Natural Resources, Redistribution and Human **Capital Formation**

Jorge Agüero¹ Carlos Balcazar² Stanislao Maldonado³ Hugo Ñopo ⁴

¹University of Connecticut

²The World Bank

³Universidad del Rosario

⁴GRADE

5to Congreso de Economia Colombiana September 30th, 2016

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ 三 ○ ○ ○ ○ 1/17

1. Motivation: Why should we care?

- Whether natural resources are good or bad for economic development is still an open question
- Less clear is whether natural resources can foster the accumulation of human capital
 - Discourage investment in human capital (Gylfason 2001) but results are sensitive to measurement issues (Stijns 2006)
 - Non-monotonic effects conditional on institutions (Cabrales and Hauk 2011)
 - Limited micro-evidence on attendance, attainment and literacy rates (Angrist et al 2008 and Litschig et al 2013), but no systematic evidence on learning outcomes
- Relevant theoretical issue (central channel to explain the "resource curse" hypothesis), but hard to address from an empirical point of view

Research Question

How do resource booms affect human capital accumulation?

- Mechanisms: Explanation for sociologists
 - Production channel: Impact on household economic conditions (labor market effects, entrepreneurship) and environmental externalities (pollution).
 - Rent channel: Impact on politicians' incentives to invest on education.

◆□ → ◆□ → ◆ □ → ▲ ■ ・ ● の へ ● 3/17

- Exploit recent boom in the mining sector in Peru to analyze its effects on human capital accumulation:
 - Local governments in Peru (1,834 districts) over the period 2007-2012.
 - Use variation in mineral resource rents due to:
 - 1 Time-series variation in mineral resource prices.
 - 2 Cross-sectional variation due to the allocation rules of mineral resource rents (Mining *Canon*).
 - Methods:
 - Difference in differences using a quadratic functional form for natural resource rents and controlling by production.
 - Robustness checks to rule out endogenous production responses and parametric model.

- Municipalities with average mining transfers (US\$88 per-capita) ⇒ 22% S.D. in math scores (Higher than 83% of studies reported in Kremer et al 2013)
- Negative net effect for extremely rich municipalities (above US\$1,313 per-capita)
- No effects of mining production
- Evidence of heterogeneous responses: Effects driven by public schools in urban areas
- Non-monotonic patterns in mechanisms consistent with political economy story
- Results robust to relaxing parametric approach, dropping producers from sample and to permutation tests

- Municipalities with average mining transfers (US\$88 per-capita) ⇒ 22% S.D. in math scores (Higher than 83% of studies reported in Kremer et al 2013)
- Negative net effect for extremely rich municipalities (above US\$1,313 per-capita)
- No effects of mining production
- Evidence of heterogeneous responses: Effects driven by public schools in urban areas
- Non-monotonic patterns in mechanisms consistent with political economy story
- Results robust to relaxing parametric approach, dropping producers from sample and to permutation tests

- Municipalities with average mining transfers (US\$88 per-capita) ⇒ 22% S.D. in math scores (Higher than 83% of studies reported in Kremer et al 2013)
- Negative net effect for extremely rich municipalities (above US\$1,313 per-capita)
- No effects of mining production
- Evidence of heterogeneous responses: Effects driven by public schools in urban areas
- Non-monotonic patterns in mechanisms consistent with political economy story
- Results robust to relaxing parametric approach, dropping producers from sample and to permutation tests

- Municipalities with average mining transfers (US\$88 per-capita) ⇒ 22% S.D. in math scores (Higher than 83% of studies reported in Kremer et al 2013)
- Negative net effect for extremely rich municipalities (above US\$1,313 per-capita)
- No effects of mining production
- Evidence of heterogeneous responses: Effects driven by public schools in urban areas
- Non-monotonic patterns in mechanisms consistent with political economy story
- Results robust to relaxing parametric approach, dropping producers from sample and to permutation tests

Local politics:

- Weak connection between national and local politics.
- Weak local institutional capacity and overlap in terms of responsibilities among different levels of government.
- Local public finance
 - Tax revenue collection is low (13%).
 - High dependence from central government transfers (75%).
 - Mining Canon and mining royalties represent 72% of all canon transfers and 29% of local governments' budgets.
- Educational system and local governments:
 - Development of a local educational plan
 - Monitoring pedagogical management
 - Educational infrastructure
 - Implementation of literacy and ICT programs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

6/17

Local politics:

- Weak connection between national and local politics.
- Weak local institutional capacity and overlap in terms of responsibilities among different levels of government.
- Local public finance
 - Tax revenue collection is low (13%).
 - High dependence from central government transfers (75%).
 - Mining Canon and mining royalties represent 72% of all canon transfers and 29% of local governments' budgets.
- Educational system and local governments:
 - Development of a local educational plan
 - Monitoring pedagogical management
 - Educational infrastructure
 - Implementation of literacy and ICT programs

Local politics:

- Weak connection between national and local politics.
- Weak local institutional capacity and overlap in terms of responsibilities among different levels of government.
- Local public finance
 - Tax revenue collection is low (13%).
 - High dependence from central government transfers (75%).
 - Mining *Canon* and mining royalties represent 72% of all canon transfers and 29% of local governments' budgets.
- Educational system and local governments:
 - Development of a local educational plan
 - Monitoring pedagogical management
 - Educational infrastructure
 - Implementation of literacy and ICT programs

- Mining Canon: Participation of subnational governments in distribution of rents generated by the exploitation of mineral resources.
- Assign rents to producer and non-producer districts located in same provinces and regions as producers \rightarrow key for identification.
 - The regional government (20%)
 - The municipality of the district (10%)
 - The municipalities located in the province (25%)
 - The municipalities located in the region (40%)
 - Public universities of the region (5%)

- Annual census data on learning outcomes and educational characteristics at school and district level (Ministry of Education): 2007-2012.
- Annual data on local revenues and transfers from central to local governments (Ministry of Finance): 2007-2012.
- Annual data on mineral production and prices (Ministry of Energy and Mines): 2007-2012.
- Annual repeated cross-section of household survey (Encuesta Nacional de Hogares-ENAHO): 2007-2012.

4. Research Design

- Exploiting sub-national variation across Peruvian municipalities in mining rents and production associated to recent international mining boom.
 - **1** Increase in mineral production: from 1.35 to US\$7.05 billion.
 - 2 Increase in mining rents: from 7 to US\$827 million.
- Sources of variation:
 - 1 Time-series variation in prices of mineral resources. here
 - 2 Time-series and cross-sectional variation in mineral production. here
 - **3** Time-series and cross-sectional variation due to allocation rules of mining rents across municipalities.
- Significant variation in rents over time and across municipalities.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

9/17

- Exploiting sub-national variation across Peruvian municipalities in mining rents and production associated to recent international mining boom.
 - **1** Increase in mineral production: from 1.35 to US\$7.05 billion.
 - 2 Increase in mining rents: from 7 to US\$827 million.
- Sources of variation:
 - 1 Time-series variation in prices of mineral resources. here
 - 2 Time-series and cross-sectional variation in mineral production. here
 - 3 Time-series and cross-sectional variation due to allocation rules of mining rents across municipalities.
- Significant variation in rents over time and across municipalities.

$$\mathbf{y}_{ijt} = \alpha_j + \lambda_t + \beta F(MR_{jt}) + \gamma Q_{jt} + X_{ijt}\delta + \epsilon_{ijt} \qquad (1)$$

Where:

- **y**_{ijt}: Outcome of interest for individual *i* in district *j* in period *t*.
- α_i : District fixed-effects.
- λ_t : Time fixed-effects.
- *MR_{jt}*: Measure of mineral resource rents per-capita transferred to district *j* in period *t*.
- Q_{jt} : Real value of mineral output in district j and period t.
- X_{ijt}: Individual/households, school and district level characteristics in period t.

$$y_{ijt} = \alpha_j + \lambda_t + \beta F(MR_{jt}) + \gamma Q_{jt} + X_{ijt}\delta + \epsilon_{ijt} \qquad (1)$$

Where:

- y_{ijt} : Outcome of interest for individual *i* in district *j* in period *t*.
- α_i : District fixed-effects.
- λ_t : Time fixed-effects.
- *MR_{jt}*: Measure of mineral resource rents per-capita transferred to district *j* in period *t*.
- Q_{jt} : Real value of mineral output in district j and period t.
- X_{ijt}: Individual/households, school and district level characteristics in period t.

$$y_{ijt} = \alpha_j + \lambda_t + \beta F(MR_{jt}) + \gamma Q_{jt} + X_{ijt}\delta + \epsilon_{ijt} \qquad (1)$$

Where:

- *y_{ijt}*: Outcome of interest for individual *i* in district *j* in period *t*.
- α_j : District fixed-effects.
- λ_t : Time fixed-effects.
- *MR_{jt}*: Measure of mineral resource rents per-capita transferred to district *j* in period *t*.
- Q_{jt} : Real value of mineral output in district j and period t.
- X_{ijt}: Individual/households, school and district level characteristics in period t.

$$y_{ijt} = \alpha_j + \lambda_t + \beta F(MR_{jt}) + \gamma Q_{jt} + X_{ijt}\delta + \epsilon_{ijt}$$
(1)

Where:

- *y_{ijt}*: Outcome of interest for individual *i* in district *j* in period *t*.
- α_i : District fixed-effects.
- λ_t : Time fixed-effects.
- *MR_{jt}*: Measure of mineral resource rents per-capita transferred to district *j* in period *t*.
- Q_{jt} : Real value of mineral output in district j and period t.
- X_{ijt}: Individual/households, school and district level characteristics in period t.

$$y_{ijt} = \alpha_j + \lambda_t + \beta F(MR_{jt}) + \gamma Q_{jt} + X_{ijt} \delta + \epsilon_{ijt}$$
(1)

Where:

- *y_{ijt}*: Outcome of interest for individual *i* in district *j* in period *t*.
- α_i : District fixed-effects.
- λ_t : Time fixed-effects.
- *MR_{jt}*: Measure of mineral resource rents per-capita transferred to district *j* in period *t*.
- **Q**_{*jt*}: Real value of mineral output in district *j* and period *t*.
- X_{ijt}: Individual/households, school and district level characteristics in period t.

Descriptive Statistics

	Producers	Non-producers in producer provinces	Non-producers in non-producer provinces
1. Learning outcomes			
Math Score	517.66	531.47	508.98
Reading Scores	513.21	528.72	508.94
2. Mining			
Mining Production (In US millions)	8,830,000	0	0
Canon (In US millions)	256	560	252
3. Education			
Students	1,159.59	821.42	1,248.71
Schools	13.80	11.01	16.46
% teachers with long-term contract	25.04	25.75	21.24
% teachers with a tertiary education	97.89	97.41	95.74
% schools with access to water	78.89	81.41	72.05
% schools with access to sanitation	83.27	85.42	83.57
4. District characteristics			
Poverty rate	56.14	49.71	56.32
Income inequality (Gini index)	0.31	0.28	0.29
Distance to nearest city (km)	659.584	474.884	927.472

Source: Authors' compilations

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Natural Resources, Redistribution and Human Capital Formation

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > □ ≧ の Q @ 11/17

Effect of mining rents on math scores

Table 3A: Effe	Table 3A: Effect of Rents and Production on Test Scores							
De	ependent va	riable: Mat	h scores					
	(1)	(2)	(3)	(4)				
Canon	6.9139	21.6714**	21.7054**	23.9953**				
	(4.6448)	(9.5905)	(9.6360)	(9.4336)				
Squared	· · · ·	-1.9654**	-1.9679**	-2.1736* ^{**}				
		(0.8429)	(0.8453)	(0.8254)				
Mining production			-0.0000	-0.0000				
			(0.0001)	(0.0001)				
R-squared	0.0062	0.0062	0.0062	0.0174				
Observations	2,072,339	2,072,339	2,072,339	2,011,452				
Student controls	N	N	Y	Y				
School controls	N	N	N	Ý				
* Significant 1	10%; ** signi	ficant 5%; **	** significant	at 1%.				

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo Natural Resources, Redistribution and Human Capital Formation

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 12/17

Effect of mining rents on reading scores

Table 3B: Effect of Rents and Production on Test Scores						
Dep	endent varia	able: Readir	g scores			
	(1)	(2)	(3)	(4)		
Canon	-0.6112	-2.6721	-2.5545	-2.7956		
	(1.7751)	(4.3260)	(4.3682)	(4.4904)		
Squared	. ,	0.2743	0.2656	0.2668		
		(0.3728)	(0.3743)	(0.3825)		
Mining production			-0.0001	-0.0001		
			(0.0001)	(0.0001)		
R-squared	0.0266	0.0266	0.0266	0.0645		
Observations	2,068,271	2,068,271	2,068,271	2,007,595		
Student controls	N	N	N	Y		
School controls	Ν	Ν	N	Y		
* Significant 10)%; ** signif	icant 5%; **	* significant	at 1%.		

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Sample							
	All (1)	Urban (2)	Rural (3)	Private (4)	Public (5)			
Canon	21.7054**	24.9423**	18.3271*	-4.3993	23.6141***			
Squared	(9.6360) -1.9679**	(11.3530) -2.2199**	(10.1226) -1.9329**	(16.7948) -0.1085	(8.9815) -2.0959**			
M	(0.8453)	(0.9878)	(0.8927)	(1.2641)	(0.8443)			
Wining production	(0.0001)	(0.0002)	0.0001 (0.0003)	(0.0001)	(0.0001)			
R-squared	0.0062	0.0092	0.0115	0.0103	0.0060			
Observations	2,072,339	1,392,151	660,949	300,937	1,724,326			
* Signit	* Significant 10%; ** significant 5%; *** significant at 1%.							

Table 4: Heterogeneous Responses (Math scores)

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo Natural Resources, Redistribution and Human Capital Formation

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ○ ● ・ ○ ● · 14/17

Role of school characteristics. • here

- No effect on enrollment
- Non-monotonic effect on percentage of teachers with long-term contracts
- Non-monotonic effect on school infrastructure (access to electricity and sanitation)
- Role of economic conditions.
 - Non-monotonic effect on public employment
 - No effect on consumption and income
- Role of health factors.
 - Non-monotonic effect on experiencing health complications

Concern 1: endogenous production responses.

Excluding producer areas from the sample. • here

Concern 2: quadratic parametric approximation may bias estimates.

Polynomial regressions + F-test. • here

 Concern 3: permutation test to check probability that results are due to pure chance.

Permutation test for different ways to randomly assign mining Canon and mining production across districts. here

7. Concluding Remarks

- Non-monotonic effects of mining rents on math scores (but no effect on reading scores) after controlling for mining production:
 - Positive net effect for average municipality (22% of a S.D)
 - Negative net effect for extremely rich in mining transfers municipalities (top 1%)
- Results consistent with a political economy story in which mayors respond to electoral incentives
- No effect of production on learning outcomes: weak role for economic conditions to explain the results
- Resource boom seem to be a blessing for municipalities with modest transfers but a curse for extremely rich ones no matter regardless the institutional setting

Thank you!

Comments: stanislao.maldonado@urosario.edu.co

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 17/17

Dramatic increase of mineral prices: Copper

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase of mineral prices: Zinc

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase of mineral prices: Gold

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase of mineral prices: Silver

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase of mineral prices: Lead

Dramatic increase of mineral prices: Iron

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase of mineral prices: Tin

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase of mineral prices: Molybdenum

return

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Natural Resources, Redistribution and Human Capital Formation

Important increase of mineral production (1996-2014)

Mining production accross districts: 1996-2014

▶ return

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Dramatic increase in mineral rents (1996-2014)

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Producer districts were the most benefited

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

...with extreme inequalities

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

...with spatial inequalities

return

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Mechanisms: Role of school characteristics

Table 5: School Characteristics Dependent Variables				
	Enrollment	% teachers with long-term contract	% teachers with a tertiary education degree in a non- school-teaching program	
Canon	0.0188	0 1556***	0.0034	
Callon	(0.0150)	(0.0501)	(0.0084)	
Squared	0.0070	-0.0942***	-0.0031	
	(0.0099)	(0.0247)	(0.0045)	
Mining Production	-0.0011	-0.0016	-0.0002	
	(0.0009)	(0.0033)	(0.0007)	
R-squared	0.0011	0.0060	0.0009	
Number of observations	284,867	142,318	142,318	

* Significant 10%; ** significant 5%; *** significant at 1%.

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo Natural Resources, Redistribution and Human Capital Formation

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 17/17

Mechanisms: Role of school characteristics

Table 5: School Characteristics						
	Dependent	: Variables				
	% teachers with a tertiary education degree in a school teaching program	School has access to electricity	School has access to water	School has access to sanitation		
Canon	0.0101	0.2032**	0.0220	0.2909***		
Squared	0.0077	-0.0707*	-0.0158	-0.1766**		
Mining Production	(0.0061) -0.0016** (0.0008)	(0.0395) 0.0077** (0.0037)	(0.0306) 0.0066 (0.0042)	(0.0782) 0.0056 (0.0068)		
R-squared Number of observations	0.0013 142,318	0.0387 234,074	0.0235 234,072	0.1941 234,035		

* Significant 10%; ** significant 5%; *** significant at 1%.

▶ return

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 17/17

Mechanisms: Role of economic conditions

		Dependent Variab	les			
	Unemployment Employed in the Spending on Consumption In public sector education					
Canon	-0.0536*	0.1042*	0.0757	-0.0654	-0.0024	
	(0.0291)	(0.0610)	(0.1450)	(0.0716)	(0.0965)	
Squared	0.0166	-0.0537**	-0.1425**	-0.0121	-0.0187	
	(0.0123)	(0.0253)	(0.0685)	(0.0283)	(0.0678)	
Mining Production	0.0014	-0.0085**	0.0087	0.0046	0.0043	
	(0.0029)	(0.0039)	(0.0086)	(0.0088)	(0.0053)	
Observable characteristics	Ν	Ν	Ν	Ν	Ν	
R-squared	0.0004	0.0034	0.0267	0.0263	0.0214	
Number of observations	574,210	117,443	78,236	136,855	136,849	

* Significant 10%; ** significant 5%; *** significant at 1%.

▶ return

Natural Resources, Redistribution and Human Capital Formation

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ = 三 の Q ○ 17/17</p>

Table 7: Health factors							
Dependent variable							
	Individual experienced health complications in the past 4 weeks		Individual was sick in the past 4 weeks		Number of days individual couldn't work due to sickness		
	(All)	(6 to 10)	(All)	(6 to 10)	(All)	(6 to 10)	
Canon	-0.2372***	-0.3575***	-0.1730***	-0.1104	-0.0261	0.0399	
	(0.0646)	(0.0946)	(0.0525)	(0.0930)	(0.0882)	(0.1504)	
Squared	0.1248***	0.2701***	0.0528**	0.0364	-0.0212	-0.1189	
	(0.0226)	(0.0480)	(0.0218)	(0.0464)	(0.0323)	(0.0809)	
Mining Production	0.0029	0.0073	0.0070**	0.0057	0.0008	0.0109**	
	(0.0040)	(0.0063)	(0.0030)	(0.0046)	(0.0043)	(0.0047)	
		0.0010		0.0010	0.0010	0.0000	
R-squared	0.0299	0.0019	0.0023	0.0019	0.0013	0.0006	
Number of observations	528,064	56,349	528,064	56,349	434,325	46,841	

* Significant 10%; ** significant 5%; *** significant at 1%.

▶ return

Natural Resources, Redistribution and Human Capital Formation

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Robustness Check: Evaluating the parametric approximation

Table 8: Evaluating the parametric approximation							
Dependent Variable: Math scores							
	(1)	(2)	(3)	(4)	(5)		
Canon	3.5246	17.3868*	17.5242*	12.7588	6.5527		
	(4.6428)	(10.5255)	(10.5110)	(15.1555)	(19.6666)		
Squared canon		-1.7345*	-1.7567**	1.0082	8.3454		
		(0.8924)	(0.8943)	(3.9760)	(10.3484)		
Production			-0.0001	-0.0001	-0.0001		
Cubic come			(0.0001)	(0.0001)	(0.0001)		
Cubic canon				-0.2372	-1.8/82		
Quartic canon				(0.2774)	0.1000		
Qualitic calloin					(0.0930)		
E-test for quadratic specification			3.67		(0.0550)		
···· · · · · · · · · · · · · · · · · ·			[0.0257]				
F-test for nested models comparison:				0.73			
Quadratic versus Cubic model				[0.3926]			
F-test for nested models comparison:					0.59		
Quadratic versus Quartic model					[0.5561]		
Observations	2,325,127	2,325,127	2,325,127	2,325,127	2,325,127		
* Significant 10%	* Significant 10%: ** significant 5%: *** significant at 1%						

return

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Natural Resources, Redistribution and Human Capital Formation

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 17/17

Robustness Check: Non-producing districts

Table 9: Non-pr	oaucing ais	stricts in prod	ucer provinces			
Dependent Variable: Math Score						
	(1)	(2)	(3)			
Canon	12.2036*	33.6240***	34.6193***			
	(6.4257)	(9.4382)	(9.2067)			
Squared		-3.2263***	-3.3731***			
		(0.8302)	(0.8039)			
R-squared	0.0061	0.0064	0.0175			
Observations	538,590	538,590	527,789			
Student controls	Ν	Ν	Y			
School controls	Ν	Ν	Y			
* Significant 10%; ** significant 5%; *** significant at 1%.						

Table 9: Non-producing districts in producer provinces

▶ return

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 17/17

Permutation test

▶ return

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo

Natural Resources, Redistribution and Human Capital Formation

No effect of production on math scores

Dependent variable: Math scores							
	(1)	(4)					
Mining production	0.0000	0.0001	0.0001	0.0001			
	(0.0001)	(0.0002)	(0.0002)	(0.0002)			
Squared		-0.0000	-0.0000	-0.0000			
		(0.0000)	(0.0000)	(0.0000)			
R-squared	0.0062	0.0062	0.0146	0.0173			
Observations	2,072,339	2,072,339	2,015,428	2,011,452			
Student controls	N	N	Y	Y			
School controls	N	N	N	v v			
	IN	IN = 0 (which	IN .	ľ			
* Significant 10)%; ** signif	icant 5%; **	* significant	at 1%.			

Table 2A: Effect of Mining Production on Test Scores

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo Natural Resources, Redistribution and Human Capital Formation

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 17/17

No effect of production on reading scores

Tuble EBI EII		ig i roudeen		000100				
Dep	Dependent variable: Reading scores							
	(1)	(2)	(3)	(4)				
Mining production	-0.0001	0.0001	0.0001	0.0001				
	(0.0001)	(0.0001)	(0.0001)	(0.0001)				
Squared	. /	-0.0000**	-Ò.0000**	-Ò.0000**				
-		(0.0000)	(0.0000)	(0.0000)				
R-squared	0.0266	0 0266	0.0603	0 0645				
Observations	2,068,271	2,068,271	2,011,576	2,007,595				
Student controls	Ν	Ν	Y	Y				
School controls	Ν	Ν	Ν	Y				
* Significant 10	* Significant 10%; ** significant 5%; *** significant at 1%.							

Table 2B: Effect of Mining Production on Test Scores

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo Natural Resources, Redistribution and Human Capital Formation

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 17/17

Mineral prices can be endogenous.

- Peru is top mineral producer ⇒ It can influence international prices.
- However:
 - Many private mining companies operate in the country (854).
 - Consensus about the role of China's industrialization.
- Mineral production can be endogenous.
 - Local governments: attract mining companies to get rents.
 - Mining companies: expand production and start new production units.
 - However:
 - Local governments play no role in granting rights/permits.
 - Starting new projects takes 7 years on average.

Graphical explanation of mechanisms

▶ return

J. Agüero, C. Balcazar, S. Maldonado and H. Ñopo