounds that apply for singletons or for sets of

size k, since they are the ones that will help in characterizing equilibria.

De�nition 6 Let qv1 �Maxy2Cfqvk(fyg)g and qvk �MaxY 2Ckfqvk(Y )g:8

We are now ready to provide a necessary condition that must be satis�ed by any strong

Nash equilibrium outcomes for the Constrained Chooser Game, whatever the preferences

of agents might be. In addition to its intrinsic interest, the result will be later used in our

analysis of the polarized proposers�case.

Proposition 2 If candidate x is a strong Nash equilibrium outcome of the Constrained

Chooser Game, then it satis�es the following four conditions

C1: It is among the chooser�s (c�k + 1)-top candidates.

C2: If y 6= x is among chooser�s (c�k+1)-top candidates then #fi 2 N jy �i xg < qvk(Y )
for any Y 2Ck such that y is the chooser�s best candidate in Y .

C3: If y is the chooser�s best candidate then #fi 2 N jy �i xg < qvk(fyg).

C4: If y is the chooser�s best candidate and also ranked above than x by the tie breaking

criterion then #fi 2 N jx �i yg � qvk.9

In the general case where all preferences are allowed, no conclusive statement can be

reached regarding the gains for the chooser, as shown by our second example, in Section

4. The di¢ culty to make de�nite statements under a universal domain of preferences is

compounded the possibility that, when changing parameters, one of them may guarantee

existence of equilibria but not the other. In spite of these added di¢ culties, we can prove

the following result that holds for the universal domain of preferences:

Proposition 3 If the chooser 1-top-candidate is a strong Nash equilibrium outcome of

the Constrained Chooser Game under v�-rule for k� names then it is also a strong Nash

8We can actually compute these bounds explicitly, as follows: qvk = d kn
(k+v)e + I(b

vd kn
(k+v)

e
k c � n �

d kn
(k+v)e) and q

v
1 = d vn

(k+v)e+ I(
vn

(k+v) = d
vn

(k+v)e); where I denotes the indicator function that takes value
1 if the expression in brackts is true, and 0 otherwise.

9In Appendix B, we show how Proposition 2 can be useful to locate an equilibrium outcome. We also

give an example where the set of strong Nash equilibrium outcomes is empty.
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equilibrium outcome of the Constrained Chooser Game under any v-rule for k names

whenever v � v�and k�� k provided that both screening rules have the same tie breaking
criterion.

In the case of polarized proposers, we can establish the existence of a unique strong

Nash equilibrium and to provide a characterization.

Proposition 4 Consider the Polarized Proposers Model and any v-rule of k names. A

strong Nash equilibrium outcome of the Constrained Chooser Game always exists and it

is unique. In addition:

1) Suppose that the tie breaking criterion coincides with the majoritarian group�s prefer-

ences over the set of candidates.

If m � qvk > n�m then the strong Nash equilibrium outcome is the best candidate of the

majoritarian group out of chooser�s (c�k + 1)-top candidates;
If qvk > m � qv1 > n �m then the strong Nash equilibrium outcome is the chooser�s best

candidate out of the majoritarian group�s k-top candidates;

If qvk > m > n�m � qv1 then the equilibrium outcome is the chooser�s best candidate.

2) Suppose that the tie breaking criterion coincides with the chooser�s preferences over the

set of candidates or with the minoritarian group�s preferences over the set of candidates.

If m � qvk then the strong Nash equilibrium outcome is the best candidate of the majori-

tarian group out of chooser�s (c�k + 1)-top candidates;
If qvk > m then the strong Nash equilibrium outcome is the chooser�s best candidate.10

The following three corollaries apply to the case where our v-rules of k names are used

in societies where proposers are polarized. They follow from Proposition 4 and Remark

1.

Corollary 1 The chooser cannot be worse o¤ under v0-rule for k names than under ev-rule
for k names whenever ev > v0.
10A simple and interesting case of polarized societies arises when all proposers share the same pref-

erences, i.e., G1 = N and G2 = ;: In that case, equilibria look essentially the same as when there is

only one proposer. That is, the strong Nash equilibrium outcome is the proposers�best candidate out of

chooser�s (c� k + 1)-top candidates.
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Corollary 2 The chooser cannot be worse o¤ under v-rule for k0 names than under v-rule

for ek names whenever k0 > ek.
Corollary 3 The chooser cannot be worse o¤ under a more polarized set of proposers

(small m) than under a less polarized set of proposers (big m).

As shown by Corollaries 1 and 2 above, in the case of the polarized proposer�s model,

the chooser will always weakly prefer a smaller v and a larger k. As for the proposers,

and given their polarization, some of them will gain and some will loose from any given

parameter change.

Moreover, an increase in k has an additional e¤ect: it increases the number of candi-

dates available for the chooser. Thus, regarding chooser�s payo¤, a change in k tends to

have a higher impact than a change in v.

4.3 The ex-ante analysis of di¤erent rules

In that section we present the calculations that a designer could make to determine the

expected utility for the proposers and of the choosers under di¤erent v-rules of k names,

in societies with polarized proposers. We are able to produce explicit computations under

appropriate assumptions, which provide us with insights regarding the trade-o¤s between

the choices of v and k, and the impact of these choices upon the agents. We can also

calculate what rules could distribute expected utility in the most egalitarian way, between

the proposers and the chooser.

Before engaging in these computations, let us remark that each of our modeling de-

cisions in what follows could be altered without changing the essence of our exercise.

Regarding the speci�cation of possible worlds, it is not hard to extend it to cases where

the preferences of agents are still based on the ranking of the outcomes but exhibit di¤er-

ent degrees of risk aversion. As for the informational assumptions, one could also study

easily the polar case where, once a pro�le is realized, each agent is only informed about

her own preference, but remains ignorant about those of the rest. In that case, it becomes

natural to assume that agents will behave sincerely, rather than strategically, and the

computations carry over in a similar manner. Finally, it is clear that one could still re-

sort, like we did for the one proposer case, to alternative evaluation criteria, like weighted
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utilitarianism, or any sort of distributional criterion regarding power, other than egalitar-

ianism. But again, our main message here is that the use of some method over another

may be discussed in expected utility terms and that, in our case, it is even possible to get

a feeling for the trade-o¤s involved in the choice of any pair (v; k) over any other (v�; k�)

through explicit numerical computations.

As in the one proposer case, here we assume that the preference of the majoritarian

group of proposers and that of the chooser are drawn independently from a uniform

distribution, and this generates the distribution over polarized pro�les. Again, we assume

that the utilities of agents assign to each candidate the negative of its rank. We denote

by rp � m
n
rG1 +

n�m
n
rG2 and up(x) � m

n
uG1(x) +

n�m
n
uG2(x) the average utility of an

outcome for the proposers, given x the outcome, rG1 � 1 + #fy 2Cjy �G1 xg and
rG2 � 1 + #fy 2Cjy �G2 xg.
Our next two propositions may be a bit tedious, but we still include them in order to

show that one may compute exact values for expected utilities in our model, and use them

to determine the egalitarian values (v; k). They refer to the case of polarized proposers

when the majoritarian group�s preferences are used to break ties. Under these conditions,

we can state

Proposition 5 For any v-rule of k names, the agents�expected utilities are given by the

following expressions:

1. If m � qvk > n�m :

E(up(x)jc; k; v) = �m
n

(c+1)
(c�k+2) �

n�m
n

(c+1)(c�k+1)
(c�k+2)

E(uc(x)jc; k; v) = � (c�k+2)
2

2. If qvk > m � qv1 > n�m :

E(up(x)jc; k; v) = �m
n
(k+1)
2
� n�m

n
(2c�k+1)

2

E(uc(x)jc; k; v) = � (c+1)
(k+1)

3. If qvk > m > n�m � qv1 :

E(up(x)jc; k; v) = � (c+1)
2
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E(uc(x)jc; k; v) = �1

Notice that the di¤erent cases in Proposition 5 arise because, in view of the size of

the majorities, and the power assigned by the choice of v and k to the majority and the

minority, equilibria will be di¤erently characterized as shown by Proposition 4.

We can now use the results from this proposition to identify the parameters that would

lead to a most egalitarian distribution of expected utilities in our polarized societies.

Speci�cally, we�ll look for those pairs (v; k) that minimize the di¤erence between the

expected utility of the chooser and that of the proposers, which is itself and average of

the utilities of proposers from both polar groups.

De�nition 7 A pair (k; v), such that k 2 f1; :::; cg, v 2 f1; :::; kg and v � k, is an egali-
tarian solution if jE(up(x)jc; k; v)�E(uc(x)jc; k; v)j � jE(up(x)jc; k�; v�)�E(uc(x)jc; k�; v�)j
for every k�2 f1; :::; cg and v�2 f1; :::; k�g: We denote by Se the set of all values of (k,v)
that are egalitarian solutions.

Remark 2 Notice that, ceteris paribus, the egalitarian value of k for polarized societies

is non increasing in m: This is due to Corollary 3.

Proposition 6 For any v-rule of k names, the set Se of pairs of parameters (v; k) de�ning

the most egalitarian distribution of expected utilities has the following characteristics:

Se � S1 [ S2:
where

S1 = f(k; v) 2 fb� 1c; d� 1eg � f1; :::; d� 1egjm � qvkg
S2 = f(k; v) 2 fb� 2c; d� 2eg � f1; :::; d� 2egjqvk > m � qv1 > n�mg
� 1 =

m
n

�
n
m
+ (c+ 1)�

p
n
m
(2� n

m
) + (2c+ 1) + c2( n

m
� 1)2

�
;

� 2 =
m
n

2m
n
�1
�
(c� 1)� c n

m
+
p

n
m
(2� n

m
) + (2c+ 1) + c2( n

m
� 1)2

�
:11

These values arise from minimizing the expressions resulting from comparing the ex-

pected values for the chooser and the average proposer, as expressed in Proposition 5. For

each inequality in Proposition 5, we obtain �rst the values of k that minimize di¤erences

between the agents�expected utilities, then for each value of k we �nd the values of v�s that

would be compatible with its corresponding inequality. In fact, we can ignore inequality

11Notice S2 can be empty. But S1 is never empty since f(b�1c; b�1c); (d�1e; d�1e)g � S1:
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3 in Proposition 5 since it is dominated by the other inequalities (since if inequality 3

holds, the chooser would have all the power).

Armed with these explicit calculations, one can proceed to analyze speci�c cases.

Without going into much detail, the following example identi�es the rules that guarantee

an egalitarian distribution of power.12

Example 1 Let c = 10; n = 7; m = 5: Applying Proposition 6, we have that � 1 =

4:4633; � 2 = 1:919. Hence, S1 = f(4; 4); (4; 3); (5; 5); (5; 4)g, S2 = f(5; 3)(1; 1); (2; 1))g
and the egalitarian solution is Se = f(2; 1)g: Now, consider m = 6: Again, applying

Proposition 6, we have that Se = f(6; 6); (6; 5); (6; 4); (6; 3); (6; 2)g: Notice that as the size
of the majority increases from 5 to 6, the egalitarian k increases from 2 to 6. In the

homogeneous proposers� case (m = n), the set of egalitarian solutions would be Se =

f(7; 7); (7; 6); (7; 5); (7; 4); (7; 3); (7; 2); (7; 1)g:

These examples suggest that, while the choice of k is rather stringent, the values of

v that allow societies to reach an egalitarian distribution of power, given k, are not so

precisely determined. This lack of full uniqueness is not surprising, nor bothersome, we

believe, given that we are working in a setting with integer parameters. However, it

suggests yet a �nal possible exercise, that we brie�y discuss now.

Indeed, there are cases whether the constitutional detail provided by a planner stops

short of fully specifying both parameters k and v. In particular, if k is exogenously �xed,

one can still inquire what could be a power equalizing choice for v.

Here is an interesting example where this kind of problem arose in practice.

According to the Brazilian Constitution, one-third of the members of the Superior

Court of Justice shall be chosen in equal parts among lawyers and members of the Public

Prosecution. When there is position vacant assigned to be occupied by a lawyer, the

constitution states the National Lawyer Association must propose six candidates to the

court (so, c = 6). Upon receiving the set of candidates, the court shall organize a list of

three names and send it to the President of the Republic, who selects one of the listed

names.

However, the constitution does not determine what screening rules should be used to

screen the six initial names and then the three out of them. If we consider the list of
12These calculations are elementary and available from the authors.
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six candidates as given, and concentrate on the choice of screening rule to determine the

three to be sent to the President, it turns out that the Superior Court will be facing the

question we just mentioned in the abstract. Given k = 3, what v should be used by the

court to select the three names?

It turns out that, in fact, a speci�c screening rule was decided upon and is now

established in the bylaws of Superior Court.

On what grounds was this rule chosen? We cannot tell. But, can we rationalize the

proposed rules through our analysis?

Since there are 33 ministers in the Superior Court of Justice, when there is a position

vacant, the number of proposers of the three names is 32. Therefore, we have the following

parameters n = 32, c = 6 and k = 3.

If we suppose that the assumptions of the Polarized Proposers Model hold and that

m = 24, the size of the majority group, what would be the value of v that minimizes

the absolute di¤erence between the president�s expected utility and the average of the

ministers�expected utilities? It would be equal to three, that is, v = k = 3, which is a

majoritarian method. In fact, v = k = 3 would be a egalitarian solution for any size of the

majority group (m). The rule actually chosen by the ministers was in fact a cumbersome

sequential method, which however boils down, in terms of the implied equilibrium, to

using the majoritarian v rule with v = k = 3, precisely the value that would correspond

to our calculations. Of course, we are not claiming that this was the reasoning underlying

the choice of the screening rule that appears in the bylaws. But the example at least

shows what kind of reasoning they could have adopted, and the use of our approach in

selecting not only �rst best solutions, but also to perform second best analysis.

5 Concluding Remarks

Rules that contemplate several stages of choice are widely used. Some people are in

charge of screening, then others choose among those candidates that were not screened

out. We have concentrated in the case with only one chooser, because it is actually used

in many cases, and also for simplicity, but hope to keep deepening our understanding of

the advantages of each of the many forms in which societies divide their decision tasks.

In fact, as mentioned at the end of our introduction, the very idea to divide the tasks
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may arise from very diverse reasons. The one we have concentrated upon is to divide

the decision power. This is in line with Arrowian tradition, where the interests of agents

are taken as given, and the rules are methods to mitigate con�icts. But there is at least

a second fundamental reason to subdivide decisions, this one based on common values,

more in line of Condorcet Jury Theorem. This reason is to assign each agent to the

partial decision that she is better informed about. When candidates can be judged on

a multidimensional scale, di¤erent decision-makers in a team may contribute to a �nal

choice by screening out candidates based on the dimension that they are better �t to

judge. In this context, rules of k names can be seen as methods to make proper use of

expert advise.

Even within our present framework, we are aware that our normative analysis can be

enriched by endowing agents with more complex preferences, considering a wider range

of distributions over preference pro�les, relaxing the full information assumption and/or

considering alternative equilibrium concepts under maybe di¤erent speci�cations of the

game they interact within. But our purpose here was to open a line of work, to provide

guidelines for a normative analysis of these widely used rules, and to exhibit the richness

and the di¢ culties involved in following a similar program under alternative assump-

tions: hence our choice of relatively simple speci�cations, for utilities, probabilities and

equilibria.

Finally, let us re-emphasize that, even if widely used, v-rules of k names are only one

class among many others through people are eventually appointed. Given the power that

comes attached with the possibility to appoint people to o¢ ces, we hope that these, along

with other rules, can be systematically scrutinized and compared. We would like to think

of our work as part of this potential stream of research
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Appendix A

Proof of Proposition 1. Proposition 1 is a direct consequence of lemmas 1-5.

Lemma 1 Let c �
p
2c+ 2 + 2 be an integer number: If k = c + 2 �

p
2c+ 2 then

E(up(x)jc; k) = E(uc(x)jc; k):
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Proof of Lemma 1. First notice that for every k we have that:

E(up(x)jc; k)E(uc(x)jc; k) = c+1
2

Take any k� 2 [1; c] such that E(up(x)jc; k�) = E(uc(x)jc; k�): Thus,
E(uc(x)jc; k�)2 = c+1

2

E(uc(x)jc; k�) = c�k�+2
2

= 2

q
c+1
2

Therefore, k� = c+ 2� 2
p
2c+ 2:

Lemma 2 A k 2 f1; :::cg maximizes E(up(x)jc; k) +E(uc(x)jc; k) if and only if it mini-
mizes jE(up(x)jc; k)� E(uc(x)jc; k))j.
Proof of Lemma 2. First notice that for every k we have that:

E(up(x)jc; k)E(uc(x)jc; k) = c+1
2

The equality above implies that

(E(up(x)jc; k) + E(uc(x)jc; k))2 = E(up(x)jc; k)2 + E(uc(x)jc; k)2 + (c+ 1)
The expression above implies that, given that E(up(x)jc; k) + E(uc(x)jc; k) < 0; a k 2
f1; :::cg maximizes E(up(x)jc; k)+E(uc(x)jc; k) if and only if it minimizes E(up(x)jc; k)2+
E(uc(x)jc; k)2:
Notice also that:

(E(up(x)jc; k)� E(uc(x)jc; k))2 = E(up(x)jc; k)2 + E(uc(x)jc; k)2 � (c+ 1):
The expression above implies that a k 2 f1; :::cg maximizes E(up(x)jc; k)2+E(uc(x)jc; k)2

if and only if it maximizes (E(up(x)jc; k)� E(uc(x)jc; k))2:
Therefore, a k 2 f1; :::cg maximizes E(up(x)jc; k)+E(uc(x)jc; k) if and only if minimizes
jE(up(x)jc; k)� E(uc(x)jc; k))j:

Lemma 3 A k 2 f1; :::cg maximizes E(up(x)jc; k) + E(uc(rc)jc; k) if and only if it also
maximizes (E(up(x)jc; k)� d)(E(uc(x)jc; k)� d) where d < 0:

Proof of Lemma 3. First notice that for every k we have that:

E(up(x)jc; k)E(uc(x)jc; k) = c+1
2
.

Thus, (E(up(x)jc; k)� d)(E(uc(x)jc; k)� d) = c+1
2
+ d2� d(E(up(x)jc; k)+E(uc(x)jc; k))

Given that d < 0; the expression above implies that k maximizesE(up(x)jc; k)+E(uc(x)jc; k)
if and only if it maximizes (E(up(x)jc; k)� d)(E(uc(x)jc; k)� d):

Lemma 4 Consider any c:

1) E(up(x)jk; c) + E(uc(x)jk; c) > E(up(x)jk � 1; c) + E(uc(x)jk � 1; c) for every k <
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c+ 5
2
�
q
2c+ 9

4
;

2) E(up(x)jk; c) + E(uc(x)jk; c) = E(up(x)jk � 1; c) + E(uc(x)jk � 1; c) if k = c + 5
2
�q

2c+ 9
4
;

3) E(up(x)jk; c) + E(uc(x)jk; c) < E(up(x)jk � 1; c) + E(uc(x)jk � 1; c) for every k >
c+ 5

2
�
q
2c+ 9

4
:

Proof of Lemma 4. For every k 2 f2; ::cg we have the following equality:
E(up(x)jc; k)+E(uc(x)jc; k)� (E(up(x)jc; k�1)+E(uc(x)jc; k�1)) = c+1

(c�k+2)(c�k+3)�
1
2
:

Notice c+1
(c�k+2)(c�k+3) is decreasing with k and

c+1
(c�k+2)(c�k+3) =

1
2
when k = c� 1

2

p
8c+ 9+

5
2
. Let P (k) = c+1

(c�k+2)(c�k+3) �
1
2
and k� = c� 1

2

p
8c+ 9 + 5

2
: Thus, P (k�) = 0, P (k) > 0

for any k < k� and P (k) < 0 for any k > k�:

Lemma 5 If c�
p
2c+ 2+2 is an integer number then it is equal to

j
c+ 5

2
�
q
2c+ 9

4

k
:

Proof of Lemma 5. Let z = c+ 5
2
�
q
2c+ 9

4
and y = c�

p
2c+ 2+2: Notice that

z � y =
p
2c+ 2 + 1

2
�
q
2c+ 2 + 1

4
: Thus, 1 > z � y > 0 for every c > 0. Therefore if

c�
p
2c+ 2+2 is an integer number we have that

j
c+ 5

2
�
q
2c+ 9

4

k
= c�

p
2c+ 2+2:

Proof of Proposition 2. Suppose that candidate x is the outcome of a strong

Nash equilibrium of the Constrained Chooser Game. In any strong Nash equilibrium

where x is the outcome, the screened set is such that x is the best candidate in this set

according to the chooser�s preferences. This implies that x is a chooser�s (c� k + 1)-top
candidate. To prove that Condition 2 is necessary take any candidate y 6= x among those
that are chooser�s (c � k + 1)-top candidates and let Y be any list with k names where

y is the chooser�s best candidate in Y . Notice that y cannot be considered better than x

by any coalition with at least qvk(Y ) candidates. Otherwise, this coalition could impose

Y , preventing x from being elected. So, if y is a chooser�s (c� k+1)-top candidate, then
#fi 2 N jy �i xg < qvk(Y ) for any Y 2Ck such that y is the chooser�s best candidate in
Y .

Now, to justify Condition 3, suppose, by contradiction, that it is not true that #fi 2
N jy �i xg � qvk(y). Let S1 � fi 2 N jy �i xg; so #S1 � qvk(y): Then, the coalition of

proposers in C1 would be able to impose the inclusion of y in the list (since #S1 � qvk(y));
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and the chooser would select it instead of x. Hence, if y the chooser�s best candidate, we

have that #fi 2 N jy �i xg < qvk(y).
Finally, consider Condition 4. Let y be the chooser�s best candidate, and assume that it

is ranked above x by the tie breaking criterion. Suppose, by contradiction, that it is not

true that #fi 2 N jx �i yg � qvk. Hence, at any strategy pro�le that includes x in the

selected list, the coalition S1 � fi 2 N jy �i xg can �nd a pro�table deviation to include
y; becomes the winning candidate. Therefore, x cannot be a strong Nash equilibrium

outcome.

Proof of Proposition 3. Let x be the chooser�s 1-top candidate. First notice

that given that x is a strong Nash equilibrium outcome under a v�-screening rule for k�

names, it implies that any strategy pro�le where all proposers votes for x is a strong Nash

equilibrium.

Take any strategy pro�le where all voters vote for x, and call bym�. Given that it is a strong

Nash equilibrium, there is no coalition of voters that can make a pro�table deviation. The

voters that would wish to avoid the election of x are those that prefer another chooser�s

(c� k�+ 1)-top candidate to x (recall that only the chooser�s (c� k�+ 1)-top candidates
can be the chooser�best name among the candidates of a set with cardinality k�).The only

way to avoid the election of x would be to avoid the inclusion of x in the chosen list. Take

any chooser�s (c � k�+ 1)-top candidate and call it by y. If all the voters that prefer y
to x deviate from m�by do not vote for x, x would continue to have enough votes to be

one name of k listed names. Otherwise, the strategy pro�le where all the voters vote for

x would no be a strong Nash equilibrium.

Now let us show that x is also a strong Nash equilibrium any v-screening rule for k names

where v � v�and k�� k. We need to show that there is a strategy pro�le that sustains x
as strong Nash equilibrium outcome under v-screening rule for k names.

Take any strategy pro�le where all voters vote for x and call this strategy by m. So, x

will be one of k listed name and it will be the elected candidate. We need to show that

there is no coalition of voters that can make a pro�table deviation under m. Given m�

and m, notice that it is more di¢ cult to make a pro�table deviation under v-screening

rule for k names than v�-screening rule for k�names. Because, under a v-screening rule for

k names, any coalition of voters that would have incentive to avoid the election of x has

less votes to distribute among the k candidates in order to avoid the inclusion of x in the
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list. Thus, given that there exists no coalition that can make a pro�table deviation under

m�, it implies that there exists no coalition that can make a pro�table deviation under m.

Therefore, x is a strong Nash equilibrium outcome under v-screening rule for k names.

Proof of Proposition 4.

1) Suppose that the tie breaking criterion coincides with the majoritarian group�s prefer-

ences over the set of candidates.

1.1) Consider m � qvk:
Let x be the best alternative of the majoritarian group out of the chooser�s (c�k+1)-top
candidates. Since m � qvk; and by de�nition of qvk; there is a strategy pro�le that can be
adopted by the majoritarian group that leads to the election of x; and the minoritarian

group is unable to change it. Notice also that the majoritarian group will not have any

incentive in changing this outcome. Therefore, there exists a strategy pro�le that sustains

x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-

tradiction that there is another strong Nash equilibrium outcome y 6= x. By Condition 2
of Proposition 2, we have that #fi 2 N jx �i yg < qvk(X) where x is the chooser�s best
alternative in X. This is a contradiction since #fi 2 N jx �i yg > m > qvk > q

v
k(X):

1.2) Consider qvk > m � qv1 > n�m:
Let x be the chooser�s best alternative out of the majoritarian group�s k-top candidates.

Let X be the set of k-top candidates for the majoritarian group�s. We �rst show that

there exists a strategy pro�le that sustains x as an equilibrium outcome. Notice that

qvk > m � qv1 > n �m implies that m � qvk(X) and n �m � qvk(fxg): Consider the fol-
lowing strategy pro�le: the majoritarian group adopts a strategy pro�le that can allows

it to impose the list X and the minoritarian group adopts a strategy pro�le that allows

it to impose x in the list. In order to change the outcome, one of the groups could try

to block the inclusion of x, but neither of them alone can do it. Notice also that only

the majoritarian group would be able to include another candidate better than x in the

list sent to the chooser. But this candidate would be worse than x for the majoritarian

group. Therefore, there exists no coalition of proposers that has an incentive to deviate.

Thus, we have proved that there exists a strategy pro�le that sustains x as an equilibrium

outcome.

Now we shall prove that x is the unique strong Nash equilibrium outcome. By contradic-
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tion, suppose that there is another strong Nash equilibrium outcome y 6= x. By Condition
1 of Proposition 2, x is among the chooser�s (c� k + 1)-top candidates. By Condition 2
of Proposition 2, we have that #fi 2 N jx �i yg < qvk(X). This is a contradiction since
#fi 2 N jx �i yg > m � qvk(X):
1.3) Consider qvk > m > n�m � qv1 .
Let x be the chooser�s best candidate. First let us show that there exists a strategy

pro�le that sustains x as an equilibrium outcome. Notice that n �m � qv1 implies that

m > n � m > qvv(fxg). Consider the following strategy pro�le: every proposer casts a
vote for x. Thus, x will be in the selected list and it will be elected. No group can take

x out from the selected list by a unilateral deviation, since both have size larger than

qvv(fxg). Since both group has the reverse preference pro�le of the other, they do not
have incentive to jointly deviate from this strategy pro�le. Therefore, this strategy pro�le

sustains x as an strong Nash equilibrium outcome.

Now let us prove that x is the unique strong Nash equilibrium outcome. By contradiction,

suppose that there is another strong Nash equilibrium outcome y 6= x. By Condition 3
of Proposition 2, we have that #fi 2 N jx �i yg < qvk(fxg). This is a contradiction since
m > n�m � qv1(fxg):

2) Suppose that the tie breaking criterion coincides with the chooser�s preferences over

the set of candidates.

2.1) Consider m � qvk:
Let x be the best alternative of the majoritarian group out of the chooser�s (c�k+1)-top
candidates. Since m � qvk; and by de�nition of qvk; there is a strategy pro�le that can be
adopted by the majoritarian group that leads to the election of x; and the minoritarian

group is unable to change it. Notice also that the majoritarian group will not have any

incentive in changing this outcome. Therefore, there exists a strategy pro�le that sustains

x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-

tradiction that there is another strong Nash equilibrium outcome y 6= x. By Condition 2
of Proposition 2, we have that #fi 2 N jx �i yg < qvk(X) where x is the chooser�s best
alternative in X. This is a contradiction since #fi 2 N jx �i yg > m > qvk > q

v
k(X):

2.2) Consider qvk > m.
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Let x be the chooser�s best candidate. Notice that qvk > m implies that n�m � qvk(fxg).
Suppose the following strategy pro�le: every proposer cast a vote for x. Thus, x will be

in the selected list and it will be elected. No group can take x from the selected list by a

unilateral deviation, since both has size larger than qvv(fxg). Since both group have the
reverse preference pro�le than the others, they do not have incentive to joint deviate from

this strategy pro�le. Therefore, this strategy pro�le sustains x as strong Nash equilibrium

outcome.

Now let us prove that x is the unique strong Nash equilibrium outcome. By contradiction,

suppose that there exists another strong Nash equilibrium outcome y 6= x. By Condition
3 of Proposition 2, we have that #fi 2 N jx �i yg < qvk(fxg). This is a contradiction
since m > n�m � qv1(fxg):

3) Suppose that the tie breaking criterion coincides with the minoritarian group�s prefer-

ences over the set of candidates.

3.1) Consider m � qvk:
Let x be the best alternative of the majoritarian group out of the chooser�s (c�k+1)-top
candidates. Since m � qvk; and by de�nition of qvk; there is a strategy pro�le that can be
adopted by the majoritarian group that leads to the election of x; and the minoritarian

group is unable to change it. Notice also that the majoritarian group will not have any

incentive in changing this outcome. Therefore, there exists a strategy pro�le that sustains

x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-

tradiction that there is another strong Nash equilibrium outcome y 6= x. By Condition 2
of Proposition 2, we have that #fi 2 N jx �i yg < qvk(X) where x is the chooser�s best
alternative in X. This is a contradiction since #fi 2 N jx �i yg > m > qvk > q

v
k(X):

3.2) Consider qvk > m.

Let x be the chooser�s best candidate. Consider the following strategy pro�le: every

proposer casts a vote for x. Thus, x will be in the selected list and it will be elected.

Notice that the minoritarian group cannot take x out from the selected list by a unilat-

eral deviation since m � qvk(fxg). If some y is better than x for the majoritarian group,
then it will be ranked below than x by the tie breaking criterion. Thus, the majoritarian
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group cannot deviate in any way that simultaneously includes y and excludes x from the

selected list. Since both groups have the reverse preferences, they do not have incentive

to jointly deviate from this strategy pro�le. Therefore, this strategy pro�le sustains x

as an strong Nash equilibrium outcome. Now let us prove that x is the unique strong

Nash equilibrium outcome. By contradiction, suppose that there is y 6= x that is also

a strong Nash equilibrium outcome. Suppose that the minoritarian group of proposers

prefers y to x. By Condition 3 of Proposition 2, we have that #fi 2 N jx �i yg < qvk(fxg)
which implies that m < qvk(fxg). This is a contradiction, since m � qvk(fxg). Suppose
that the majoritarian group of proposers prefers y to x. Thus x is ranked above than y

according by the tie breaking criterion. By Condition 4 of Proposition 2, we have that

#fi 2 N jy �i xg � qvk; which implies that m � qvk. This is a contradiction since qvk > m.
Therefore, y cannot be strong Nash equilibrium outcome.

Proof of Proposition 5. Proposition 5 is a direct consequence of Proposition 4 and

the assumption that agent�s preferences are randomly drawn from a uniform distribution

over the domain of preferences.

1) Consider m � qk: By Proposition 4, the equilibrium outcome is the best alternative

of the majoritarian group out of the chooser�s (c � k + 1)-top candidates. Thus, rc has
the same distribution as that of a discrete random variable uniformly distributed over

f1; 2; : : : ; c � k + 1g. rG1 has the same distribution as that of the smallest element of
a random sample with size s = c � k + 1 drawn without replacement from a uniformly

distributed population D = f1; 2; : : : ; cg. rG2 has the same distribution as that of the
biggest element of a random sample with size s = c � k + 1 drawn without replacement
from a uniformly distributed population. Therefore, we have:

E(uc(x)jc; k; v) = �(c�k+22
)

E(uG1(x)jc; k; v) = � (c+1)
(c�k+2)

E(uG2(x)jc; k; v) = � (c+1)(c�k+1)
(c�k+2)

E(up(x)jc; k; v) = �m
n

(c+1)
(c�k+2) �

n�m
n

(c+1)(c�k+1)
(c�k+2) ;

2) Consider qvk > m � qv1 > n � m: By Proposition 4, the equilibrium outcome is the

chooser�s best alternative out of the majoritarian group�s k-top candidates. Thus, rc has
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the same distribution as that of the smallest element of a random sample with size s = k

drawn without replacement from a uniformly distributed population D = f1; 2; : : : ; cg.
rG1 has the same distribution as that of a discrete random variable uniformly distributed

over f1; 2; : : : ; kg. rG2 has the same distribution as that of a discrete random variable

uniformly distributed over fc� k + 1; : : : ; cg. Therefore, we have:

E(uc(x)jc; k; v) = � (c+1)
(k+1)

E(uG1(x)jc; k; v) = � (k+1)
2

E(uG2(x)jc; k; v) = � (2c�k+1)
2

E(up(x)jc; k; v) = �m
n
(k+1)
2
� n�m

n
(2c�k+1)

2

3) Consider qvk > m > n � m � qv1 : By Proposition 4, the equilibrium outcome is the

chooser�s best candidate. Thus, rc is a constant and it is equal to 1. rG1 and RG2 have

the same distribution as that of a discrete random variable uniformly distributed over

f1; 2; : : : ; cg.

E(uc(x)jc; k; v) = �1

E(up(x)jc; k; v) = � (c+1)
2
.

Proof of Proposition 6. Proposition 6 is a direct consequence of Proposition 5

and lemmas 6 and 7 below.

Lemma 6 In the domain of all pairs (k; v) such that m � qk > n�m; we have that:
1) E(up(x)jc; k; v) > E(uc(x)jc; k; v) for every k < � 1;

2) E(up(x)jc; k; v) = E(uc(x)jc; k; v) if k = � 1 is an integer number;

3) E(up(x)jc; k; v) < E(uc(x)jc; k; v) for every k > � 1:

where � 1 = m
n

�
n
m
+ (c+ 1)�

p
n
m
(2� n

m
) + (2c+ 1) + c2( n

m
� 1)2

�

Proof of Lemma 6. Given thatm � qk > n�m, by Proposition 5, E(up(x)jc; k; v) =
�m
n

(c+1)
(c�k+2) �

n�m
n

(c+1)(c�k+1)
(c�k+2) ;
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and E(uc(x)jc; k; v) = �(c�k+22
):

Notice that:

jE(up(x)jc; k; v) � E(uc(x)jc; k; v)j is single dipped and reaches the minimum when k =

� 1:When k = � 1, we have that: jE(up(x)jc; k; v)� E(uc(x)jc; k; v)j = 0:

Lemma 7 In the domain of all pairs (k; v) such that qk > m � q1 > n�m; we have that:
1) E(up(x)jc; k; v) > E(uc(rc)jc; k; v) for every k < � 2;

2) E(up(x)jc; k; v) = E(uc(x)jc; k; v) if k = � 2 is an integer number;

3) E(up(x)jc; k; v) < E(uc(x)jc; k; v) for every k > � 2:

where � 2 =
m
n

2m
n
�1
�
(c� 1)� c n

m
+
p

n
m
(2� n

m
) + (2c+ 1) + c2( n

m
� 1)2

�

Proof of Lemma 7. Given that qk > m � q1 > n �m, by Proposition 5, we have
that E(up(rp)jc; k; v) = �m

n
(k+1)
2
� n�m

n
(2c�k+1)

2

E(uc(x)jc; k; v) = � (c+1)
(k+1)

:

Notice that:

jE(up(rp)jk; v; c)�E(uc(x)jk; v; c)j is single dipped and reaches the minimumwhen k = � 2:
When k = � 2; we have that jE(up(rp)jk; v; c)� E(uc(x)jk; v; c)j = 0:
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Appendix B
Proposition 2 helps us to locate equilibria and provide a �rst step toward their char-

acterization, when they exist! But knowing the necessary conditions alone is already of

great help. We illustrate this point though an example.

Example 2 Let A = fc1; c2; c3; c4; c5g and let N = f1; 2; 3g. Suppose that each proposer
votes for one candidate and the three most voted candidates form the list, with a tie break-

ing rule when needed: c2 � c1 � c5 � c4 � c3. The preferences of the chooser and the

committee members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c5 c5 c5 c1

c4 c4 c4 c2

c3 c3 c2 c3

c1 c1 c1 c4

c2 c2 c3 c5

Notice that, we have that qvk(fxg) = 1 for any x 2 A and qvk(X) = 3 for any X 2 Ak:
The �rst step in describing the equilibrium outcomes is to identify those candidates that

satisfy the three necessary conditions established in Proposition 2.

Inspecting the preference pro�le above, we have that:

1. Condition 1: fc1; c2; c3g.
2. Condition 2: fc1; c2; c3; c4; c5g:
3. Condition 3:fc1; c4; c5g:
4. Condition 4: fc1; c2; c4; c5g:
So, only candidate c1 that satis�es all four conditions. Now we have to check whether there

is a strategy pro�le that sustains candidate c1 as a strong Nash equilibrium candidate. The

following strategy pro�le sustains c1 as a strong Nash equilibrium outcome: Proposer 1

votes for c1, Proposer 1 votes for c4 and Proposer 3 votes for c2.

In the preceding example, the choice of candidates satisfying the necessary conditions

could be in fact be sustained with an appropriate set of strong equilibrium strategies.

But this need not be the case. In fact, there may be candidates that satisfy the necessary
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conditions and yet cannot be the outcome of any equilibrium. Worse of that, equilibria

may not exist even if some candidates meet the necessary conditions, as shown by our

next example. The example below also shows that without Assumption 4 the Polarized

Proposers Model may not have a strong Nash equilibrium outcome.

Example 3 Let C= fc1; c2; c3; c4; c5; c6g and let N = f1; 2; 3g. The proposers use

the rule of 4 names, (k = 4; v = 1), with the following tie breaking rule when needed:

c6 � c5 � c4 � c3 � c2 � c1. The preferences of the chooser and the committee members
are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Proposer 4 Proposer 5 Chooser

c5 c5 c5 c5 c1 c1

c6 c6 c6 c6 c3 c2

c4 c4 c4 c4 c2 c3

c2 c2 c2 c2 c4 c4

c3 c3 c3 c3 c6 c5

c1 c1 c1 c1 c5 c6

First, notice that qvk(fxg) = 1 for any x 2 fc3; c4; c5; c6g, qvk(fxg) = 2 for any x 2Cnfc3; c4; c5; c6g
and qvk(X) = 5 for any X 2Cknfc3; c4; c5; c6g and qvk(fc3; c4; c5; c6g) = 4 :Notice that pro-
posers 1, 2, 3, and 4 form the majoritarian group of proposers, so m = 4. Notice also

that the tie breaking rule is equal to the reverse of the chooser�s preference over the set

of candidates. The �rst step in describing the equilibrium outcomes is to identify those

candidates that satisfy the three necessary conditions established in Proposition 2.

Inspecting the preference pro�le above, we have that:

1. Condition 1: fc1; c2; c3g.
2. Condition 2: fc2; c3; c4; c5; c6g:
3. Condition 3: fc1; c2; c3; c4; c5; c6g:
4. Condition 4: fc1; c2; c3; c4; c5; c6g:
So, only candidates c2 and c3 satisfy all four conditions. However, there exists no strat-

egy pro�le that can sustain them as a strong Nash equilibrium outcome of the Constrained

Chooser Game.
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