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1 Introduction

One of the main problems that goverment authorities have to confront every-

day is that ofchoosing how to allocate scarce enforcement resources to reduce

violence and illegal activities. In such a process, there is an underlying strategic

interaction with criminals, who react to government choices by changing their

operations to reduce the chances of being caught or their illegal businesses from

being disrupted. In this paper we study this problem by proposing a dynamic

model where a governemnt has to decide the allocation of enforcement resources

across heterogeneos drug traffickers (DTs). We assume that DTs become more

efficient in running their business, the more they have produced in the past. In

other words, we assume a learning-by-doing process whereby DTs become more

efficient the more drugs they have smuggled in the past.

The contribution of this paper is twofold. First, on positive grounds, our

paper provides a rationale as for why short-sighted governments usually put

much more effort in catching big fish (e.g., DT who run a larger business and

are thus more experienced), despite the fact that they know that they will be

replaced by lower ranked members in their organization. In other words, if the

structure of the illegal drug industry is pyramidal, our model explains why, when

the government is short-sighted or myopic, it focuses on a so-called behading

strategy, whereby it puts most enforcement resources in catching the player in

the top of the pyramid.

We claim that this has been the norm in drug producing and transit coun-

tries such as Colombia or Mexico, where goverments have repetitively over time
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focused on arresting the most experienced and visible drug traffickers: the top

of the pyramid. This is not to say that this policy pursue is wrong itself but,

rather, to point out that this might not be the optimal policy if the aim is to dis-

rupt the drug trafficking business. The second contribution of this paper refers

precisely to this normative question: Where should a non-myopic goverment

put its enforcement resources if the aim is to disrupt this illegal bussines?

2 Set up

Consider a mass 1 of population of drug trafficking organizations (DTOs) and

a government authority whose main aim is to disrupt illegal drug trafficking

by capturing drug traffickers. A drug trafficker (DT hereafter) maximizes the

discounted sum of profits over time by choosing the amount of drugs to be

smuggled and sold every period. The more drugs he has smuggled over time, the

more efficient he becomes at producing them. In other words, we assume that

there is an underlying learning-by-doing process through which DTs become

more efficient as they accumulate more experience over time. On the other

hand, a government that lives forever aims to minimize the amount of DTs by

spending limited resources each period on catching them and, by doing this,

disrupting their business. We assume that the govornment faces more social

pressure to catch the more experienced DTs, that is those who have smuggled

more drugs over time. We also assume that the probability of catching a DT

increases with the amount of drugs he smuggles (e.g., the probability of detecting

and arresting a DT is increasing in the size of his operations).

2.1 Drug traffickers

The instantaneous profit of a DT is given by π(q,Q, ε), where q ∈ [0, q̄] is a

control variable of the DT. It can denote the quantity of drugs smuggled but

also the amount of violence he uses to secure his operations. For the sake of

simplicity, we shall restrict our attention to the quantity interpretation. The

variable Q represents the total quantity of drugs that the DT has smgugled

since he has been in the industry, and we will refer to a DT with a higher Q as a

more experienced one. The parameter ε represents an idiosyncratic productivity

shock that is i.i.d. and drawn from an absolute continuous distribution f (·) with

support in R++.

The profit π is a differentiable concave function of q; the concavity captures a
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non-increasing marginal benefit from the DTs point of view. This is usually the

case when DTs face an inelastic downward sloping demand function. We also

assume for simplicity that each DT has its own demand and we abstract from

strategic interactions among DTs. At a given quantity, a more experienced DT

obtains higher profits, e.g. the profit function is increasing in Q, although such

marginal return is also decreasing, ∂2π/∂Q2 < 0. Ceteris paribus, a DT benefits

from a greater experience to manage a drug network distribution, although such

benefit decreases as he gets more expericed in running its business.

Moreover, we assume that the more drugs a DT has produced, the lower is

the marginal cost of drugs distribution, e.g. ∂π/∂q is increasing in Q. Again,

this assumption can be interpreted as a learning-by-doing effect: A DT that has

operated for a longer period of time is more efficient in the distribution when

the amount of drugs he smuggles increases. Roughly speaking, it is less costly

to increase the size of a network of drugs’ distribution for a more experimented

DTs. The productivity shock ε increases profits and the marginal benefit of

producing higher quantities.

A DT maximizes his discounted inter-temporal expected profit by choosing

the quantity q after observing the productivity shock that occurs each period.

We assume that the DT dies exogenously with a probability δ or he can be

captured by the government with probability p, which will be endogenously

determined as described later on. In both cases we assume that the DT gets a

normalized utility of 0. With the complementary probability, 1− p− δ, the DT

follows up in the drug business and accumulates more expertise Q+ q.

We assume that the probability of being captured in a given period, p ≡
p (q, e)q∈[0,q̄],e∈[0,ē] , depends on the quantity of drugs smuggled in that period

(q) and on the amount of effort e undertaken by the government. Both, q

and e, depend on Q; therefore, Q could be interpreted as the type of a DT. We

assume that p(.) is an increasing function in both arguments, concave and convex

in e and q respectively. Moreover, the cross derivative peq is assumed to be

positive. In words, the marginal effect of government’s effort on the probability

of capturing a DT increases with the quantities smuggled by the DT. Time is

discrete and the individual value function can be written recursively as:

v(Q, ε) = max
q
π(q,Q, ε) + (1− p(e, q)− δ)Eε′ [v (q +Q, ε′)] . (1)

Assuming free entry in the drugs business, let us define ve as the expected

value of a potential DT entrant. The potential entrant decides between staying
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outside of the drug business and earning an outside utility vo > 0, or entering in

the business (with no experience and a realization of the shock) and obtaining

a utility v(0, ε). Formally,

ve = max{v(0, ε), vo}. (2)

2.2 The government authority

Let us now turn to the deterrence program solved by the government. We

assume that the government lives forever and discounts the future at a rate

β. Each period the government gets social pressure z (Q) to catch a DT with

expertise Q. The government’s problem is to decide the amount of effort, e (Q) ,

to be spent to increase the probability of catching a DT with experience (type)

Q.1 Let µ (Q) be the amount of DTs with expertise Q; therefore µ represents the

density of DTs in the society in that period, the aggregate state of this economy.

Such distribution is endogenously determined by the optimal policies of both

the DTs and the government. We assume that the government’s instantaneous

loss function is given by the amount of DTs weighted by the preasure it faces

and the density:

L (q, e, µ) =

∫
ε

∫
Q

z(Q) (1− p (q, e (Q)))µ (Q) f (ε) dQdε, (3)

where q summarizes the quantities chosen for each possible realization of ε and

each possible expertise Q. Similarly, e denotes the vector of efforts for each

possible Q.

We assume that pressure z (Q) is increasing in Q, meaning that society puts

more preassure on the governemnt to capture more experienced DTs. We also

assume that the government has a fixed enforcement budget, M, to capture

DTs, and this budget should be distributed each period across different DTs

with the aim of minimizing the loss function. Thus, the government objective

function can be expressed recursively as:

1It is assumed that productivity shocks are not observed by the government. Or, alter-
natively, that they are drawn at the same time government chooses effort. Otherwise, effort
could also be a function of the shock.
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T (µ, q) = max
e
{−L (q, e, µ) + βT (µ′, q′)} (4)

s.t.

∫
Q

e (Q)µ (Q) dQ = M. (5)

2.3 Distribution of DTs

The law of motion for the density of the DTs is given by

µt+1 (Q) =

∫ Q

0

(
1− p

(
e
(
Q̂
)
, Q− Q̂

)
− δ
)
h
(
Q|Q̂

)
µt

(
Q̂
)
dQ̂

where h
(
Q|Q̂

)
is the conditional distribution induced by the shock distribu-

tion, formally h
(
Q|Q̂

)
= f (ε) when q

(
Q̂, ε

)
+ Q̂ = Q. In words, the amount

of DTs with experience Q in the next period is given by the surviving DTs with

previous experience Q̂, and that next period will have experience Q given their

optimally chosen quantities after observing the shock.

We assume that such conditional distribution satisfies de likelihood ratio

order with respect to Q̂. This condition means that it is more likely to observe

a higher Q when the previous Q̂ was higher. Since the probability of surviving

is decreasing in Q, then this assumption implies that the density distribution

µ (Q) is decreasing in Q. That is, the crime structure is pyramidal where there

are fewer DTs with more experience.

A stationary distribution is such that µt+1 = µt = µ. The existence and

uniqueness of the distribution is obtained using Hopenhayn and Prescott (1992).

This is true given the monotonicity of the distribution.

2.4 Equilibrium

We will focus on the Stationary Markov Perfect Equilibrium (SMPE) as the

solution to this dynamic game given the recursive nature of the DT’s and gov-

ernemnts problem. A SMPE is a vector (q∗ (Q, ε) , e∗, µ∗) such that:

1. The policy function q∗ (Q, ε) solves the DTs problem (1)

2. The policy function e∗ solves the governments problem (4)

3. A stationary distribution µ (·) induced by the latter policy functions
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3 Myopic Equilibrium

We will first solve the equilibrium when the governemnt is completely myopic

(e.g., when β = 0) and each period the government minimizes the static loss

function. Given the simultaneity of the DTs and the government’s choices within

each period, a Nash equilibrium is defined in each period. In the next subsection,

we solve for the DT’s best response and then solve for the governments’ best

response. In each case, we compute the relevant comparative static exercices.

Finally, we characterize the myopic equilibrium. The predictions will show that

this type of equilibrium is similar to the one we observe in practice.

3.1 Best response for a DT

Let us first solve the inter-temporal problem for the DTs. Assuming p (q, e) is

a differentiable function, we know there exists a solution to this problem using

Weierstrass theorem. If it is an interior solution, the first order condition yields:

πq(q
∗, Q, ε) + (1− p(e, q)− δ)Eε

[
∂v (Q+ q, ε)

∂q

]
− pq(q∗, e)v (Q+ q) = 0, (6)

where,by the envelope condition, ∂v(Q+q,ε)
∂q = πQ(q

′
, Q + q, ε). In words, the

amount of drugs smuggled each period is obtained by balancing the marginal

instantaneous benefit plus the discounted future benefit of increasing expertise

with the marginal opportunity cost of being arrested and forgone the future

value of surviving in the drug trafficking business. However, it is worth noticing

that the solution may also be a corner one, i.e. the DT does not produce or

produces q̄.

In any case, let q∗ (Q) denote the optimal quantity chosen by a DT with

expertise Q, π∗ (Q) the associated optimal profits and p∗ (Q) the equilibrium

probability of being captured. Since there is no interaction among DTs, these

optimized variables must be equal among DTs with same expertise. That is, for

each Q, optimal drug smuggling should be the same. From the implicit function

theorem, we have:

∂q

∂e
= −

−pe(e, q)∂v(Q+q)
∂q − pqe(q∗, e)v (Q+ q)

πqq(q∗, Q) + (1− p(e, q)− δ)∂
2v(Q+q)
∂q2 − 2pq(e, q)

∂v(Q+q)
∂q − pqq(q∗, e)v (Q+ q)

< 0.

In words, the best response function of a DT with expertise Q implies that

he will reduce the amount of drugs distributed when the government’s effort in
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catching him increases. The value function can be expressed as:

v(Q) = π∗(Q) + (1− p (q∗, e)− δ) v (Q+ q) . (7)

3.2 The best response for a myopic government

A myopic government minimizes the (static) loss function subject to its budget

constraint. The first order condition for e (Q) yields

z(Q)pe(.)− λ = 0, ∀Q,

where λ denotes the Lagrange multiplier. This last condition implies:

pe (q (Q) , e (Q)) =
z(Q′)

z(Q)
pe (q (Q′) , e (Q′)) ∀ (Q,Q′)

Therefore we can express each e (Q′) as a function of some e (Q), its relative

weight z (Q) /z (Q′), quantities q (Q) and q (Q′). Using the resource constraint,

the best response for e (Q) is obtained implicitly from:∫
Q′
e (Q′)

(
e (Q) ,

z (Q)

z (Q′)
, q (Q) , q (Q′)

)
µ (Q) = M.

From these equations we can compute comparative statics of the best re-

sponse such as:

∂e (Q)

∂q (Q)
= −peq (Q)

pee (Q)
> 0,

∂e (Q)

∂q (Q′)
= −

∫
Q′ −

peq(Q′)
pee(Q′) dQ

′∫
Q′

z(Q)pee(Q)
z(Q′)pee(Q′)dQ

′
< 0.

In words, the government wants to increase the effort on catching DTs with

more experience, and it wants to decrease such effort the more drugs the other

DTs produce. The results are intuitive since catching a DT is easier the more

drugs he produces, so that the government can exert effort more efficiently to

catch him. The second result is also expected, since resources are limited.
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3.3 Equilibrium Characterization

Given the previous best responses we can obtain the existence and uniqueness of

the Nash equilibrium within each period. Moreover, we can provide some com-

parative statics that are of special interest in order to compare the predictions

of the model to what we observe in reality.

Lemma 1 Within each period, there exists a unique Nash equilibrium charac-

terized by:

πq(q
∗, Q) + (1− p(e (Q) , q)− δ) ∂v (Q+ q)

∂q
− pq(q∗, e (Q))v (Q+ q) = 0,∫

Q′
e (Q′)

(
e (Q) ,

z (Q)

z (Q′)
, q (Q) , q (Q′)

)
µ (Q) dQ′ = M.

Proof. See Appendix.

Lemma 1 determines the conditions that must hold at the Nash equilib-

rium within each period. The following proposition provides comparative static

exercises with respect to Q.

Proposition 2 A higher level of Q:

i) increases the quantity q sold by DD.

ii) increases the enforcement decision e

Proof. See Appendix.

Proposition 2 points out that DT always increase their production over time.

As long as they have accumulated more expertise, it is optimal for them to

increase the quantity of drugs sold, even if this increases the probability of

being catched by the goverment. The governments’s enforcement also increases

in the DT’s experience since the drugs industry adopts a pyramidal structure.

Roughly speaking, as it is observed in practice, if the mass of DTs decreases

with the amount of expertise, then the government will devote more resources

on arresting big players.
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4 Optimal policy

5 Conclusion

6 Appendix

6.1 Proof of Lemma 1

The existence of the Nash equilibrium within each period is immediate as the

State’s best reply function is increasing in q, i.e. ∂e (Q) /∂q (Q) > 0, while the

DD’s best reply function is decreasing, i.e. ∂q/∂e < 0. A traditional continuity

argument ensures the existence of this Nash Equilibrium. These conditions also

ensure uniqueness since the best responses can only cross one time given their

monotonicity.

6.2 Proof of Proposition 2

In order to provide comparative static exercises on the Nash Equilibrium in a

period t, let us consider the following implicit functions built from the conditions

which are satisfied at the equilibrium. We have

∇e ≡ z(Q)pe(.)− λ = 0, ∀Q,

while the derivative with respect to the Lagrange multiplier yields the State’s

budget constraint:

∇λ ≡M −
∫
Q

e (Q)µ (Q) dQ.

From the DD’s side, we have

∇q ≡ πq(q∗, Q) + (1− p(e (Q) , q)− δ) ∂v (Q+ q)

∂q
− pq(q∗, e (Q))v (Q+ q) .

The total differentiation of this system gives ∇qq ∇qe ∇qλ
∇eq ∇ee ∇eλ
∇λq ∇λe ∇λλ


 dq

de

dλ

 = −

 ∇qQ∇eQ
∇λQ

 dQ.
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Using the Cramer’s rule, we obtain

dq

dQ
=

∣∣∣∣∣∣∣
−∇qQ ∇qe ∇qλ
−∇eQ ∇ee ∇eλ
−∇λQ ∇λe ∇λλ

∣∣∣∣∣∣∣
detH

=
∇qQ

detH
> 0

and

dq

dQ
=

∣∣∣∣∣∣∣
∇qq −∇qQ ∇qλ
∇eq −∇eQ ∇eλ
∇λq −∇λQ ∇λλ

∣∣∣∣∣∣∣
detH

=
∇qq ∂µ∂Q
detH

> 0,

where

detH =

∣∣∣∣∣∣∣
∇qq ∇qe ∇qλ
∇eq ∇ee ∇eλ
∇λq ∇λe ∇λλ

∣∣∣∣∣∣∣ .
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